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PERTURBATIVE SERIES AND THE 1/N EXPANSION
FOR THE QED β FUNCTION

S. A. Larin1

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

A comparison of the 5-loop perturbative series and the 1/N expansion for the QED renormalization-
group β function in the Minimal Subtraction (MS) scheme is performed. The good agreement between
two expansions is found which proves that the MS β function is adequately described by both series.
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INTRODUCTION

The concept of the β function, which depends on the choice of the renormalization scheme,
is the cornerstone of the Quantum Field Theory renormalization group approach, see [1] and
references therein.

At the same time, the nature of perturbative series for the β function in Quantum Electro-
dynamics still remains an unresolved question, although one can believe that it is an asymptotic
sign-alternating series. Then one can hope that the error of the truncated series of this type
is estimated by the value of the ˇrst discarded (or the last included) term of the expansion.
For the recent discussion of the behavior of asymptotic series of both sign-alternating and
sign-constant types, see [2].

It is known from the work [3] that the renormalization-group β function in the gφ4-theory
is indeed expanded into the sign-alternating asymptotic series with factorially growing coef-
ˇcients. But in the QED case the situation is more complicated. The asymptotic estimates
of [4] and [5] analogous to those of [3] were obtained only for the gauge-invariant subclasses
of diagrams with ˇxed number of fermion loops. As discussed in [4] and [5], in the case
of complete QED the strong cancellations between coefˇcients of subsets of diagrams with
different ˇxed numbers of fermion loops are expected. Thus, the asymptotic behavior of
perturbative coefˇcients of the β function in QED is in fact unknown.
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Since QED is the basis of modern Quantum Field Theory it is rather important to obtain
deˇnite conclusions concerning the behavior of its pertubative expansions.

Quite recently the 5-loop approximation for the QED renormalization-group β function in
different renormalization schemes was obtained, ˇrst for one active lepton [6] and then for an
arbitrary number NF of 	avors [7,8]. These results are obtained after more than twenty years
since the calculation of the 4-loop order [9]. On the other hand, there is a calculation [10]
of the ˇrst nontrivial leading term of the 1/NF expansion for the QED β function in the
MS scheme. It is quite interesting to compare the available 5-loop perturbative series and
the nonperturbative 1/NF series to analyze their consistency. This is the purpose of the
present letter.

MAIN PART

Let us ˇrst cite the 1/NF result for the β function from the work [10]:
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here K ≡ αNF /π is the coupling which has to be held ˇxed in the large NF limit, α being
the ˇne structure constant.

The function β(K) is deˇned as

αβ(K) = μ
d

dμ
α(μ), (2)

where μ is the renormalization scale.
In the numerical form the result of Eq. (1) reads

β(K) =
2
3
K +
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(
1 − 3.055555556 · 10−1K − 7.921810700 · 10−2K2 +
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+ 1.521260392 · 10−4K6 + 3.588903124 · 10−5K7 + . . .
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One can see from the above equation the fast decrease of the coefˇcients of the expansion of
the 1/NF term which demonstrates the very good convergence of the series. The authors of
the work [10] established that the radius of convergence of this β(K) expansion is K = 15/2.
They checked numerically that the 1/NF term has the only zero at K = 0 and is positive in
the convergence region. The authors of the work [10] also found that for the physical value
NF = 3 the 1/NF term is never larger than 15% of the leading term 2K/3.

Let us now cite the 5-loop result for the β function in the MS scheme from the work [7].
In the normalization of Eq. (2) it is
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where A ≡ α/4π.
Let us also present this formula in terms of K to have it closer to the form of the 1/NF

expansion:
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The numerical form of the above equation for the value NF = 3 is

β = 0.63662α + 0.151982α2 − 0.050393α3 − 0.0819407α4 + 0.0412278α5, (4)

this is the monotonically increasing function for α > 0.
We will compare Eq. (1) and Eq. (3) for NF = 3. The results of the comparison are

presented in the table.

The values of the β function calculated in the 1/Nf expansion and within perturbation theory for
different values of α

β function α = 1/137 α = 0.1 α = 0.2 α = 1

In the 1/NF expansion 0.00465494 0.0651364 0.133032 0.737883

In perturbation theory 0.00465494 0.0651236 0.132882 0.697496
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We see that even for α = 1 when the convergence of the series (4) is quite questionable
both results agree within 5%. Thus, two different expansions (the usual perturbative series
and the 1/NF series) give numerically very close values for the QED β function in the wide
interval of α. It deˇnitely indicates that both expansions give good approximations for β(α).

CONCLUSIONS

We have got a proof that the perturbative QED series adequately describes the renormaliza-
tion-group β function. Presently one has no reliable information about the structure of
perturbative series in Quantum Electrodynamics (except the common words that they can be
asymptotic series), so the obtained result seems to be quite illuminating.
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