ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ТЕОРИЯ

# ИЗВЛЕЧЕНИЕ ПОЛЯРИЗАЦИОННЫХ СТРУКТУРНЫХ ФУНКЦИЙ ИЗ АСИММЕТРИЙ В ГЛУБОКОНЕУПРУГОМ РАССЕЯНИИ С УЧАСТИЕМ НЕЙТРИНО

Е.С. Тимошин, С.И. Тимошин

Гомельский государственный технический университет им. П. О. Сухого, Гомель, Белоруссия

Предложен новый подход к извлечению поляризационных структурных функций нуклона из измеряемых асимметрий в глубоконеупругом лептон-нулонном рассеянии с заряженным слабым током, применимый для любой мишени.

A new approach to the extraction of the polarized structure function of the nucleon from the measurable asymmetries in the deep inelastic lepton–nucleon scattering with the charged weak current applicable for any target is proposed.

PACS: 13.88.+c; 13.15.+g; 13.40.Ks; 13.60.Hb; 14.20.Dh

## введение

В КХД спин нуклона представляется через вклады составляющих его кварков и глюонов следующим образом:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta g + L_q + L_g,$$

где  $\Delta \Sigma$ ,  $\Delta g$  — вклады от спинов кварков и глюонов соответственно;  $L_q$ ,  $L_g$  — орбитальные угловые моменты кварков и глюонов.

В настоящее время надежно установлено, что одну треть нуклонного спина несут кварки и антикварки [1–3]. Один из наиболее важных открытых вопросов — источник оставшейся 2/3 спина нуклона. По данным всех современных экспериментов (SMC, COMPASS, HERMES, RHIC), поляризация глюонов не может быть большой и составляет  $|\Delta g| \leq 0.3$ . Такая величина  $\Delta g$  не объясняет разницу между экспериментальным значением аксиального заряда нуклона  $a_0$  (HERMES ~ 0,33, COMPASS ~ 0,35) и предсказанием кварк-партонной модели  $\Delta \Sigma \sim 0.6$  через аксиальную аномалию (в кварк-партонной модели  $a_0 = \Delta \Sigma$ ). В то же время глюонная поляризация  $\Delta g \sim 0.2-0.3$  все еще делает существенным ее вклад в спин нуклона [3].

### 154 Тимошин Е.С., Тимошин С.И.

Вклады от угловых орбитальных моментов кварков и глюонов также являются важной составляющей в полном спиновом балансе нуклона. Доступ к ним возможен через измерения обобщенных партонных распределений в эксклюзивных процессах глубоко виртуального комптоновского рассеяния и электророждения векторных мезонов [3].

Новая информация о вкладах отдельных ароматов кварков и антикварков, валентных кварков, полном кварковом вкладе в нуклонный спин может быть получена в экспериментах по глубоконеупругому рассеянию с заряженным током на поляризованных мишенях.

К таким процессам относится глубоконеупругое рассеяние нейтрино и заряженных лептонов  $(l = e, \mu)$  на нуклонах с обменом W-бозоном. Преимущество их по сравнению с процессами с электромагнитным током состоит в том, что имеются две независимые поляризационные структурные функции  $g_1$  и  $g_5$  для продольной поляризации мишени [4]. Структурные функции  $g_1$  и  $g_5$  соответствуют линейным комбинациям вкладов кварковых спинов: сохраняющая четность структурная функция  $g_1$  является суммой вкладов кварков и антикварков ( $\Delta q + \Delta \overline{q}$ ), а нарушающая четность структурная функция  $g_5$  — разностью кварковых и антикварковых вкладов ( $\Delta q - \Delta \overline{q}$ ).

Наличие двух измеряемых структурных функций  $g_1$  и  $g_5$  с различной комбинацией  $\Delta q$  и  $\Delta \overline{q}$  позволяет получить отдельно вклады валентных и морских кварков, т. е. дает доступ к ароматовой структуре мишени [4]. Отметим, что в инклюзивном лептоннуклонном глубоконеупругом рассеянии с  $\gamma$ -обменом доступна только комбинация  $\Delta q + \Delta \overline{q}$ . Поэтому возможность разделения вкладов кварков и антикварков отдельно по ароматам является существенным преимуществом глубоконеупругого рассеяния с заряженным слабым током.

Эксперименты по глубоконеупругому лептон-нуклонному рассеянию с заряженным слабым током могут быть реализованы на электрон-протонных (ep) коллайдерах, например, в рамках проектов LHeC, eRHIC и EIC [5–10], при больших  $Q^2$ .

Технология мюонных коллайдеров дает возможность получать высокофокусированные пучки нейтрино и антинейтрино от распадов мюонов (нейтринные фабрики) [4,11,12].

На нейтринной фабрике можно набрать необходимую статистику уже с достаточно малыми мишенями; современные технологии позволяют создавать поляризованные мишени массой до 1 кг, которые вполне подходят для нейтринных экспериментов.

Актуальным является исследование спиновой структуры нуклона в процессах глубоконеупругого рассеяния с заряженным током, поскольку постановка экспериментов на их основе, как показано выше, становится вполне реальной.

Анализ спиновой структуры нуклона в нейтринных процессах глубоконеупругого рассеяния имеется в работе [13], где для этого используются первые моменты структурной функции  $g_1^{\nu N}(x)$  и нарушающей четность структурной функции  $A_1^{\nu N}(x)$ . Однако возможности извлечения самих структурных функций  $g_1^{\nu N}(x)$  и  $A_1^{\nu N}(x)$  из наблюдаемых величин никак не обсуждаются. На самом деле этот вопрос нетривиальный, поскольку имеются две независимые поляризационные структурные функции в нейтринных процессах, а не одна структурная функция  $g_1$ , как в глубоконеупругом рассеянии с электромагнитным током (для продольно поляризованной мишени вкладом структурной функции  $g_2$  в сечение можно пренебречь). В работах [14, 15] кварковые вклады в нуклонный спин в глубоконеупругом рассеянии (анти)нейтрино на нуклонах получены тоже с помощью первых моментов поляризационных структурных функций  $g_1$ и  $g_6$ . Сами структурные функции  $g_1$  и  $g_6$  предлагается извлекать из виртуальных асимметрий  $A_1$  и  $A_6$ , построенных из полных сечений поглощения виртуальных W- и Z-бозонов поляризованным нуклоном, через которые выражаются измеряемые асимметрии  $A_{\nu}$ ,  $A_{\bar{\nu}}$ . Однако процедура получения  $A_1$  и  $A_6$  из измеряемых асимметрий здесь имеет место только для частного случая рассеяния на дейтронной мишени и с привлечением фотон-нуклонной асимметрии  $A_1^d$  глубоконеупругого рассеяния с электромагнитным током.

Цель настоящей работы — получение способа извлечения поляризационных структурных функций  $g_1$  и  $g_6$  непосредственно из измеряемых асимметрий в глубоконеупругом рассеянии с заряженным слабым током (обмен W-бозоном), применимого для любой мишени.

## 1. ДИФФЕРЕНЦИАЛЬНЫЕ СЕЧЕНИЯ НЕЙТРИННЫХ ПРОЦЕССОВ С ЗАРЯЖЕННЫМ ТОКОМ

Рассмотрим глубоконеупругое рассеяние нейтрино и антинейтрино на поляризованных нуклонах с заряженным слабым током

$$\nu(\bar{\nu}) + N \to l^-(l^+) + X \quad (l = e, \mu)$$
 (1)

в борновском приближении (рис.).



Процесс глубоконеупругого рассеяния нейтрино на нуклонах с заряженным током в борновском приближении

Дифференциальные сечения процессов (1) имеют вид

$$d\sigma_{\nu,\bar{\nu}} = d\sigma^a_{\nu,\bar{\nu}} + d\sigma^p_{\nu,\bar{\nu}},\tag{2}$$

где

$$d\sigma^{a}_{\nu,\bar{\nu}} = \frac{G^{2}}{(2\pi)^{2}} \frac{M}{p \cdot k} (L^{\alpha\beta} \pm L^{\alpha\beta}_{5}) W^{\nu,\bar{\nu}}_{\alpha\beta} \frac{d^{3}k'}{k'_{0}},$$
$$W^{\nu,\bar{\nu}}_{\alpha\beta} = -g_{\alpha\beta} W^{\nu,\bar{\nu}}_{1} + \frac{1}{M^{2}} p_{\alpha} p_{\beta} W^{\nu,\bar{\nu}}_{2} - \frac{i}{2M^{2}} e_{\alpha\beta\rho\sigma} p^{\rho} q^{\rho} W^{\nu,\bar{\nu}}_{3}$$
(3)

И

$$d\sigma^{p}_{\nu,\bar{\nu}} = \frac{G^{2}}{(2\pi)^{2}} \frac{M}{p \cdot k} (L^{\alpha\beta} \pm L^{\alpha\beta}_{5}) G^{\nu,\bar{\nu}}_{\alpha\beta} \frac{d^{3}k'}{k'_{0}}, \tag{4}$$

156 Тимошин Е.С., Тимошин С.И.

$$\begin{split} G_{\alpha\beta}^{\nu,\bar{\nu}} &= -\frac{i}{M} e_{\alpha\beta\rho\sigma} q^{\sigma} \Big[ M^2 s^{\sigma} G_1^{\nu,\bar{\nu}} + (p \cdot q s^{\sigma} - s \cdot q p^{\sigma}) G_2^{\nu,\bar{\nu}} \Big] - \frac{i}{M} e_{\alpha\beta\rho\sigma} p^{\rho} s^{\sigma} G_3^{\nu,\bar{\nu}} + \\ &+ \frac{1}{M^2} (p_{\alpha} s_{\beta} + p_{\beta} s_{\alpha}) G_4^{\nu,\bar{\nu}} + \frac{2}{M^2} p_{\alpha} p_{\beta} (s \cdot q) G_5^{\nu,\bar{\nu}} + \frac{1}{M^2} g_{\alpha\beta} (s \cdot q) G_6^{\nu,\bar{\nu}}, \\ & L^{\alpha\beta}(k,k') = k^{\alpha} k'^{\beta} + k'^{\alpha} k^{\beta} - g^{\alpha\beta} (kk'), \\ & L_5^{\alpha\beta}(k,k') = -i e^{\alpha\beta\rho\sigma} k_p k'_{\sigma}, \end{split}$$

где G — константа Ферми; M — масса нуклона; q = k - k'; s — вектор поляризации нуклона.

 $W^{\nu,\bar{\nu}}_{1,2,3}(\nu,q^2)$  и  $G^{\nu,\bar{\nu}}_{1...6}(\nu,q^2)$  — усредненные по спину и поляризационные структурные функции нуклона соответственно,

$$\nu = p \cdot q/M.$$

В определении  $W^{\nu,\bar{\nu}}_{\alpha\beta}$  и  $G^{\nu,\bar{\nu}}_{\alpha\beta}$  опущены члены, пропорциональные  $q^{\alpha}$  или  $q^{\beta}$ , так как при свертке с лептонным тензором  $[L^{\alpha\beta}(k,k') \pm L_5^{\alpha\beta}(k,k')]$  они дают члены, пропорциональные массам лептонов, которыми можно пренебречь. Отметим, что в специальной литературе (см., например, [4]) встречается несколько иное определение адронного тензора, которое содержит не шесть, как в (4), а пять поляризационных структурных функций. Это обусловлено тем, что тензорную структуру  $e_{\alpha\beta\rho\sigma}p^{\rho}s^{\sigma}$  при  $G^{\nu,\bar{\nu}}_{3}$  можно свести к  $e_{\alpha\beta\rho\sigma}q^{\rho}(p \cdot qs^{\sigma} - s \cdot qp^{\sigma})$  при  $G^{\nu,\bar{\nu}}_{2}$  с точностью до слагаемых, пропорциональных  $q^{\alpha}$ и  $q^{\beta}$ , которыми, как уже было сказано, можно пренебречь. Поэтому число поляризованных структурных функций можно на одну уменьшить за счет  $G^{\nu,\bar{\nu}}_{3}$ . В то же время следует подчеркнуть, что структурная функция  $g^{\nu,\bar{\nu}}_{6}$  в настоящей работе и структурная функция  $g_5$  в [4] соответствуют одному и тому же тензору  $g_{\alpha\beta}(s \cdot q)$ .

Сечение на неполяризованной мишени записывается так (см., например, [16]):

$$\frac{d^2 \sigma^a_{\nu,\bar{\nu}}}{dx \, dy} = \sigma_0 \bigg[ x y^2 F_1^{\nu,\bar{\nu}}(x,Q^2) + (1-y) F_2^{\nu,\bar{\nu}}(x,Q^2) \pm x y \Big( 1 - \frac{y}{2} \Big) F_3^{\nu,\bar{\nu}}(x,Q^2) \bigg], \quad (5)$$

где

$$\begin{aligned} \sigma_0 &= \frac{G^2}{\pi} M E; \quad F_1^{\nu,\bar{\nu}} = M W_1^{\nu,\bar{\nu}}; \quad F_{2,3}^{\nu,\bar{\nu}} = \nu W_{2,3}^{\nu,\bar{\nu}}; \\ x &= \frac{Q^2}{2M\nu}; \quad y = \frac{\nu}{E}; \quad Q^2 = -q^2; \end{aligned}$$

Е — энергия нейтрино или антинейтрино.

Для продольной поляризации нуклона ( $s = \left(0, P_N \frac{\mathbf{k}}{|\mathbf{k}|}\right)$  в лабораторной системе,  $P_N$  — степень поляризации) сечение (4) получено в виде

$$\begin{aligned} \frac{d^2 \sigma_{\nu,\bar{\nu}}^p}{dx \, dy} &= P_N \sigma_0 \left[ xy^2 \Big( 1 + \frac{Mx}{E} \Big) g_6^{\nu,\bar{\nu}}(x,Q^2) - \Big( 2 - 2y - \frac{Mxy}{E} \Big) g_4^{\nu,\bar{\nu}}(x,Q^2) - \right. \\ &\left. - 2 \Big( 1 + \frac{Mx}{E} \Big) \Big( 1 - y - \frac{Mxy}{2E} \Big) g_5^{\nu,\bar{\nu}}(x,Q^2) \pm \right. \\ &\left. \pm \Big( xy \Big( 2 - y - \frac{Mxy}{E} \Big) g_1^{\nu,\bar{\nu}}(x,Q^2) - \frac{2Mx^2y}{E} g_2^{\nu,\bar{\nu}}(x,Q^2) + \frac{Mxy}{E} g_3^{\nu,\bar{\nu}}(x,Q^2) \Big) \right]. \end{aligned}$$

Здесь введены безразмерные структурные функции [17]

$$g_1 = M^2 \nu G_1, \quad g_2 = M \nu^2 G_2, \quad g_3 = \nu G_3, \\ g_4 = \frac{\nu}{M} G_4, \quad g_5 = \nu^2 G_5, \quad g_6 = \frac{\nu}{M} G_6.$$

В глубоконеупругой области величина  $M/E \ll 1$ , поэтому в этом приближении имеем

$$\begin{aligned} \frac{d^2 \sigma_{\nu,\bar{\nu}}^p}{dx \, dy} &= P_N \sigma_0 \bigg[ x y^2 g_6^{\nu,\bar{\nu}}(x,Q^2) - 2 \big(1-y\big) \times \\ & \times \left( g_4^{\nu,\bar{\nu}}(x,Q^2) + g_5^{\nu,\bar{\nu}}(x,Q^2) \right) \pm x y \big(2-y\big) g_1^{\nu,\bar{\nu}}(x,Q^2) \bigg]. \end{aligned}$$

Взаимодействие виртуального бозона с кварком сохраняет спиральность, когда всеми массами пренебрегается, так что адронный тензор  $T_{\alpha\beta} = W_{\alpha\beta} + G_{\alpha\beta}$ , если рассматривается лидирующий порядок, должен исчезать при умножении на вектор продольной поляризации бозона  $\varepsilon_{\alpha}$  [4]. Поскольку  $\varepsilon_{\alpha}$  можно представить как линейную комбинацию p и q, это условие подразумевает  $q^{\alpha}q^{\beta}T_{\alpha\beta} = 0$ . Тогда из (3) и (4) получаем

$$q^{\alpha}q^{\beta}T_{\alpha\beta} = \nu \left(F_2 - 2xF_1\right) + 2(sq)\left(g_4 + g_5 + xg_6\right) = 0.$$

Поэтому в лидирующем порядке

$$g_4(x,Q^2) + g_5(x,Q^2) = -xg_6(x,Q^2).$$

С учетом этого соотношения поляризационная часть сечений процессов (1) имеет вид

$$\frac{d^2 \sigma_{\nu,\bar{\nu}}^p}{dx \, dy} = P_N x \sigma_0 \left( y_1^+ g_6^{\nu,\bar{\nu}}(x,Q^2) \pm y_1^- g_1^{\nu,\bar{\nu}}(x,Q^2) \right),\tag{6}$$

где

~

$$y_1 = 1 - y, \quad y_1^{\pm} = 1 \pm y_1^2.$$

Сечения процессов (1) глубоконеупругого рассеяния (анти)нейтрино на продольно поляризованной мишени в соответствии с (2), (5), (6) можно записать следующим образом:

$$\frac{d^2 \sigma_{\nu,\bar{\nu}}}{dx \, dy} = \sigma_0 \bigg[ x y^2 F_1^{\nu,\bar{\nu}}(x,Q^2) + y_1 F_2^{\nu,\bar{\nu}}(x,Q^2) \pm x y \bigg( 1 - \frac{y}{2} \bigg) F_3^{\nu,\bar{\nu}}(x,Q^2) + P_N x \bigg( y_1^+ g_6^{\nu,\bar{\nu}}(x,Q^2) \pm y_1^- g_1^{\nu,\bar{\nu}}(x,Q^2) \bigg) \bigg].$$
(7)

Из (7) видно, что в случае продольной поляризации нуклона в сечение входят две независимые поляризационные структурные функции  $g_1$  и  $g_6$  в отличие от электромагнитных процессов глубоконеупругого рассеяния, где только одна структурная функция  $g_1^{\gamma}$ .

## 2. ИЗВЛЕЧЕНИЕ ПОЛЯРИЗАЦИОННЫХ СТРУКТУРНЫХ ФУНКЦИЙ ИЗ АСИММЕТРИЙ

Информация о структуре нуклона, в том числе спиновой, содержится в структурных функциях  $F_{1,2,3}$  и  $g_{1,6}$ . Вследствие этого они представляют предмет исследования в процессах глубоконеупругого лептон-нуклонного рассеяния. Поэтому важной задачей является получение структурных функций из измеряемых величин. В процессах с неполяризованными пучками и мишенями структурные функции  $F_2$  (или  $F_1$ ) и  $F_3$  получают непосредственно из сечений рассеяния (см. (5)). Иная ситуация имеет место в случае поляризации начальных частиц в глубоконеупругом лептон-нуклонном рассеянии. Часть сечения рассеяния, обусловленная поляризацией частиц (для нейтринных процессов см. (6)), является сравнительно малой и вследствие этого трудно измеримой экспериментально. Поэтому в поляризационных экспериментах измеряют относительные величины — асимметрии, представляющие собой (в случае продольной поляризации) отношение разности сечений с параллельным и антипараллельным направлениями спинов лептона и нуклона к сумме этих сечения. Тем самым в числителе выделяется в «чистом» виде поляризационная часть сечения  $\left(\frac{d^2\sigma^p}{dx\,dy}\right)$ , а в знаменателе — неполяризационная

часть  $\left(\frac{d^2\sigma^a}{dx\,dy}\right)$ , т. е. асимметрия есть  $A = d^2\sigma^p/d^2\sigma^a$  и выражается через структурные функции (см. (5), (6)). Следовательно, поляризационные структурные функции должны извлекаться из асимметрий с использованием известных параметризаций усредненных по спину структурных функций  $F_{1,2,3}$ .

В электромагнитных процессах глубоконеупругого лептон-нуклонного рассеяния такая задача решается достаточно просто в случае продольной поляризации нуклона, поскольку вклады виртуальной асимметрии  $A_2$  и структурной функции  $g_2$  пренебрежимо малы и из измеряемой асимметрии  $A_{\parallel}$  можно прямо получить структурную функцию  $g_1$  [1, 3].

Поляризационные асимметрии для процессов (1) определим как следующую комбинацию сечений (7):

$$A_{\nu,\bar{\nu}} = \frac{d^2 \sigma_{\nu,\bar{\nu}}^{\downarrow\uparrow,\uparrow\uparrow} - d^2 \sigma_{\nu,\bar{\nu}}^{\downarrow\downarrow,\uparrow\downarrow}}{d^2 \sigma_{\nu,\bar{\nu}}^{\downarrow\uparrow,\uparrow\uparrow} + d^2 \sigma_{\nu,\bar{\nu}}^{\downarrow\downarrow,\uparrow\downarrow}}.$$
(8)

Первая стрелка в (8) соответствует спиральности нейтрино  $\downarrow$  или антинейтрино  $\uparrow$ , а вторая — направлению спина нуклона  $\uparrow (P_N = 1)$  и  $\downarrow (P_N = -1)$ . С помощью (7) для асимметрий получаем выражения через структурные функции:

$$A_{\nu,\bar{\nu}}(x,Q^2) = \frac{y_1^+ g_6^{\nu,\nu}(x,Q^2) \pm y_1^- g_1^{\nu,\nu}(x,Q^2)}{y_1^+ F_1^{\nu,\bar{\nu}}(x,Q^2) \pm \frac{y_1^-}{2} F_3^{\nu,\bar{\nu}}(x,Q^2)}.$$
(9)

В отличие от электромагнитных процессов глубоконеупругого рассеяния извлечение поляризационных структурных функций в глубоконеупругом рассеянии с заряженным слабым током является нетривиальной задачей, поскольку асимметрии (9) содержат две независимые структурные функции  $g_1$  и  $g_6$ .

Очевидно, что для извлечения  $g_{1,6}$  из (9) необходимо дополнительное соотношение, связывающее эти функции. В работе [14]  $g_1$  и  $g_6$  определялись с помощью набора изме-

ряемых величин, включающего виртуальную фотон-нуклонную асимметрию  $A_1$  глубоконеупругого лептон-нуклонного рассеяния, т. е. использовались наблюдаемые асимметрии двух типов процессов глубоконеупругого рассеяния: (анти)нейтрино на нуклонах (обмен W-бозоном) и заряженных лептонов на нуклонах ( $\gamma$ -обмен).

Кроме того, предложенная там схема используется только для дейтронной мишени и, следовательно, носит ограниченный характер. Здесь предлагается новый способ извлечения структурных функций  $g_1$  и  $g_6$  из асимметрий, измеряемых только в экспериментах с участием нейтрино, применимый для любой мишени.

Для этого рассмотрим процессы глубоконеупругого рассеяния поляризованных заряженных лептонов, являющиеся обратными по отношению к нейтринным реакциям (1):

$$l^{-}(l^{+}) + N \to \nu(\bar{\nu}) + X,$$
 (10)

где  $l = e, \mu$ .

В лидирующем порядке КХД для структурных функций процессов (1) и (10) имеют место следующие соответствия:

$$g_{1,6}^{\bar{\nu}}(x,Q^2) = g_{1,6}^{l^-}(x,Q^2), \quad g_{1,6}^{\nu}(x,Q^2) = g_{1,6}^{l^+}(x,Q^2), F_{1,3}^{\bar{\nu}}(x,Q^2) = F_{1,3}^{l^-}(x,Q^2), \quad F_{1,3}^{\nu}(x,Q^2) = F_{1,3}^{l^+}(x,Q^2).$$
(11)

Наблюдаемые асимметрии  $A_{l^-,l^+}(x,Q^2)$  процессов (10) [18] запишем в виде

$$A_{l^{-},l^{+}}(x,Q^{2}) = \frac{y_{1}^{+}g_{6}^{l^{-},l^{+}}(x,Q^{2}) \pm y_{1}^{-}g_{1}^{l^{-},l^{+}}(x,Q^{2})}{y_{1}^{+}F_{1}^{l^{-},l^{+}}(x,Q^{2}) \pm \frac{y_{1}^{-}}{2}F_{3}^{l^{-},l^{+}}(x,Q^{2})}.$$
(12)

С учетом соотношений (11) асимметрии  $A_{l^-,l^+}(x,Q^2)$  (12) представим через структурные функции  $g_1^{\nu,\bar{\nu}}(x,Q^2)$  и  $g_6^{\nu,\bar{\nu}}(x,Q^2)$  таким образом:

$$A_{l^-,l^+}(x,Q^2) = \frac{y_1^+ g_6^{\bar{\nu},\nu}(x,Q^2) \pm y_1^- g_1^{\bar{\nu},\nu}(x,Q^2)}{y_1^+ F_1^{\bar{\nu},\nu}(x,Q^2) \pm \frac{y_1^-}{2} F_3^{\bar{\nu},\nu}(x,Q^2)}.$$
(13)

Соотношения (9), (13) позволяют выделить структурные функции  $g_1^{\nu,\bar{\nu}}(x,Q^2)$  и  $g_6^{\nu,\bar{\nu}}(x,Q^2)$ , поскольку  $F_1^{\nu,\bar{\nu}}(x,Q^2)$ ,  $F_3^{\nu,\bar{\nu}}(x,Q^2)$  известны из нейтринных экспериментов на неполяризованных мишенях. В результате получаем

$$g_{1}^{\nu,\bar{\nu}}(x,Q^{2}) = \frac{1}{2} \Biggl[ A_{\nu,\bar{\nu}}(x,Q^{2}) \Biggl( \frac{y_{1}^{+}}{y_{1}^{-}} F_{1}^{\nu,\bar{\nu}}(x,Q^{2}) \pm \frac{F_{3}^{\nu,\bar{\nu}}(x,Q^{2})}{2} \Biggr) \mp \\ \mp A_{l^{+},l^{-}}(x,Q^{2}) \Biggl( \frac{y_{1}^{+}}{y_{1}^{-}} F_{1}^{\nu,\bar{\nu}}(x,Q^{2}) \mp \frac{F_{3}^{\nu,\bar{\nu}}(x,Q^{2})}{2} \Biggr) \Biggr],$$
(14)  
$$g_{6}^{\nu,\bar{\nu}}(x,Q^{2}) = \frac{1}{2} \Biggl[ A_{\nu,\bar{\nu}}(x,Q^{2}) \Biggl( F_{1}^{\nu,\bar{\nu}}(x,Q^{2}) \pm \frac{y_{1}^{-}}{2y_{1}^{+}} F_{3}^{\nu,\bar{\nu}}(x,Q^{2}) \Biggr) + \\ + A_{l^{+},l^{-}}(x,Q^{2}) \Biggl( F_{1}^{\nu,\bar{\nu}}(x,Q^{2}) \mp \frac{y_{1}^{-}}{2y_{1}^{+}} F_{3}^{\nu,\bar{\nu}}(x,Q^{2}) \Biggr) \Biggr].$$

160 Тимошин Е.С., Тимошин С.И.

Отметим, что для нахождения структурных функций по формулам (14) достаточно данных только экспериментов (1) и (10) по глубоконеупругому рассеянию с заряженным током с участием нейтрино. Этот способ применим для любой мишени.

Величина  $y_1^+ \neq 0$  при любом значении скейлинговой переменной y в пределах ее изменения в области глубоконеупругого рассеяния [16]

$$0 < y \leq 1.$$

Что касается  $y_1^-$ , то  $y_1^- = 0$  при y = 0, но это значение не входит в кинематическую область переменной y.

Отметим, что в предлагаемом подходе можно определить структурные функции  $g_{1,6}^{l^-}$ и  $g_{1,6}^{l^+}$  процессов (10) с помощью асимметрий  $A_{l^-,l^+}(x,Q^2)$  (12),  $A_{\nu,\bar{\nu}}(x,Q^2)$  (9) и (11):

$$g_{1}^{l^{-},l^{+}}(x,Q^{2}) = \frac{1}{2} \left[ \pm A_{l^{-},l^{+}}(x,Q^{2}) \left( \frac{y_{1}^{+}}{y_{1}^{-}} F_{1}^{l^{-},l^{+}}(x,Q^{2}) \pm \frac{F_{3}^{l^{-},l^{+}}(x,Q^{2})}{2} \right) \mp \\ \mp A_{\bar{\nu},\nu}(x,Q^{2}) \left( \frac{y_{1}^{+}}{y_{1}^{-}} F_{1}^{l^{-},l^{+}}(x,Q^{2}) \mp F_{3}^{l^{-},l^{+}}(x,Q^{2}) \right) \right], \quad (15)$$

$$g_{6}^{l^{-},l^{+}}(x,Q^{2}) = \frac{1}{2} \left[ A_{l^{-},l^{+}}(x,Q^{2}) \left( F_{1}^{l^{-},l^{+}}(x,Q^{2}) \pm \frac{y_{1}^{-}}{2y_{1}^{+}} F_{3}^{l^{-},l^{+}}(x,Q^{2}) \right) + \\ + A_{\bar{\nu},\nu}(x,Q^{2}) \left( F_{1}^{l^{-},l^{+}}(x,Q^{2}) \mp \frac{y_{1}^{-}}{2y_{1}^{+}} F_{3}^{l^{-},l^{+}}(x,Q^{2}) \right) \right].$$

### ЗАКЛЮЧЕНИЕ

В настоящей работе предложен способ извлечения поляризационных структурных функций  $g_1$  и  $g_6$  в нейтринных процессах (1) и лептон-нуклонном рассеянии (10) непосредственно из измеряемых асимметрий этих процессов.

Для нахождения структурных функций по формулам (14), (15) достаточно данных только экспериментов по глубоконеупругому рассеянию с заряженным слабым током с участием нейтрино. Данный способ применим для любой мишени, позволяет получать структурные функции  $g_1$  и  $g_6$  из асимметрий в области глубоконеупругого рассеяния  $0 < y \leq 1$ .

#### СПИСОК ЛИТЕРАТУРЫ

- Kuhn S. E., Chen J.-P., Leader E. Spin Structure of the Nucleon-Status and Recent Results // Prog. Nucl. Part. Phys. 2009. V.63, No. 1. P. 1–69.
- Burkardt M., Miller A., Nowak W.-D. Spin-Polarized High-Energy Scattering of Charged Leptons on Nucleons // Rep. Prog. Phys. 2010. V.73. P.016201.
- 3. Aidala A. et al. The Spin Structure of the Nucleon. arxiv: 1209.2803 [hep-ph]. 43 p.
- Forte S., Mangano M.L., Ridolfi G. Polarized Parton Distribution from Charged-Current Deep-Inelastic Scattering and Future Neutrino Factories // Nucl. Phys. B. 2001. V. 602. P. 585–621.

- Newman P. Deep Inelastic Scattering at the TeV Energy Scale and the LHeC Project // Nucl. Phys. Proc. Suppl. 2009. V. 191. P. 307–319.
- 6. Accardi A. et al. Nuclear Physics with a Medium-Energy Electron-Ion Collider // Eur. Phys. J. A. 2012. V. 48. P. 92.
- 7. Guzey V. The Electron-Ion Collider // AIP Conf. Proc. 2009. V. 1182. P. 803-806.
- Aschenauer E. C., Stratmann M., Sassoth R. Helicity Parton Distributions at a Future Electron-Ion Collider: A Quantitative Appraisal // Phys. Rev. D. 2012. V. 86. P. 054020.
- 9. Шильцев В. Д. Коллайдеры частиц высоких энергий: прошедшие 20 лет, предстоящие 20 лет и отдаленное будущее // УФН. 2012. Т. 182, № 10. С. 1033–1046.
- Abelleira Fernandez J. L. A Large Hadron Electron Collider at CERN. arxiv: 1211.4831 [hep-ex]. 18 p.
- Kaplan D. M. Muon Collider / Neutrino Factory: Status and Prospects // Nucl. Instr. Meth. A. 2000. V. 453. P. 37–48.
- 12. Alsharo'a Mohammad M. et al. Recent Progress in Neutrino Factory and Muon Collider Research within the Muon Collaboration // Phys. Rev. ST Accel. Beams. 2003. V.6. P.081001.
- Ravishankar V. Charged Current Deep Inelastic Scattering on Polarized Nucleon and Nuclear Targets // Nucl. Phys. B. 1992. V. 374, No. 2. P. 309–326.
- Тимошин С. И. Глубоконеупругое рассеяние с заряженным током и спин протона // ЯФ. 1998. Т. 61, № 1. С. 119–124.
- 15. *Тимошин С.И*. Исследование спина нуклона в нейтринных процессах // ЯФ. 2003. Т. 66, № 2. С. 327–331.
- Биленький С. М. Введение в диаграммы Фейнмана и физику электрослабого взаимодействия. М.: Энергоатомиздат, 1990. 326 с.
- 17. Kaur J. Spin Distribution in the Quark-Parton Model // Nucl. Phys. B. 1977. V. 128. P. 219-251.
- 18. *Максименко Н. В., Тимошин Е. С.* Глубоконеупругое *lp*-рассеяние с заряженным током и спин протона // Изв. НАН Беларуси. Сер. физ.-мат. наук. 2008. № 2. С. 73–77.

Получено 30 мая 2013 г.