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COULOMB CORRECTIONS
TO THE PARAMETERS OF THE

LANDAUÄPOMERANCHUKÄMIGDAL EFFECT THEORY
O.O. Voskresenskaya, E. A. Kuraev, H. T. Torosyan

Joint Institute for Nuclear Research, Dubna

Using the Coulomb correction to the screening angular parameter of the Moli	ere multiple scattering
theory, we obtained analytically and numerically the Coulomb corrections to the quantities of the
Migdal LPM-effect theory. We showed that the Coulomb correction to the spectral bremsstrahlung
rate allows completely eliminating the discrepancy between the predictions of the LPM effect theory
and its measurement at least for high-Z targets and also to further improve the agreement between the
predictions of the LPM effect theory analogue for a thin layer of matter and experimental data.
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INTRODUCTION

Landau and Pomeranchuk were the ˇrst to show [1] that multiplicity of electron scatter-
ing processes by atomic nuclei in an amorphous medium results in the suppression of soft
bremsstrahlung. The quantitative theory of this phenomenon was created by Migdal [2, 3]1.
Therefore, it received the name LandauÄPomeranchukÄMigdal (LPM) effect.

The next step in the development of the quantitative theory of the LPM effect was made
in [5] on the basis of the quasi-classical operator method in QCD [6]. One of the basic
equations of this method is the Schréodinger equation in the external ˇeld with an imaginary
potential, which admits of formal solution in the form of the path integral. The path integral
treatment of the LPM effect was proposed and developed in [7Ä12].

It was shown that analogous effects are also possible at coherent radiation of relativistic
electrons and positrons in a crystalline medium [13], in cosmic-ray physics [14] (e.g., in appli-
cations motivated by extremely high-energy IceCubes neutrino-induced showers with energies
above 1 PeV [15]). Effects of this kind should manifest themselves in scattering of protons

1See also [4] accounting for the edge effects.
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by the nuclei, which has recently been shown in Groning by the AGOR collaboration [16],
and penetration of quarks through the nuclear matter at the RHIC and LHC energies [17].
The QCD analogue of the LPM effect was examined in [8, 18, 19]; a possibility studying
the LPM effect in oriented crystal at GeV energy was analyzed in [20]; theoretically, an
analogue of the LPM effect was considered for nucleonÄnucleon collisions in the neutron
stars, supernovae [21], and relativistic plasmas [22].

The results of a series of experiments at the SLAC [23Ä25] and CERN-SPS [26, 27]
accelerators on detection of the LandauÄPomeranchuk effect conˇrmed the basic qualitative
conclusion that multiple scattering of ultrarelativistic charged particles in matter leads to
suppression of their bremsstrahlung in the soft part of the spectrum. However, attempts
to quantitatively describe the experimental data [23] faced an unexpected difˇculty. For
achieving satisfactory agreement of data with theory [2,3], the authors [23] had to multiply the
results of their calculations in the Born approximation by the normalization factor R equal to
0.94 ± 0.01 ± 0.032, which had no reasonable explanation.

The alternate calculations [9, 11] gave a similar result despite different computational
basis [23]. The theoretical predictions are in agreement with the spectrum of photon
bremsstrahlung measured for 25 GeV electron beam and 0.7−6.0%LR

1 gold target over
the range 30 < ω < 500 MeV of the emitted photon frequency ω only within a normalization
factor 0.93 [9] Ä 0.94 [23]. The origin of the above small but signiˇcant disagreement between
data and theory needs to be better understood [24]. In [10] the further development of the
light-cone path integral approach to PLM effect was performed. The Coulomb effects, as well
as multiphoton emission and absorbtion, was taken into account. A detailed comparison with
SLAC E-146 data was carried out. Nevertheless, the problem of normalization remained and
is still not clear. The other authors, except those of [9,10], do not discuss normalization [25].

The aim of this work is to show that the discussed discrepancy between data and theory
can be explained at least for high-Z targets if the corrections to the results of the Born
approximation (i.e., the so-called Coulomb corrections) are appropriately considered on the
basis of a revised version of the Moli	ere multiple scattering theory [28,29].

The paper is organized as follows. In Sec. 1 we consider the basic formulae of the
quantitative LPM effect theory for ˇnite-size targets obtained by the kinetic equation method
and also the small-angle approximation of this theory which is further used for analytical
and numerical calculations. In Sec. 2 we present the results of the conventional [30] and a
revised small-angle Moli	ere multiple scattering theory [28, 29] applied in the next section to
the theory of the LPM effect and its analogue for a thin target [32, 33]. In Sec. 3 we obtain
the analytical and numerical results for Coulomb corrections to the quantities of the LPM
effect theory and its analogue for a thin layer of matter in some asymptotic cases and also in
the regimes corresponding to the conditions of the experiment [28,29]. Finally, in Sec. 4 we
summarize our ˇndings and state our conclusions.

1. LPM EFFECT THEORY FOR FINITE TARGETS

There exist two methods that allow one to develop a rigorous quantitative theory of
the LandauÄPomeranchuk effect. This is Migdal's method of kinetic equation [2, 3] and

1LR presents a radiation length of a target material here.
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the method of functional integration [7Ä12, 31]. Neglecting numerically small quantum-
mechanical corrections, we will adhere to version of the LandauÄPomeranchuk effect theory,
developed in [2,4, 35].

1.1. Basic Formulae. Simple though quite cumbersome calculations using the results [2,4]
yield the following formula for the electron spectral bremsstrahlung intensity averaged over
various trajectories of electron motion in an amorphous medium (hereafter the units � = c = 1,
e2 = 1/137 are used) [35]:〈

dI

dω

〉
= 2

∑
ε

{
n0L

∫
f∗(n2) ν(n2 − n1)f(n1) dn1 dn2−

− (n0v)2
T∫

0

dt1

T∫
t1

dt2 Re
[∫

f∗(n2)ν(n2 − n′
2)f(n1)×

× ν(n′
1 − n1)w(t2, t1,n′

2,n
′
1,k) dn1 dn′

1 dn2 dn′
2

]}
, (1)

where

f(n1,2) =
e

2π

εv1,2

1 − n · v1,2
,

v1,2 = v · n1,2, n =
k
ω

, dn1,2 ≡ do1,2, T =
L

v
,

ν(n2 − n1) = δ(n2 − n1)
∫

σ0(n′
2 − n1) dn′

2 − σ0(n2 − n1),

w(t2, t1,n2,n1,k) =
∫

w̃(t2, t1, r2 − r1,n2,n1) exp [iω(t2 − t1) − ik(r2 − r1)] dr2.

Here ε and k are the polarization vector and the wave vector of the emitted photon; n0 denotes
the density of the scattering centers per unit length of fast scattered particle trajectory; L is
the target thickness; n1,2 are the unit vectors in the electron motion direction; v and v
are the electron velocity assumed to be invariant during the interaction with the target (the
quantum-mechanical recoil effect is negligibly small) and its modulus; e is the electron charge;
σ0(n2 −n1) = dσ/don2 presents the differential Born cross section of the electron scattering
by target atoms. The direction of motion n2 at time t2 provided that at the time t1 the
electron had the coordinate r1 and moved in the direction characterized by the unit vector n1.
The electron distribution function in the coordinate r2, w(t2, t1, r2 − r1,n2,n1), satisˇes the
kinetic equation

∂w(t2, t1, r2 − r1,n2,n1)
∂t2

= −v2 · ∇r2w(t2, t1, r2 − r1,n2,n1)−

− n0

∫
ν(n2 − n′

1) w̃(t2, t1, r2 − r1,n′
2,n1) dn′

2 (2)

with the boundary condition

w̃(t2, t1, r2 − r1,n2,n1)|t2=t1 = δ(r2 − r1) δ(n2 − n1). (3)
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The term of (1) linear in n0 is a ®usual¯ (incoherent) contribution to the intensity of the
electron bremsstrahlung in the medium, derived by summation of the radiation intensities of
the electron interaction with separate atoms of the target. The term quadratic in n0 includes
the contribution from the interference of the bremsstrahlung amplitudes on various atoms. The
destructive character of this interference leads to suppression of the soft radiation intensity,
i.e., to the LandauÄPomeranchuk effect.

For ω larger than ωcr = 4πγ2/(e2LR), where γ is the Lorentz factor of the scattered
particle and LR is the radiation length of the target material (for estimation of ωcr, see [1, 2,
10, 32]1, the interference term becomes negligibly small, and radiation is of pure incoherent
character.

1.2. Small-Angle Approximation. For ultrarelativistic particles (1−v � 1) it is convenient
to pass in (1) to the small-angle approximation (ϑ1,2 � 1) according to the scheme

n1,2 =
(

1 −
ϑ2

1,2

2

)
n + ϑ1,2, dn1,2 = dϑ1,2;

f(n1,2) = f(ϑ1,2) =
e

π

ε ϑ1,2

ϑ2
1,2 + λ2

, λ =
m

E
= γ−1;

σ0(n2 − n1) = σ0(ϑ2 − ϑ1), δ(n2 − n1) = δ(ϑ2 − ϑ1), (4)

ν(n2 − n1) = ν(ϑ2 − ϑ1), ϑ2 − ϑ1 = θ;
w(t2, t1,n2,n1,k) = w(t2, t1, ϑ2, ϑ1, ω)

and further to the Fourier transforms of f, ν, w:

f(η) =
1
2π

∫
f̃(θ) exp [iηθ] dθ =

ieλε η

πη
K1(λη),

ν(η) =
∫

ν̃(θ) eiηθ dθ = 2π

∫
σ0(θ)[1 − J0(ηθ)]θ dθ, (5)

w(t2, t1, η2, η1, ω) =
1

(2π)2

∫
w̃(t2, t1, ϑ2, ϑ1, ω) exp [iη2ϑ2 − iη1ϑ1] dϑ1 dϑ2,

where ϑ1(2) denotes a two-dimensional electron scattering angle in the plane orthogonal
to the electron direction at instant of time t1(2); m and E are the electron mass and its
energy; θ presents the electron scattering angle over the time interval t2 − t1; λ is the
characteristic frequency of the emitted photon; J0 and K1 are the Bessel and Macdonald
functions, respectively.

Consequently, expression (1) is reduced to〈
dI

dω

〉
=

2λ2e2

π2

{
n0L

∫
K2

1 (λη)ν(η) dη−

− n2
0

L∫
0

dt1

L∫
0

dt2

∫
(η1η2)
η1η2

K1(λη1)K1(λη2) ν(η1) ν(η2)×

× Re [w(t2, t1, η2, η1, ω)] dη1 dη2

}
, (6)

1In the conditions of experiment [23,24], ωcr ≈ 244 MeV for 0.7− 6.0%LR gold target at 25 GeV (see Table 1
in [10]).
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where w satisˇes the kinetic equation

∂w(t2, t1, η2, η1, ω)
∂t2

=
iω

2
(λ2 −Δη2

)w(t2, t1, η2, η1, ω)− n0ν(η2)w(t2, t1, η2, η1, ω) (7)

or, equivalently,

i
∂w(t2, t1, η2, η1, ω)

∂t2
=
[ω

2
Δη2

− ω

2
λ2 − in0ν(η2)

]
w(t2, t1, η2, η1, ω) (8)

with the boundary condition

w(t2, t1, η2, η1, ω) = δ(η2 − η1). (9)

The form of (8) is similar to the equation for Green's function of the two-dimensional
Schréodinger equation with the mass ω−1 and the complex potential

U(η) = −ωλ2

2
− i n0ν(η) (10)

and therefore admits of a formal solution in the form of a continual integral (see, e.g., [34]).
The analysis of (6) will be continued in Sec. 3.

2. MULTIPLE SCATTERING THEORY

The theory of the multiple scattering of charged particles has been treated by several
authors. However, most widespread at present is the multiple scattering theory of Mo-
li	ere [30, 31]. The results of this theory are employed nowadays in most of the transport
codes. It is of interest for numerous applications related to particle transport in matter and
also presents the most used tool for taking into account the multiple scattering effects in
experimental data processing.

As the Moli	ere theory is currently used roughly for 10−300 GeV electron beams, the role
of the high-energy corrections to the parameters of this theory becomes signiˇcant. Of special
importance is the Coulomb correction to the screening angular parameter, as this parameter
also enters into other important quantities in the Moli	ere theory.

2.1. Moli�ere's Theory of Multiple Scattering. Let wM(ϑ, L) be a spatial-angle particle
distribution function in a homogenous medium, ϑ = (ϑ, ϕ) is a two-dimensional particle
scattering angle in the plane orthogonal to the incident particle direction and L is the target
thickness. Owing to the axial symmetry of the above distribution function in most cases of
interest, it is independent of the azimuthal angle ϕ, and in the notation of Moli	ere it reads

wM(ϑ, L) =

∞∫
0

J0(ϑη) exp [−n0L ν(η)]η dη, (11)

where
ν(η) = 2π

∞∫
0

σ0(θ)[1 − J0(θη)]θ dθ. (12)



Coulomb Corrections to the Parameters of the LandauÄPomeranchukÄMigdal Effect Theory 587

The function (11) satisˇes the well-known Boltzmann transport equation, written here with
the small-angle approximation ϑ � 1 (sin ϑ ∼ ϑ)

∂w(ϑ, L)
∂L

= −n0wM (ϑ, L)
∫

σ0(θ) d2θ + n0

∫
wM(ϑ + θ, L)σ0(θ) d2θ =

= n0

∫
[wM(ϑ + θ, L) − wM(ϑ, L)] σ0(θ) d2θ. (13)

The Gaussian particle distribution function used in the Migdal LPM effect theory, which
differs from (11), can be derived from the Boltzmann transport equation by the method of
Fokker and Planck [36].

One of the most important results of the Moli	ere theory is that the scattering is described
by a single parameter, the so-called screening angle (θa or θ ′

a)

θ ′
a =

√
1.167θa = [exp (CE − 0.5)] θa ≈ 1.080θa, (14)

where CE = 0.577 . . . is the Euler constant.
More precisely, the angular distribution depends only on the logarithmic ratio b,

b = ln
(

θc

θ ′
a

)2

≡ ln
(

θc

θa

)2

+ 1 − 2CE, (15)

of the characteristic angle θc describing the foil thickness

θ2
c = 4πn0L

(
Zα

βp

)2

, p = mv, (16)

to the screening angle θ ′
a, which characterizes the scattering atom.

In order to obtain a result valid for large angles, Moli	ere deˇnes a new parameter B by
the transcendental equation

B − ln B = b. (17)

The angular distribution function can then be written as

wM (ϑ, B) =
1
ϑ2

∞∫
0

y dyJ0(ϑy)e−y2/4 exp
[

y2

4B
ln
(

y2

4

)]
, y = θcη. (18)

The Moli	ere expansion method is to consider the term y2 ln (y2/4)/4B as a small para-
meter. Then, the angular distribution function is expanded in a power series in 1/B:

wM(ϑ, L) =
∞∑

n=0

1
n!

1
Bn

wn(ϑ, L), (19)

in which

wn(ϑ, L) =
1

ϑ 2

∞∫
0

y dyJ0

(
ϑ√
ϑ2

y

)
e−y2/4

[
y2

4
ln
(

y2

4

)]n

, (20)

ϑ 2 = θ2
cB = 4πn0L

(
Zα

βp

)2

B(L). (21)

This method is valid for B � 4.5 and ϑ 2 < 1.
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The ˇrst function w0(ϑ, L) has a simple analytical form

w0(ϑ, L) =
2

ϑ̄ 2
exp

(
− ϑ2

ϑ 2

)
, (22)

ϑ 2 ∼
L→∞

L

LR
ln
(

L

LR

)
. (23)

For small angles, i.e., ϑ/ϑ = ϑ/(θc

√
B) less than about 2, the Gaussian (22) is the dominant

term. In this region, w1(ϑ, L) is in general less than w0(ϑ, L), so that the correction to the
Gaussian is of order of 1/B, i.e., about 10%.

A good approximate representation of the distribution at any angle is

wM(ϑ, L) = w0(ϑ, L) +
1
B

w1(ϑ, L) (24)

with

w1(ϑ, L) =
1

ϑ 2

∞∫
0

y dy J0

(
ϑ√
ϑ2

y

)
e−y2/4

[
y2

4
ln
(

y2

4

)]
. (25)

This approximation was applied by the authors of [33] to the analysis of data [23, 24] over
the region ω < 30 MeV that will be shown in Sec. 3.

Let us notice that the expression (12) for the function ν(η) is identical to (5). As was
shown in classical works of Moli	ere [30], this quantity can be represented in the area of the
important η values 0 � η � 1/θc as

ν(η) = −4π

(
Zα

βp

)2

η2

[
ln
(

η θa

2

)
+ CE − 1

2

]
, (26)

where the screening angle θa depends both on the screening properties of the atom and on
the σ0(θ) approximation used for its calculation.

Using the ThomasÄFermi model of the atom and an interpolation scheme, Moli	ere obtained
θa for the cases where σ0(θ) is calculated within the Born and quasi-classical approximations:

θB

a = 1.20αZ1/3, (27)

θa = θB

a

√√√√1 + 3.34

(
Zα

β

)2

. (28)

The latter result is only approximate (see critical remarks on its derivation in [36]). Below
we will present an exact analytical and numerical result for this angular parameter.

2.2. Coulomb Correction to the Screening Angular Parameter. Very recently, it has
been shown [29] by means of [5] that for any model of the atom the following rigorous
relation determining the screening angular parameter θ′a is valid:

ln (θ′a) = ln (θ′a)B + Re
[
ψ

(
1 + i

Zα

β

)]
+ CE

or, equivalently,

ΔCC[ln
(
θ ′

a

)
] ≡ ln (θ′a) − ln (θ′a)B = f

(
Zα

β

)
, (29)
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where ΔCC is the so-called Coulomb correction to the Born result, ψ is the logarithmic
derivative of the gamma function Γ, and f(Zα/β) is a universal function of the Born
parameter ξ = Zα/β which is also known as the BetheÄMaximon function:

f(ξ) = ξ2
∞∑

n=1

1
n(n2 + ξ2)

. (30)

To compare the approximate Moli	ere result (28) with the exact one (29), we ˇrst
present (28) in the form

δM ≡ θa − θB
a

θB
a

=

√√√√1 + 3.34

(
Zα

β

)2

− 1 (31)

and also rewrite (29) as follows:

δCC ≡ θa − θB
a

θB
a

=
θ ′

a −
(
θ ′

a

)B(
θ ′

a

)B = exp [f (ξ)] − 1. (32)

Then we get

δMCC ≡ δ
M
− δCC

δM

=
ΔMCC

δM

. (33)

For some high-Z targets used in [24] and β = 1, we have obtained the following values
of relative Moli	ere δM and Coulomb δCC corrections and also values of the difference ΔMCC

and relative difference δMCC between the approximate Moli	ere (31) and exact (32) results
(Table 1).

Table 1. The difference between the approximate (31) and exact (32) results for the Coulomb
correction to the screening angle in the range of nuclear charge 74 < Z < 92

Target Z δM , % δCC, % ΔMCC, % δMCC, %

W 74 40.4 32.5 7.5 19.6
Pt 78 44.3 35.9 8.4 19.0
Au 79 45.2 36.7 8.5 18.8
Pb 82 48.2 39.3 8.9 18.5
U 92 58.3 48.5 9.8 16.9

For instance, Table 1 shows that the difference and relative difference between the approx-
imate and exact results for these Coulomb corrections reach 8.5% and 18.8%, respectively, in
the case of the gold target discussed in [9, 23,24].

We show further that the aforesaid discrepancy between theory and experiment [9, 23,
24] can be completely eliminated for heavy-target elements on the basis of these Coulomb
corrections to the screening angular parameter.
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3. COULOMB CORRECTIONS IN THE LPM EFFECT THEORY AND
ITS ANALOGUE FOR A THIN LAYER OF MATTER

3.1. Coulomb Corrections to the Parameters of the LPM Effect Theory for Finite
Targets. Analytically solving Eq. (7) with arbitrary values of ω is only possible within the
FokkerÄPlanck approximation1

ν(η) = aη2, (34)

at ω = 0 it is also possible for arbitrary ν(η).
In the latter case (ω = 0)

w(t2, t1, η2, η1, 0) = δ(η2 − η1) exp [−n0ν(η2)(t2 − t1)], (35)

and integration over t1, t2 in (6) is carried out trivially, leading to the simple result〈
dI

dω

〉 ∣∣∣∣
ω=0

=
4λ2e2

π

∫
K2

1(λη) {1 − exp [−n0Lν(η)]} η dη. (36)

Considering the aforesaid, in the other limiting case (ω � ωcr) we get〈
dI

dω

〉 ∣∣∣∣
ω �ωcr

= n0Lλ2e2

∫
K2

1 (λη) ν(η)η dη. (37)

3.1.1. Case ω � ωcr. After the substitution of ν(η) (26) into (37), the integration is carried
out analytically, leading to the following result:〈

dI

dω

〉 ∣∣∣∣
ω �ωcr

=
16
3π

Z2α3

m2

(
ln

λ

θa
+

7
12

)
n0L. (38)

Let us ˇnd an analytical expression for the Coulomb correction to the Born spectral
bremsstrahlung rate (38):

ΔCC

[〈
dI

dω

〉]
≡
〈

dI

dω

〉
−
〈

dI

dω

〉B

=

= −16Z2α3n0L

3πm2

[
ln (θ′a) − ln (θ′a)B

]
= −16Z2α3n0L

3πm2
f(ξ). (39)

Then, the corresponding relative Coulomb correction reads

δCC

[〈
dI

dω

〉]
≡ 〈dI/dω〉 − 〈dI/dω〉B

〈dI/dω〉B = − f(ξ)
0.583− ln

(
1.2αZ1/3

) . (40)

Let us enter the ratio

RCC(ω) =
〈dI(ω)/dω〉
〈dI(ω)/dω〉B = δCC

[〈
dI

dω

〉]
+ 1. (41)

We will now estimate the numerical values of (40) and (41) (Table 2).

1An explicit expression for w obtained in this approach can be found in [4].
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Table 2. The relative Coulomb correction δCC [〈dI/dω〉] to the Born spectral bremsstrahlung rate
for some high-Z targets, ω � ωcr, and β = 1

Target Z Zα f(Zα) −δCC RCC

W 74 0.540 0.281 0.072 0.928
Au 79 0.577 0.313 0.081 0.919
Pb 82 0.598 0.332 0.086 0.914

Note. δ̄CC [〈dI/dω〉] = (−7.97 ± 0.71)%.

It is seen from Table 2 that the relative correction to the Born spectral bremsstrahlung rate
is about −8%, whereas the calculations of Blancenbekler and Drell [11] reproduce the Migdal
results for thick targets with the +8% higher emission probability when the interference term
vanishes. Therefore, it is natural to normalize these calculations by means of the obtained
Coulomb correction δ̄CC

[
〈dI/dω〉

]
= (−7.97 ± 0.71)%.

The corresponding ratio R(ω)|ω �ωcr is approximately 0.92 for the gold target discussed
in [23]1. It coincides within the 3.2% systematic error with the normalization factor R =
0.94 ± 0.1 ± 0.32, which was obtained in [23] for the 0.7−6%LR gold target in the region
450 < ω < 500 MeV2.

3.1.2. Case ω = 0. In the other limiting case the performance of numerical integration
in (36) gets the following results for the relative Coulomb correction −δCC

[
〈dI/dω〉

]
and the

ratio R(ω)|ω=0 (Table 3) at thicknesses of experimental gold targets L = 0.7−6%LR [23].
Here LR ≈ 0.33 cm is the radiation length of the target material (Z = 79)

LR =
4Z2e6n0

m2
ln
(
183Z1/3

)
. (42)

Table 3. The relative correction δCC

[
〈dI/dω〉

]
for Z = 79 and ω = 0

L, cm −δCC

[
〈dI/dω〉

]
RCC

[
〈dI/dω〉

]
0.007 LR 0.039 0.961
0.060 LR 0.018 0.982

3.1.3. Case ωcr > ω. When ωcr > ω > 0, it is obvious from general considerations that

RCC(ω)|ω>ωcr � RCC(ω)|ωcr>ω � RCC(ω)|ω=0. (43)

From Table 3 and (43) it follows that the calculation results for 〈dI/dω〉 cannot be
obtained from the Born approximation results by multiplying them by the normalization
constant, which is independent of the frequency ω and target thickness L.

However, considering a nearly 3.2% systematic error of the experimental data [23] in the
range 500 > ω > 30 MeV, it is clear why multiplication by the normalization factor helped
the authors of [9, 23] to get reasonable agreement of the Born calculation results with the
experimental data.

1The use of approximate Moli	ere's result (28) or (31) for θa would give the value R(ω)|ω �ωcr = 0.900 in the
discussed case.

2Migdal used a Gaussian approximation for multiple scattering. This underestimates the probability of large-angle
scatters. These occasional large angle scatters would produce some suppression for ω > ωcr, where Migdal predicts
no suppression and where the authors of [23] determine the normalization [24].
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In the conditions of the experiment [23Ä25] it is permissible to draw conclusions about
the size of the normalization factor based on the corrections to the BetheÄHeitler spectrum in
the frequency range approximately from 244 to 500 MeV (25 GeV beam and 0.7%LR gold
target). However, in this case some caution is advisable, since 244 to 500 MeV is a rather
narrow range. Therefore, let us consider also the second limiting case in order to obtain some
interpolation values for RCC(ω)|ωcr>ω from Tables 2 and 3 (Table 4).

Table 4. The interpolation values of the ratio RCC(ω,L) for ω < ωcr, Z = 79, and β = 1

L, cm RCC|ω>ωcr � RCC|ωcr>ω � RCC|ω=0 R̄CC(ω)|ω<ωcr

0.007 LR 0.920 � RCC(ω)|ω<ωcr � 0.961 0.940
0.060 LR 0.920 � RCC(ω)|ω<ωcr � 0.982 0.951

So for 0.007 LR to 0.060 LR gold targets, the averaged value of the ratio RCC(ω, L)|ω<ωcr

is approximately 0.945 ± 0.008, which coincides within the experimental error with the
normalization factor value 0.94± 0.01± 0.032 introduced in [23] for obtaining agreement of
the calculations performed in the Born approximation with experiment. The obtained result
means that the normalization is not required for spectral density of radiation 〈dI(ω)/dω〉
calculated on the basis of the reˇned screening angle.

We will now obtain the analytical expressions and numerical estimations for the Coulomb
corrections to the function ν(η) = 2π

∫
σ0(θ)[1 − J0(ηθ)]θ dθ (5) and the complex potential

U(η) = −ωλ2/2 − in0ν(η) (34).
For the ˇrst quantity, using (26), we obtain

ΔCC[ν(η)] ≡ ν(η ) − νB(η ) = −4πη 2

(
Zα

βp

)2

ΔCC[ln
(
θ ′

a

)
] = −4πη 2

(
Zα

βp

)2

f(ξ). (44)

The Coulomb correction to the potential (10) reads

ΔCC[U(η)] ≡ U(η ) − UB(η ) = −4πin0η
2

(
Zα

βp

)2

f(ξ). (45)

Now we obtain the corresponding relative Coulomb corrections. Using (5), we get

δCC

[
U(η)

]
≡ ΔCC[U(η)]

UB(η )
=

ΔCC[ν(η)]
νB(η )

≡ δCC

[
ν(η)

]
. (46)

Then (26), (27), and (44) give

δCC

[
ν(η)

]
=

f(Zα/β)
ln η + ln (θB

a ) − ln 2 + CE − 0.5
= − f(Zα/β)

0.615− ln
(
1.2αZ1/3

)
− ln η

. (47)

We see from (47) and (40) that

δCC

[
ν(η)

]
= δCC

[
U(η)

]
< δCC

[〈
dI

dω

〉]
, (48)

and we can estimate the δCC

[
ν(η)

]
values using (47) for η � 1. Their numerical values are

presented in Table 5.
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Table 5. The relative Coulomb corrections δCC

[
ν(η)
]

and δCC

[
U(η)

]
for the gold, lead, and uranium

targets

Target Z a � η � b −δCC

[
ν(η)
]

= −δCC

[
U(η)

]
, %

Au 79 0.01 � η � 0.1 3.7 � −δCC

[
ν(η)
]
� 5.0

Pb 82 0.01 � η � 0.1 3.9 � −δCC

[
ν(η)
]
� 5.3

U 92 0.01 � η � 0.1 5.5 � −δCC

[
ν(η)
]
� 8.0

Thus, for instance, −δCC[ν(η)] = −δCC[U(η)] ∼ 4.3 < −δCC[〈dI/dω〉] ∼ 8.0% for
Z = 79 (Au).

Let us consider the spectral bremsstrahlung intensity (6) in the form proposed by Migdal:〈
dI

dω

〉
= Φ(s)

(
dI

dω

)
0

, (49)

where (dI/dω)0 is the spectral bremsstrahlung rate without accounting for the multiple scat-
tering effects in the radiation, (

dI

dω

)
0

=
2e2

3π
γ2q L, (50)

q =
ϑ2

L
. (51)

The function Φ(s) in (49) accounts for the multiple scattering in
uence on the bremsstrahlung
rate,

Φ(s) = 24s2

⎡⎣ ∞∫
0

dx e−2sxcoth (x) sin (2sx) − π

4

⎤⎦ , (52)

s2 =
λ2

ϑ2
. (53)

It has simple asymptotes at the small and large values of the argument:

Φ(s) →
{

6s, s → 0,
1, s → ∞,

(54)

s =
1

4γ2

√
ω

q
. (55)

For s � 1, the suppression is large, and Φ(s) ≈ 6s. The intensity of radiation in this case
is much less than the corresponding result of Bethe and Heitler. If s � 1 (i.e., ω � ωcr), the
function Φ(s) is close to a unit, and the following approximation is valid [13]:

Φ(s) ≈ 1 − 0.012/s4. (56)

The formula (49) is obtained with the logarithmic accuracy. At s � 1, (49) coincides to
the logarithmic accuracy with the BetheÄHeitler result〈

dI

dω

〉
BH

=
L

LR

[
1 +

1
12 ln

(
183Z−1/3

)] . (57)

If s � 1, we have the suppression of the spectral density of radiation in comparison with (57).
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Now we obtain analytical and numerical results for the Coulomb corrections to these
quantities. In order to derive an analytical expression for the Coulomb correction to the Born
spectral bremsstrahlung rate (dI/dω)0, we ˇrst write

ΔCC

[(
dI

dω

)
0

]
≡
(

dI

dω

)
0

−
(

dI

dω

)B

0

=
2e2

3π
γ2L ΔCC[q], (58)

ΔCC[q] ≡ q − qB =
1
L

ΔCC

[
ϑ2
]
. (59)

Accounting for ϑ2 = θ2
cB (21), we get

ΔCC

[
ϑ2
]
≡ ϑ2 −

(
ϑ2
)B = θ2

c ΔCC[B]. (60)

Then, using (15) and (17), we arrive at

ΔCC[b] = −f(ξ) =
(

1 − 1
BB

)
ΔCC[B], (61)

ΔCC[B] =
f(ξ)

1/BB − 1
. (62)

In doing so, (58) becomes

ΔCC

[(
dI

dω

)
0

]
=

2(eγθc)2

3π (1/BB − 1)
f(ξ), (63)

and the relative Coulomb correction reads

δCC

[(
dI

dω

)
0

]
= δCC [q] = δCC

[
ϑ2
]

= δCC [B] = RCC

[(
dI

dω

)
0

]
− 1 =

f(ξ)
1 − BB

. (64)

Next, in order to obtain the relative Coulomb correction to the Migdal function Φ(s), we
ˇrst derive corresponding correction to the quantity s2 (53):

ΔCC

[
s2
]

=
ω

16γ4

(
1
q
− 1

qB

)
, (65)

δCC

[
s2
]

=
qB

q
− 1 =

(
ϑ2
)B

ϑ2
− 1 =

1
δCC

[
ϑ2
]
+ 1

− 1 =
1

RCC [(dI/dω)0]
− 1. (66)

This leads to the following relative Coulomb correction for s (55):

δCC [s] =
1√

δCC

[
ϑ2
]
+ 1

− 1 =
1√

RCC

[
(dI/dω)0

] − 1. (67)

For the asymptote Φ(s) = 6s (54), we get

δCC [Φ(s)] = δCC [s] . (68)
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Then, the total relative Coulomb correction to 〈dI/dω〉 in this asymptotic case becomes

δCC

[〈
dI

dω

〉]
= δCC

[(
dI

dω

)
0

]
+ δCC [Φ(s)] . (69)

Numerical values of these corrections for some speciˇed values of the Moli	ere parameter
BB are presented in Table 6.

As can be seen from Table 6, the moduli of the Coulomb corrections to the quantities
(dI/dω)B

0 and ΦB(s) decrease from about 9 to 4% and from 5 to 2%, respectively, with
an increase in the parameter BB from a minimum value of 4.5 [30] to a value of 8.46
corresponding to the conditions of experiment [33]; and the modulus of the total relative
correction δCC [〈dI/dω〉] decreases from approximately 14 to 6%.

Table 6. Relative Coulomb corrections to the parameters of the Migdal LPM theory,
δCC

[
(dI/dω)0

]
(64), δCC [Φ(s)] (68), and δCC [〈dI/dω〉] (69), in the regime of strong LPM sup-

pression for Z = 79 (Au) and β = 1

BB δCC

[(
dI

dω

)
0

]
RCC

[(
dI

dω

)
0

]
δCC [Φ(s)] δCC

[〈
dI

dω

〉]
RCC

[〈
dI

dω

〉]

4.50 −0.089 0.911 −0.048 −0.137 0.863
4.90 −0.080 0.920 −0.043 −0.123 0.877
8.46 −0.042 0.958 −0.022 −0.064 0.936

The average value of the ratio R̄CC = 0.947 ± 0.015 for the gold target is close to the
corresponding value R̄CC = 0.945±0.008 from Table 4. This corresponds to the average size
of the relative Coulomb correction −5.4%, which coincides with the size of the normalization
correction (−5.5 ± 0.2)% for 6%LR gold target (Table II in [24]).

A comparison of the non-averaged ratio value RCC [〈dI/dω〉] = 0.936 from Table 6
with the normalization factor R ∼ 0.94 would be unjustiˇed, because the regime of strong
suppression is not achieved in the analyzed SLAC experiment. For such a comparison, we
will carry out now calculation for the regime of small LPM suppression (56).

In order to obtain the relative correction δCC [Φ(s)] in this regime, we ˇrst derive an
expression for the Coulomb correction ΔCC [Φ(s)] to the Migdal function Φ(s):

ΔCC [Φ(s)] = 0.012
(

1
(s4)B − 1

s4

)
=

0.012
s4

δCC

[
s4
]
, (70)

δCC

[
s4
]

=
(

qB

q

)2

− 1 =

((
ϑ2
)B

ϑ2

)2

− 1 =
1(

δCC

[
ϑ2
]
+ 1

)2 − 1 =

=
1(

RCC [(dI/dω)0]
)2 − 1. (71)

This leads to the following relative Coulomb correction for Φ(s) (56):

δCC [Φ(s)] =
0.012

s4
δCC

[
s4
] (

s4
)B

(s4)B − 0.012
= 0.012

δCC

[
s4
]

δCC [s4] + 1
1

(s4)B − 0.012
. (72)
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Table 7. Relative Coulomb corrections to the quantities of the Migdal LPM theory,
δCC

[
(dI/dω)0

]
(64), δCC [Φ(s)] (72), and δCC [〈dI/dω〉] (69), in the regime of small LPM sup-

pression for high-Z targets of experiment [24]

Target Z δCC

[(
dI

dω

)
0

]
δCC

[
s4
]

δCC [Φ(s)] δCC

[〈
dI

dω

〉]
RCC

[〈
dI

dω

〉]

1. For β = 1, BB = 8.46, s = 1.2

Au 79 −0.0420 −0.0896 −0.0006 −0.0426 0.9574
Pb 82 −0.0445 −0.0953 −0.0006 −0.0451 0.9549
U 92 −0.0529 −0.1149 −0.0007 −0.0536 0.9464

2. For β = 1, BB = 8.46, s = 1.3

Au 79 −0.0420 −0.0896 −0.0004 −0.0424 0.9576
Pb 82 −0.0445 −0.0953 −0.0004 −0.0449 0.9551
U 92 −0.0529 −0.1149 −0.0005 −0.0534 0.9466
Note. For case 1 R̄CC [〈dI/dω〉] = 0.953 ± 0.006; δ̄CC [〈dI/dω〉] = (−4.71 ± 0.58)%.

For case 2 R̄CC [〈dI/dω〉] = 0.953 ± 0.006; δ̄CC [〈dI/dω〉] = (−4.69 ± 0.58)%.

Fig. 1. The s dependence of the corrections −δ̄CC [〈dI/dω〉] (%) in the entire range 1.0 � s � ∞ of

the parameter s

In Table 7 are listed the values of the relative Coulomb corrections to the quantities of (49)
in the regime of small suppression (56) for some separate s values (s = 1.2 and s = 1.3).

Figure 1 demonstrates the s dependence of these corrections −δ̄CC [〈dI/dω〉] (%) in the
entire range 1.0 � s � ∞ of the parameter s, for which the regime of small LPM suppression
is valid. Its asymptotic value corresponds to δ̄CC [(dI/dω)0] = (−4.65 ± 0.45)%.

Table 8 presents the values of the corrections −δCC [〈dI/dω〉] (%) for some separate target
elements and the sampling mean −δ̄CC [〈dI/dω〉] (%) over the range 1.0 � s � ∞.

Table 8 shows that the Coulomb corrections δCC [〈dI/dω〉] = (−4.50 ± 0.05)% (Z = 82)
and δCC [〈dI/dω〉] = (−5.35 ± 0.06)% (Z = 92) coincide within the experimental error with
the sizes of the normalization correction values (−4.5 ± 0.2)% for 2%LR lead target and
(−5.6 ± 0.3)% for 3%LR uranium target (Table II in [24]), respectively1.

1For low-Z targets, the E-146 data showed a disagreement with the Migdal LPM theory predictions. There is a
problem of an adequate description of the photon spectra shape for the low-Z targets [24, 25]. Therefore, we will
analyze only results for some high-Z targets of the SLAC E-146 experiment.
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Table 8. The dependence of −δCC [〈dI/dω〉] values on the parameter s in the regime of small LPM
suppression for high-Z targets, β = 1 and BB = 8.46

Target Z s = 1.0 s = 1.1 s = 1.2 s = 1.3 s = 1.5 s = 2.0 s = ∞
Au 79 0.0432 0.0428 0.0426 0.0424 0.0422 0.0421 0.0420
Pb 82 0.0458 0.0454 0.0451 0.0449 0.0447 0.0446 0.0445
U 92 0.0545 0.0540 0.0536 0.0534 0.0532 0.0530 0.0529
Note. δCC [〈dI/dω〉] = (−4.50 ± 0.05)% (Z = 82), δCC [〈dI/dω〉] = (−5.35±

±0.06%) (Z = 92), δ̄CC [〈dI/dω〉] = (−4.70 ± 0.49)%.

The average value δ̄CC [〈dI/dω〉] = (−4.70±0.49)% excellently agrees with the weighted
average value (−4.7±2)% of the normalization correction obtained in [24] for 25 GeV data1.
We believe that this allows one to understand the origin of the normalization problem for
high-Z targets discussed in [23, 24].

3.1.4. FokkerÄPlanck Approximation Accuracy in the ω = 0 Case. Finally, let us brie
y
discuss the accuracy of the FokkerÄPlanck approximation that allows an analytical expression
to be derived for the Migdal particle distribution function and entire 〈dI(ω)/dω〉 range to be
rather simply calculated (using numerical calculation of triple integrals).

To this end, we will ˇx the parameter a in expression (34) in such a way that the results
of the exact calculation of 〈dI(ω)/dω〉

∣∣
ω �ωcr

and its calculation in the FokkerÄPlanck

approximation coincide. As a result, we get

a = 2π

(
Zασ

m

)2(
ln

σ

θa
+

7
12

)
. (73)

Now we calculate 〈dI(ω)/dω〉
∣∣
ω=0

using the relations (34) and (73) and compare the
result with the result obtained using `realistic' (Moli	ere) expression (26) for ν(η). Then for
the ratio

RFPM =
〈dI(ω)/dω〉FP

〈dI(ω)/dω〉
M

(74)

we get the following values:

RFPM(ω, L) =
{

0.890, L = 0.007LR,
0.872, L = 0.060LR.

(75)

The values of the corresponding relative corrections

δFPM

[〈
dI

dω

〉]
=

〈dI(ω)/dω〉FP − 〈dI(ω)/dω〉
M

〈dI(ω)/dω〉
M

(76)

in percentage are given in Table 9.
It is obvious that the relative difference between the FokkerÄPlanck approximation and the

description based on the Moli	ere theory δFPM

[
〈dI/dω〉

]
is about 12%, which is noticeably

higher than the 3.2% characteristic systematic experimental error [23].

1It becomes (−4.8 ± 3.5)% for the 8 GeV data if the outlying 6%LR gold target is excluded from them [24].
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Table 9. The relative correction δFPM

[
〈dI/dω〉

]
for Z = 79 and ω = 0

L, cm −δFPM

[
〈dI/dω〉

]
RFPM

[
〈dI/dω〉

]
0.007LR 0.110 0.890
0.060LR 0.128 0.872

Thus, the FokkerÄPlanck approximation and Gaussian distribution cannot be used for
describing the experimental data [23,24] at low frequencies ω < 30 MeV. For their description
the application of the Moli	ere multiple scattering theory is advisable.

3.2. Coulomb Corrections in the LPM Effect Theory Analogue for a Thin Target.
In [33] it is shown that the region of the emitted photon frequencies ωcr > ω > 0 naturally
splits into two intervals, ωcr > ω > ωc and ωc > ω > 0, in the ˇrst of which the LPM
effect for sufˇciently thick targets takes place, and in the second, there is its analogue for
thin targets. The quantity ωc is deˇned here as ωc = 2E2/(m2L).

Application of the Moli	ere multiple-scattering theory to the analysis of experimental
data [23, 24] for a thin target in the second ω range is based on the use of the expression
for the particle distribution function (11) which satisˇes the standard Boltzmann transport
equation for a thin homogeneous foil, and it differs signiˇcantly from the Gaussian particle
distribution of the Migdal LPM effect theory.

Besides, it determines another expression for the spectral radiation rate in the context of
the coherent radiation theory [33]1, which reads〈

dI

dω

〉
=
∫

wM(ϑ)
dI(ϑ)
dω

d2ϑ. (77)

Here
dI(ϑ)
dω

=
2e2

π

[
2χ2 + 1

χ
√

χ2 + 1
ln
(
χ +

√
χ2 + 1

)
− 1

]
(78)

with χ = γϑ/2. The latter expression is valid for consideration of the particle scattering in
both amorphous and crystalline medium.

The formula (78) has simple asymptotes at the small and large values of the parameter
χ = γϑ/2:

dI(ϑ)
dω

=
2e2

3π

{
γ2ϑ2, γϑ � 1,

3[ln (γ2ϑ2) − 1], γϑ � 1,
(79)

Replacing ϑ2 by the average square value of the scattering angle ϑ2 in this formula, we
arrive at the following estimates for the average radiation spectral density value:〈

dI

dω

〉
=

2e2

3π

{
γ2ϑ2, γ2ϑ2 � 1,

3[ln (γ2ϑ2) − 1], γ2ϑ2 � 1.
(80)

1Note that the authors of [33] neglect the in
uence of the medium polarization [37] on the radiation in this
theory. This is admissible in the conditions of the experiment [23, 24], where the LPM effect is more important for
photon energies above 5 MeV (at 25 GeV beams); and dielectric suppression dominates at signiˇcantly lower photon
energies.
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In the experiment [23, 24], the above frequency intervals correspond roughly to the fol-
lowing ω ranges: (ωcr > ω > ωc) ∼ (244 > ω > 30 MeV) and (ωc > ω > 0) ∼ (30 >
ω > 5 MeV) for 25 GeV electron beam and 0.7−6.0%LR gold target. Whereas in the ˇrst
area the discrepancy between the LPM theory predictions and data is about 3.2 to 5%, in the
second area this discrepancy reaches ∼ 15%.

Using the approximate second-order representation of the Moli	ere distribution func-
tion (24), (25) for computing the spectral radiation rate (77), the authors of [33] succeeded in
bringing theory and 0.7%LR (25 GeV) data into satisfactory agreement over the ω range 5
to 30 MeV.

This result can be understood by considering the fact that the correction of order of 1/BB

to the Gaussian ˇrst-order representation of the distribution function wM (ϑ) is about 12% for
the value used in calculations BB = 8.46 [33].

Let us obtain the relative Coulomb correction to the average value of the spectral density
of radiation for two limiting cases (80).

In the ˇrst case γ2ϑ2 � 1, taking into account the equality

δCC[γ2ϑ2] = δCC[ϑ2], (81)

(64), and (80), we get

δCC

[〈
dI

dω

〉]
= δCC

[(
dI

dω

)
0

]
=

f(ξ)
1 − BB

, (82)

where BB ≈ 8.46 in the conditions of the discussed experiment [33].
In the second case γ2ϑ2 � 1, we have

ΔCC

[
ln
(
γ2ϑ2

)
− 1

]
= ΔCC

[
ln
(
ϑ2
)]

= ΔCC

[
ln (B)

]
. (83)

For the latter quantity, one can obtain

ΔCC[ln (B)] = ΔCC[B] + f(Zα) = δCC[B]. (84)

The Coulomb correction then becomes

ΔCC

[
ln
(
γ2ϑ2

)
− 1

]
=

δCC[B][
ln (γ2ϑ2)B − 1

] . (85)

Taking into account (64), we arrive at

δCC

[〈
dI

dω

〉]
=

f(ξ)[
ln(γ2ϑ2)B − 1

] (
1 − BB

) . (86)

The numerical values of these corrections are presented in Table 10.
The second asymptote is not reached [33] in the experiment [23, 24]. Therefore, we will

now consider another limiting case corresponding to the experimental conditions and taking
into account the second term of the Moli	ere distribution function expansion (19).
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Table 10. The relative Coulomb correction δCC [〈dI/dω〉] to the asymptotes of the Born spectral
radiation rate over the range ω < ωc for β = 1, BB ≈ 8.46, and

(
γ2ϑ2

)B ≈ 7.61 [33]

Target Z γ2ϑ2 −δCC

[
〈dI/dω〉

]
RCC

Au 79 γ2ϑ2 � 1 0.042 0.958
Au 79 γ2ϑ2 � 1 0.040 0.960

Substituting the second-order expression (24) for the distribution function into (77) and
integrating its second term (25), we can arrive at the following expression for the electron
radiation spectrum at μ2 = γ2ϑ2 � 1 [33]:〈

dI

dω

〉
=

2e2

π

{
ln
(
μ2
)
− CE

(
1 +

2
μ2

)
+

2
μ2

+
CE

B
− 1

}
. (87)

In order to obtain the Coulomb correction to the Born spectral radiation rate from (87), we
ˇrst calculate its numerical value at (μ2)B ≈ 7.61 and BB ≈ 8.46, and we get 〈dI/dω〉B =
0.00542. The BetheÄHeitler formula in the Born approximation becomes 〈dI/dω〉B

BH =
0.00954.

Then, we calculate the numerical values of B and μ2 parameters including the Coulomb
corrections. From

ΔCC[B] =
f(ξ)

1/BB − 1
= −0.355, (88)

we obtain B = 8.105 for Z = 79 and BB ≈ 8.46. The equality

ΔCC

[
ln μ2

]
= ΔCC [lnB] = ΔCC[B] + f(ξ) = δCC[B] = −0.042 (89)

gets ln μ2 = 1.987 and μ2 = 7.295. Substituting these values into (87), we have 〈dI/dω〉 =
0.00531. The relative Coulomb corrections to these parameters are presented in Table 11.
These corrections are not large. Their sizes are between two and four percent, i.e., of the
order of the experimental error.

Table 11. The relative Coulomb corrections in the analogue of the LPM effect theory for 0.07LR

gold target, ω < ωc, and β = 1

δCC[B] δCC

[
ln μ2

]
δCC

[
(dI/dω)0

]
δCC

[
〈dI/dω〉

]
δCC [Φ(s)]

−0.042 −0.021 −0.042 −0.020 −0.021

Accounting for the relative Coulomb correction to the BetheÄHeitler spectrum of brems-
strahlung, we ˇnd (dI/dω)BH = 0.00916. So we get〈

dI

dω

〉
= 0.580

(
dI

dω

)
BH

. (90)

This leads to the value of the spectral radiation rate in terms of dN/[d(log ω)] 1/LR, where
N is the number of events per photon energy bin per incident electron, dN/[d(log ω)/LR] =
0.118 ·0.580 = 0.068, which agrees very well with the experimental result over the frequency
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Fig. 2. Measurement of the LPM effect over the range 30 < ω < 500 MeV and its analogue in the
range 5 < ω < 30 MeV for the 0.7%LR gold target and 25 GeV electron beam. The signs ®+¯ denote

the experimental data; the histograms BÄH and LPM give the BetheÄHeitler and the LPM Monte Carlo
predictions [23]. The solid and dashed lines (SÄF and VKT) over the range ω < 30 MeV are the results

of calculations without [33] and with the obtained Coulomb corrections

range ω < 30 MeV for 25 GeV electron beam and 0.7%LR gold target. This result additionally
improves the agreement between the theory and experiment (see Fig. 2). It is close to the
Zakharov result [10] and coincides with the result of Blancenbeckler and Drell obtained in the
eikonal approximation, which excellently agrees with 0.7%LR (25 GeV) data for ω > 5 MeV
(see Figs. 12, a in [24] and 20, a in [25]).

4. SUMMARY AND CONCLUSIONS

• Within the theory of LPM effect for ˇnite-size targets, we calculated the Coulomb correc-
tions to the Born bremsstrahlung rate 〈dI(ω)/dω〉B and estimated the ratio
〈dI(ω)/dω〉 / 〈dI(ω)/dω〉B = R(ω, L) for gold target based on results of the revised Moli	ere
multiple scattering theory for the Coulomb corrections to the screening angle.

• We demonstrated that the R(ω, L) value is close to the normalization constant R value
for 0.7−6%LR (25 GeV) data over the ω range 30 to 500 MeV from [9, 23]; however, the
latter ignores the dependence of the ratio on ω and L.

• We have obtained the analytical and numerical results for the Coulomb corrections to the
function ν(η) = 2π

∫
σ0(θ)[1−J0(ηθ)]θ dθ and complex potential U(η) = −ωλ2/2−i n0ν(η)

and showed that −δCC

[
ν(η)

]
= −δCC

[
U(η)

]
∼ 4.3% < −δCC

[
〈dI/dω〉

]
∼ 8.0% for Z = 79

(β = 1).
• Additionally, we found Coulomb corrections to the quantities of the Migdal LPM theory

and some important parameters of the Moli	ere multiple scattering theory, i.e., ΔCC [(dI/dω)0],
ΔCC [q], ΔCC

[
s2
]
, ΔCC

[
s4
]
, ΔCC [Φ(s)], ΔCC [〈dI/dω〉], as well as ΔCC [b], ΔCC [B],

ΔCC [lnB], ΔCC

[
ϑ2
]
, and ΔCC

[
ln
(
ϑ2
)]

.

• We also calculated relative Coulomb corrections δCC [(dI/dω)0] = δCC [q] = δCC

[
ϑ2
]

=
δCC [B], δCC [Φ(s)] = δCC [s], and δCC [〈dI/dω〉] in the regime of strong LPM suppression for
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Z = 79 (β = 1) and showed that the latter correction δCC [〈dI/dω〉] comprises the order of
−14% at minimum BB value 4.5.

• We demonstrated that the average size of the relative Coulomb correction −5.4%
coincides with the size of normalization correction (−5.5 ± 0.2)% for 6%LR gold target
obtained in the experiment [24].

• We have performed analogous calculations for the regime of small LPM suppression
over the entire range 1 � s � ∞. We found that the values of the Coulomb corrections
δCC [〈dI/dω〉] = (−4.50± 0.05)% (Z = 82) and δCC [〈dI/dω〉] = (−5.35± 0.06)% (Z = 92)
coincide with the mean normalization correction (−4.5 ± 0.2)% for 2%LR lead target and
(−5.6 ± 0.3)% for 3%LR uranium target, respectively, within the experimental error.

• The average δ̄CC [〈dI/dω〉] = (−4.70±0.49)% excellently agrees in the regime of small
LPM suppression with the weighted average (−4.7 ± 2)% of the normalization correction
obtained for 25 GeV data in the experiment [24].

• Thus, we managed to show that the discussed discrepancy between theory and experiment
can be explained on the basis of the obtained Coulomb corrections to the Born bremsstrahlung
rate within the Migdal LPM effect theory.

• This means that applying the revised multiple scattering theory by Moli	ere allows one to
avoid multiplying theoretical results by the above normalization factor and leads to agreement
between the Migdal LPM effect theory and experimental data [23, 24] for sufˇciently thick
high-Z targets over the range 20 < ω < 500 MeV.

• We evaluated the accuracy of the FokkerÄPlanck approach and the Gaussian ˇrst-order
representation of the distribution function w0(ϑ) in the limiting case ω = 0 and showed the
need of accounting for the second-order correction of the order of 1/BB ∼ 12% for w(ϑ)
to eliminate the discrepancy between the theory and experiment over the frequency range
5 < ω < 30 MeV for 25 GeV and 0.7%LR gold target data of the experiment [23,24].

• Finally, we found the numerical values of the relative corrections δCC [(dI/dω)0],
δCC [Φ(s)], and δCC [〈dI/dω〉] in the LPM effect theory analogue for a thin target over the
range 5 < ω < 30 and demonstrated that these corrections additionally improve the agreement
between the theory [32,33] and experiment [23,24].
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