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We suggest a simple method to solve a wave equation for RaritaÄSchwinger ˇeld without additional
constraints. This method based on the use of off-shell projection operators allows one to diagonalize
spin-1/2 sector of the ˇeld.
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INTRODUCTION

It is well known that standard approach to description of free higher spin ˇelds in quantum
ˇeld theory leads to constraints on ˇeld components (see, e.g., [1])1. But for interacting ˇelds
such constraints can generate serious problems and contradictions. For RaritaÄSchwinger
ˇeld [4], which is used for description of spin-3/2 particles, there are well-known issues of
such type, see [5, 6] and a more general discussion in [7].

One of the ways to avoid these problems with constrained ˇelds is to choose a special
form of interaction to preserve constraints imposed on free ˇeld (if it is possible).

Another way is not to use the constraints at all and to eliminate the redundant components
only after calculating of the observables. It may be considered as some regularization.

Such an approach was used in [8, 9] for the free RaritaÄSchwinger ˇeld with all com-
ponents: besides s = 3/2 this ˇeld contains two extra s = 1/2 components. It was shown
that it is possible to regularly quantize free ˇeld [8, 9] and that in this case the inclusion
of electromagnetic interaction does not generate the old contradictions [5, 6]. Following this
line in [10, 11], we constructed the dressed propagator of RaritaÄSchwinger ˇeld with all
components and found the renormalization procedure, which guarantees the absence of redun-
dant spin-1/2 poles. The essential point of our method is the use of the off-shell projection
operators.

1Lagrange formulation of such theories needs to introduce auxiliary ˇelds, see, e.g., [2, 3].
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Here we use this technique to solve the wave equation for multicomponent RaritaÄ
Schwinger ˇeld. It really gives a simple and transparent method to solve multicomponent
equation as compared with cumbersome calculations in [8,9]. Moreover, in spin-1/2 sector it
allows one to ˇnd explicit form of projectors onto mass states, which solves the diagonaliza-
tion problem.

1. WAVE EQUATION FOR RARITAÄSCHWINGER FIELD

We use the action principle to get the wave equations for Ψμ ˇeld components. The
action for RaritaÉÄSchwinger ˇeld is written in the form

� =
∫
� d4x, � = Ψ̄μSμνΨν , (1)

where Sμν is a tensor-spinor operator. We write it down in the form of Λ-basis decomposition
in momentum representation (see details in Appendix):

Sμν =
10∑

i=1

S̄iP i
μν , (2)

with arbitrary coefˇcients S̄i, where bar is used to denote coefˇcients of Λ basis.
The wave function Ψμ can be expressed as sum of orthogonal components:

Ψμ = n1μΨ1 + n2μΨ2 + χμ, (3)

where niμnμ
j = δij , niμχμ = 0, see Appendix.

The variation of the ˇeld may be written in the same form δΨμ = n1μδΨ1+n2μδΨ2+δχμ

and δ� is

δ� = δΨ̄1n1μ(SμνΨν) + δΨ̄2n2μ(SμνΨν) + δχ̄μ(SμνΨν) + h.c.

Considering the δΨi, δχμ to be independent, after some algebra we obtain a system of
equations for Ψi, i = 1, 2:

{ (
S̄3Λ− + S̄4Λ+

)
Ψ1 +

(
S̄7Λ− + S̄8Λ+

)
Ψ2 = 0,(

S̄9Λ+ + S̄10Λ−)
Ψ1 +

(
S̄5Λ+ + S̄6Λ−)

Ψ2 = 0,
(4)

and a single equation for χμ (
S̄1Λ+ + S̄2Λ−)

χμ = 0. (5)

Here Λ± are off-shell projection operators Λ± = 1/2(1 ± p̂/W ), W =
√

p2.
Equation (5) is the usual Dirac equation for spin-3/2 particle, as will be seen below.

The system for (4) for Ψi resembles the system of coupled Dirac equations. It has nontrival
solutions only if Δ1Δ2 = 0, where Δ1 = S̄3S̄6 − S̄7S̄10, Δ2 = S̄4S̄5 − S̄8S̄9.
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2. MASS STATES IN SPIN-1/2 SECTOR

The system of equations (4) shows that Ψi do not have the deˇnite mass. In order to
diagonalize this system we use a projection representation of tensor-spinor operator

Sμν =
∑

i

λiΓi μν , (S−1)μν =
∑

i

1
λi

Γi μν , (6)

where Γiμν are projection operators of Sμν and λi corresponding eigenvalues.

In our case it is convenient to formulate the eigenstate problem in terms of projectors. So
Γμν should satisfy the following requirements:

Sα
μΓαν = λΓμν , Γα

iμΓjαν = δijΓiμν . (7)

It is convenient to use Λ-basis decomposition for Γμν to solve this problem, see (2).

For spin-3/2 sector it is obvious that P1 and P2 are projection operators and the corre-
sponding eigenvalues are S̄1 and S̄2.

For spin-1/2 terms we obtain the following equations on eigenvalues (here E is a unit
matrix):

det(S1 − λiE) = 0, i = 1, 2; S1 =
(

S̄3 S̄7

S̄10 S̄6

)
,

det(S2 − λjE) = 0, j = 3, 4; S2 =
(

S̄4 S̄8

S̄9 S̄4

)
.

(8)

The eigenvalues are W -dependent and are exchanged under the transformation W → −W ,
namely 1, 2 ↔ 3, 4, that follows from the property of Λ-basis coefˇcients.

After some algebra we obtain four projection operators for spin-1/2 terms (tensor indices
are omitted)

Γ1 =
1

λ2 − λ1

(
(S̄6 − λ1)P3 − S̄10P10

)
+

−1
λ2 − λ1

(
(S̄3 − λ1)P6 − S̄7P7

)
, (9)

Γ3 =
1

λ4 − λ3

(
(S̄5 − λ3)P4 − S̄9P9

)
+

−1
λ4 − λ3

(
(S̄4 − λ3)P5 − S̄8P8

)
, (10)

Γ2 =
−1

λ2 − λ1

(
(S̄6 − λ2)P3 − S̄10P10

)
+

1
λ2 − λ1

(
(S̄3 − λ2)P6 − S̄7P7

)
, (11)

Γ4 =
−1

λ4 − λ3

(
(S̄5 − λ4)P4 − S̄9P9

)
+

1
λ4 − λ3

(
(S̄4 − λ4)P5 − S̄8P8

)
, (12)

corresponding to eigenvalues (8).
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The found projection operators allow us to obtain corresponding eigenvectors liμ which
have the following form:

l1μ =

√
S̄7S̄10

S̄7S̄10 + |S̄3 − λ1|2

(
n1μ − S̄3 − λ1

S̄7
n2μ

)
Λ−, (13)

l2μ =

√
S̄7S̄10

S̄7S̄10 + |S̄3 − λ2|2

(
n1μ − S̄3 − λ2

S̄7
n2μ

)
Λ−, (14)

l3μ =

√
S̄8S̄9

S̄8S̄9 + |S̄4 − λ3|2

(
n1μ − S̄4 − λ3

S̄8
n2μ

)
Λ+, (15)

l4μ =

√
S̄8S̄9

S̄8S̄9 + |S̄4 − λ4|2

(
n1μ − S̄4 − λ3

S̄8
n2μ

)
Λ+. (16)

As a result, the projection operators can be written as

Γiμν = liμ l̄iν , (17)

where l̄μ = γ0l†μγ0. The main property of liμ is

l̄iμlμi = Λ−, i = 1, 2, l̄jμlμj = Λ+, j = 3, 4. (18)

As a result, the projection representation (6) for (Sμν)−1 now takes a more concrete form

(S−1)μν =
1
S̄1

P1μν +
1
S̄2

P2μν +
4∑

i=1

1
λi

Γi μν . (19)

Now it is possible to write wave function Ψμ as a sum of orthogonal components with
deˇnite mass

Ψμ(p) = (l1μ + l3μ)ϕ1(p) + (l2μ + l4μ)ϕ2(p) + χμ(p), (20)

where χμlμi = 0, i = 1, . . . , 4, so Lagrangian (1) is expanden into

� = χ̄μ

(
S̄1Λ+ + S̄2Λ−)

χμ + ϕ̄1

(
λ3Λ+ + λ1Λ−)

ϕ1 + ϕ̄2

(
λ4Λ+ + λ2Λ−)

ϕ2. (21)

Repeating the steps in deriving the wave equation but using instead of (3) the decompo-
sition (20), we get independent motion equations for ϕ1 and ϕ2:

(Λ+λ3 + Λ−λ1)ϕ1 = 0,
(Λ+λ4 + Λ−λ2)ϕ2 = 0.

(22)
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3. LAGRANGIAN OF MASSIVE RARITAÄSCHWINGER FIELD

To contretize the above general formulae, let us consider the most general form of La-
grangian of free RaritaÄSchwinger ˇeld1

� = Ψ̄μSμνΨν ,

Sμν = gμν(p̂ − M) − pμγν − pνγμ + γμγνM(1 + r) + γμp̂γν

(
δ

2
+ 1

)
,

(23)

which besides mass M has two real parameters r, δ. Eigenvalues (8) in this case takes the
form

λ1,2 = M(1 + 2r) − W (1 + δ)∓

∓
[
4M2(1 + r)2 − 2M(1 + r)(1 + 2δ)W +

(
1 + δ + δ2

)
W 2

]1/2
, (24)

λ3,4 = M(1 + 2r) + W (1 + δ)∓

∓
[
4M2(1 + r)2 + 2M(1 + r)(1 + 2δ)W +

(
1 + δ + δ2

)
W 2

]1/2
. (25)

It is obvious that the values depend on W and are exchanged when W → −W .
In the general case eigenvalues λi(W ) have speciˇc dependence on W , so Eqs. (22) are

not exactly Dirac equations. To see it, we can look again at the system of equations (4).
Indeed, we can rewrite the system for Ψi as a system of equations resembling Dirac equation

[p̂K − M]
(

Ψ1

Ψ2

)
= 0 (26)

with nondiagonal kinetic K and mass M matrices. The Lagrangian (23) leads to the following
matrices:

K =
M

W

(
0

√
3(1 + r)√

3(1 + r) 0

)
+

(
(4 + 3δ)/2 0

0 δ/2

)
,

M = −M

(
2 + 3r 0

0 r

)
− W

(
0

√
3/2δ√

3/2δ 0

)
.

Note that matrices M and K are W -dependent.
Zeroes of eigenvalues are poles for the propagator. The ˇrst two terms in (19) have poles

in points M and −M , correspondingly. Denote the poles in spin-1/2 sector as m1, m2, i.e.,

λ1(m1) = 0, λ2(m2) = 0. (27)

The above-mentioned property of eigenvalues suggests that −m1 and −m2 are zeroes of λ3

and λ4, correspondingly. From the explicit form of eigenvalues (24) one derives that

m1,2 = M
r − δ ±

√
(δ − r)2 + (3 + 4r)δ

δ
. (28)

1The most general form of Lagrangian depends on four parameters [8,12,13], but poles positions depend only on
two parameters. So without loss of generality we use two-parameter Lagrangian. Details can be found in [12].
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The Dirac case corresponds to particular choice of parameter r = −1, when eigenvectors
are linear on W :

λ1,2 = −M − W (1 + δ ±
√

1 + δ + δ2), (29)

λ3,4 = −M + W (1 + δ ±
√

1 + δ + δ2). (30)

For this case Eqs. (22) have standard Dirac form and Lagrangian (21) is written as

� = χ̄μ

(
S̄1Λ+ + S̄2Λ−)

+ ϕ̄1

(
(1 + δ +

√
1 + δ + δ2)p̂ − M

)
ϕ1+

+ ϕ̄2

(
(1 + δ −

√
1 + δ + δ2)p̂ − M

)
ϕ2. (31)

The diagonal form of Lagrangian (31) allows us to see the sign of every contribution to
the energy. Indeed, comparing with the Dirac case, we see that ˇeld ϕ1 gives always positive
contribution to Hamiltonian, while the contribution of ϕ2 depends on the sign of δ; if δ is
negative, then Hamiltonian has a negative contribution from ϕ2. Tnis conclusion differs from
the conclusion obtained in work [8]: according to it at least one contribution from spin-1/2
components to Hamiltonian is negative.

CONCLUSION

We have found that with the use of Λ basis and decomposition of ˇeld (3), it is easy to
obtain the wave equations for different spin sectors of RaritaÄSchwinger ˇeld. For spin-3/2 it
is in fact a Dirac equation, as for spin-1/2 sector, we have two coupled Dirac-like equations
with nondiagonal kinetic and mass matrices. In the general case the mass matrix in (26) is
energy-dependent M(W ), only special choice of parameters leads to constant matrix.

We used the most general form of wave operator (2) because the above-presented La-
grangians (23) do not exhaust all possibilities. For instanse, there exist some examples of
RaritaÄSchwinger Lagrangians with higher derivatives [14, 15].

The Λ basis allows one also to ˇnd projectors onto the mass states for spin-1/2 sector.
Convenient trick here is the use of projection representation of operator in the form of (6), (20).

We can conclude that the methods presented here allow us to work effectively with multi-
component ˇeld without additional constraints and may be useful for other higher spin ˇelds
and more complex Lagrangians.
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Appendix

NOTATIONS

Throughout the work we use the following notation. The elements of Λ basis are deˇned as

P1 = Λ+P3/2, P2 = Λ−P3/2, P3 = Λ+P1/2
11 , P4 = Λ−P1/2

11 ,

P5 = Λ+P1/2
22 , P6 = Λ−P1/2

22 , P7 = Λ+P1/2
21 , P8 = Λ−P1/2

21 ,

P9 = Λ+P1/2
12 , P10 = Λ−P1/2

12 ,

(32)

where
(P3/2)μν = gμν − nμ

1nν
1 − nμ

2nν
2 ,

(P1/2
11 )μν = nμ

1nν
1 , (P1/2

22 )μν = nμ
2nν

2 , (33)

(P1/2
21 )μν = nμ

1nν
2 , (P1/2

12 )μν = nμ
2nν

1 .

The unit vectors n1μ and n2μ are deˇned as follows:

n1μ =
1√
3

(
gμα − pμpα

p2

)
γα, n2μ =

pμ√
p2

, niμ · nμ
j = δij , (34)

and

Λ± =
1
2

(
1 ± p̂

W

)
, W =

√
p2. (35)

The decomposition over the Λ basis of Sμν is written as

Sμν =
10∑

i=1

S̄iP i
μν . (36)
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