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MASSIVE SPIN-2
IN FRADKINÄVASILIEV FORMALISM

Yu. M. Zinoviev 1

Institute for High Energy Physics, Protvino, Russia

Here, using massive spin-2 case as an example, we discuss the possibility to extend FradkinÄ
Vasiliev formalism, initially developed for investigation of massless higher-spin ˇelds interactions, to
the interactions involving both massless and/or massive or partially massless ˇelds.

PACS: 11.10-z

INTRODUCTION

Today we have rather complete understanding of cubic interaction vertices for massless
higher-spin ˇelds (see, e.g., [1] and references therein). As for their explicit construction, it
turns out that one of the very effective way is the FradkinÄVasiliev formalism [2, 3]. Two
main ingredients of this formalism are gauge invariance and frame-like description of massless
higher-spin ˇelds [4Ä6]. But frame-like gauge-invariant description exists for massive (and
partially massless) ˇelds as well [7, 8]. So it seems natural to try to extend this formalism to
the case of interactions involving both massless and/or massive or partially massless ˇelds.
Here we discuss such a possibility using massive spin-2 case as an example.

First of all, we illustrate the formalism with the simplest example possible Å massless
spin-2 self-interaction. In particular, we show how usual low derivative gravity can be
reproduced in such a formalism. For the main part of our discussion we use partially
massless spin-2 ˇeld, because being much simpler, it conveniently illustrates both similarities
as well as differences with the massless case. Namely, we consider two explicit examples:
self-interaction and interaction with massless graviton. At last, we brie	y present analogous
results for the general massive case leaving detailed discussion for the forthcoming publication.

1. MASSLESS CASE

In this section, we brie	y recall main basic points of the frame-like description for massless
higher-spin particles and FradkinÄVasiliev formalism. Then, we illustrate the construction of
cubic vertices using massless spin-2 case as an example.
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1.1. Frame-like Formalism. For the description of massless spin-s particle in the frame-
like formalism one uses a set of ˇelds

Φa1...as−1
μ , Φa1...as−1,b1

μ , . . . , Φa1...as−1,b1...bs−1
μ ,

where the ˇeld Φa1...as−1,b1...bk is completely traceless, symmetric on a and b indices and
satisˇes the constraint Φ(a1...as−1,b1)b2...bk = 0. The physical ˇeld is the lowest one Φa1...as−1 ,
while all others are auxiliary, which by solving their algebraic equations, can be expressed as
higher derivatives of the physical one Φa1...as−1,b1...bk ∼ ∂kΦa1...as−1 .

In spite of being auxiliary, each ˇeld (and not only physical one) plays the role of gauge
ˇeld having its own gauge transformation

δΦμ
a1...as−1,b1...bk ∼ Dμξa1...as−1,b1...bk + . . . ,

where dots stand for the terms linear in ˇelds without derivatives. Similarly, the main gauge
parameter is the lowest one ξa1...as−1 , while all others are equivalent to its higher derivatives.

For each ˇeld one can construct gauge-invariant object (we will call them curvatures):

Rμν
a1...as−1,b1...bk ∼ D[μΦν]

a1...as−1,b1...bk + . . . ,

where again dots stand for the terms linear in ˇelds without derivatives. Moreover, for
the nonzero cosmological constant the free Lagrangian can be rewritten in explicitly gauge-
invariant form

L0 ∼
∑

R∧R,

where each term is separately gauge-invariant, while relative coefˇcients are determined by
the requirement that all higher derivative terms must be absent.

1.2. Nontrivial Cubic Vertices. For the three massless ˇelds with spins s1 � s2 � s3,
there exist a number of cubic vertices with N derivatives [9]:

s1 + s2 − s3 � N � s1 + s2 + s3,

where N must be even (odd) if s1+s2+s3 is even (odd). Vertices with the maximum number
of derivatives N = s1 + s2 + s3 are trivially gauge-invariant and can be easily constructed
using gauge-invariant curvatures for all three ˇelds. Here and in what follows, we will
call vertex nontrivial if its gauge invariance requires corrections to gauge transformations.
Recently Vasiliev has shown [1] that all nontrivial vertices having up to N = s1 +s2 +s3−2
derivatives can be constructed as combinations of the so-called non-Abelian and Abelian ones.

All non-Abelian vertices have the general form

R∧ Φ ∧ Φ

and results from quadratic deformations of curvatures

R ⇒ R̂ = R⊕ Φ ∧ Φ

determined by the requirement that deformed curvatures transform covariantly

δR̂ ∼ Rξ.

At the same time, Abelian vertices have the general form

R∧R∧ Φ

and their gauge invariance heavily relies on Bianchi identities.
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1.3. Massless Spin-2 in AdS. In the frame formalism the free Lagrangian for massless
spin-2 ˇeld in AdSd space has the form

L0 =
1
2
{ μν

ab }ωμ
acων

bc − 1
2
{ μνα

abc }ωμ
abDνhα

c − (d − 2)κ
2

{ μν
ab }hμ

ahν
b, (1)

where { μν
ab } = eμ

aeν
b − eμ

be
ν

a, κ =
2Λ

(d − 1)(d − 2)
.

This Lagrangian is invariant under the following local gauge transformations:

δ0ωμ
ab = Dμη̂ab + κeμ

[aξ̂b], δ0hμ
a = Dμξ̂a + η̂μ

a. (2)

Moreover, one can easily construct two gauge-invariant objects (linearized curvature and
torsion):

Rμν
ab = D[μων]

ab + κe[μ
[ahν]

b],

Tμν
a = D[μhν]

a − ω[μ,ν]
a.

(3)

In this, the free Lagrangian can be rewritten as

L0 = a0

{
μναβ
abcd

}
Rμν

abRαβ
cd, a0 = − 1

32(d − 3)κ
. (4)

1.4. Cubic Vertices for Massless Spin-2. Now let us illustrate the general procedure on the
simple case Å massless spin-2 self-interaction. As a ˇrst step one has to construct consistent
quadratic deformations for curvatures. In this particular case this unambiguously gives the
following result:

ΔRμν
ab = b0[ω[μ

caων]
bc + κh[μ

ahν]
b],

ΔTμν
a = b0ω[μ

abhν]
b.

(5)

Such a deformation results in the following transformations for deformed curvatures:

δR̂μν
ab = b0Rμν

c[aη̂b]c + κb0Tμν
[aξ̂b],

δT̂μν
a = −b0η̂

abTμν
b + b0Rμν

abξ̂b.
(6)

Now let us consider the interacting Lagrangian in the form:

L = a0

{
μναβ
abcd

}
R̂μν

abR̂αβ
cd + c0

{
μναβγ
abcde

}
Rμν

abRαβ
cdhγ

e, (7)

where the ˇrst term is just the free Lagrangian with the curvature replaced by the deformed
one, while the second term is the only possible Abelian vertex in this case. Both terms
are separately gauge-invariant, so we obtain two independent vertices having up to four
derivatives. Note, however, that four derivative terms from these two vertices turn out to be
equivalent on-shell (which in this particular case means just zero-torsion condition):

c0

{
μναβγ
abcde

}
Dμων

abDαωβ
cdhγ

e ≈ 3c0

{
μναβ
abcd

}
Dμων

abωα
ceωβ

de + . . .

Thus, we may adjust coefˇcients so that all four derivative terms vanish on-shell leaving us
with the two-derivative vertex.
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2. PARTIALLY MASSLESS CASE

In this section, we apply the same procedure to construct nontrivial cubic vertices for the
partially massless spin-2 ˇelds.

2.1. Partially Massless Spin-2. Recall that partially massless ˇelds correspond to exotic
representation of the de Sitter group (see, e.g., [10, 11]). In d = 4 the partially massless
spin-2 has helicities ±2, ±1 so the frame-like gauge-invariant description requires two pairs
of ˇelds (Ωμ

ab, fμ
a) and (Bab, Bμ). Free Lagrangian for partially massless spin-2 has the

form [7]:

L0 =
1
2
{ μν

ab }Ωμ
acΩν

bc − 1
2
{ μνα

abc }Ωμ
abDνfα

c +
1
2
Bab

2−

− { μν
ab }BabDμBν + m[{ μν

ab }ωμ
abBν + eμ

aBabfμ
b], (8)

where m2 = (d−2)κ. This Lagrangian is invariant under the following gauge transformations:

δ0Ωμ
ab = Dμηab, δ0fμ

a = Dμξa + ημ
a +

2m

(d − 2)
eμ

aξ,

δ0B
ab = −mηab, δ0Bμ = Dμξ +

m

2
ξμ.

(9)

Correspondingly, we have four gauge-invariant objects (curvatures):

Fμν
ab = D[μΩν]

ab − m

(d − 2)
e[μ

[aBν]
b],

Tμν
a = D[μfν]

a − Ω[μ,ν]
a +

2m

(d − 2)
e[μ

aBν],

Bμ
ab = DμBab + mΩμ

ab,

Bμν = D[μBν] − Bμν − m

2
f[μ,ν].

(10)

Moreover, the free Lagrangian can be rewritten in terms of these curvatures as follows:

L0 = a1

{
μναβ
abcd

}
Fμν

abFαβ
cd + a2 { μν

ab } Bμ
acBν

bc + a3 { μνα
abc } Bμ

abTνα
c, (11)

where

a1 = − (d − 2)
32(d− 3)m2

, a2 = − 1
m2

, a3 = − 1
4m

.

2.2. Self-Interaction. As our ˇrst example we consider self-interactions for partially
massless spin-2. Similarly to the massless case, ˇrst of all, we have to construct the
most general quadratic deformations for all four curvatures such that deformed curvatures
transform covariantly. The solution turns out to be unique (up to possible ˇeld redeˇni-
tions related to the presence of zero form Bab) and produces the following transformations
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for deformed curvatures:

δF̂μν
ab = 2d1Fμν

c[aηb]c +
d2

2
B[μ

abξν] + d2Fμν
abξ,

δT̂μν
a = −2d1η

abTμν
b + 2d1Fμν

abξb,

δB̂μ
ab = −d1η

c[aBμ
b]c + d2Bμ

abξ,

δB̂μν = −d1B[μ,ν]
aξa,

(12)

where d2 = − 4md1

(d − 2)
.

Now we consider the following interacting Lagrangian:

L = a1

{
μναβ
abcd

}
F̂μν

abF̂αβ
cd + a2 { μν

ab } B̂μ
acB̂ν

bc + a3 { μνα
abc } B̂μ

abT̂να
c+

+ a4

{
μναβγ
abcde

}
Fμν

abFαβ
cdfγ

e + a5 { μνα
abc }Bμ

adBν
bdfα

c+

+ a6

{
μναβ
abcd

}
Fμν

abBα
cdBβ, (13)

where the ˇrst line is just the free Lagrangian with curvatures replaced by the deformed
ones, while the second line contains three Abelian vertices. Contrary to the massless case,
the ˇrst and second lines are not separately gauge-invariant. In this, gauge invariance gives
three equations on these three parameters a4, a5, a6, hence we obtain one independent vertex
containing terms with up to four derivatives.

Note, that in d = 4 one of the Abelian vertices

a4

{
μναβγ
abcde

}
Fμν

abFαβ
cdfγ

e

is absent, but equations on remaining parameters a5, a6 still have a solution. Moreover,
all higher derivative terms (both with physical as well as with Stueckelberg ˇelds) vanish
on-shell, leaving us with a rather well-known two-derivative vertex that exists in d = 4 and
only in d = 4 (e.g., [12,13]).

2.3. Gravitational Interaction. Our second example Å gravitational interaction for par-
tially massless spin-2. In this case, we have to consider quadratic deformations both for
gravitational curvatures as well as for the partially massless ones. The most general (up
to possible ˇeld redeˇnitions) quadratic deformation for gravitational curvature has two free
parameters and leads to

δR̂μν
ab ≈ 2b1Fμν

c[aηb]c −
(

2mb1

(d − 2)
+

b2

2

)
B[μ,ν]

[aξb] − b2

2
B[μ

abξν] + b2Fμν
abξ. (14)

At the same time, deformations for partially massless curvatures correspond to standard
minimal substitution rules and give

δF̂μν
ab ≈ −b0[Fμν

c[aη̂b]c + Rμν
c[aηb]c − m

(d − 2)
B[μ,ν]

[aξ̂b]],

δT̂μν
a ≈ −b0[Fμν

abξ̂b + Rμν
abξb],

δB̂μ
ab ≈ −b0Bμ

c[aη̂b]c,

δB̂μν ≈ b0[B[μ,ν]
aξ̂a +

m

2
Fμν

aξ̂a].

(15)
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Note, that at this stage deformation parameters b0 and b1, b2 are independent. The reason
is that covariance of the deformed curvatures guarantees that equations of the theory we are
trying to construct will be gauge-invariant, but it does not guarantee that these equations will
be Lagrangian. But when we put these curvatures into the Lagrangian and require it to be
invariant, we have to expect that these parameters would be related.

Now we construct the interacting Lagrangian

L = a1

{
μναβ
abcd

}
F̂μν

abF̂αβ
cd + a2 { μν

ab } B̂μ
acB̂ν

bc+

+ a3 { μνα
abc } B̂μ

abT̂να
c + a0

{
μναβ
abcd

}
R̂μν

abR̂αβ
cd+

+ a4

{
μναβγ
abcde

}
Fμν

abFαβ
cdhγ

e + a5 { μνα
abc }Bμ

adBν
bdhα

c+

+ a6

{
μναβγ
abcde

}
Fμν

abRαβ
cdfγ

e + a7

{
μναβ
abcd

}
Rμν

abBα
cdBβ (16)

as the sum of free Lagrangian for partially massless and massless spin-2 ˇelds with the
deformed curvatures supplemented with four possible Abelian vertices. Gauge invariance
requires (as expected)

b1 = −b0

2
, b2 = 2mb0

and also gives two equations on parameters a4,5,6,7, hence we obtain three independent
vertices.

In d = 4 the terms with a4 and a6 are absent leaving us with one vertex only. Moreover, all
higher derivative terms vanish on-shell, and we obtain two-derivative vertex known previously
from metric-like formalism [12,13].

3. MASSIVE CASE

Here we give a brief description of the results for the massive case leaving detailed
discussion for the forthcoming publication.

3.1. Massive Spin-2 Kinematics. In the massless limit, massive spin-2 breaks into the
massless spin-2, spin-1 and spin-0 ones, hence gauge-invariant frame-like description requires
three pairs of ˇelds: (Ωμ

ab, fμ
a), (Bab, Bμ) and (πa, ϕ) [7]. Scalar ˇeld does not have its

own gauge transformations, so the gauge symmetries are the same as in the partially massless
case: (ηab, ξa, ξ).

Correspondingly, we have six gauge-invariant objects

Fμν
ab, Tμν

a, Bμ
ab, Bμν , Πμ

a, Φμ,

and the free gauge-invariant Lagrangian can be expressed as

L0 = a1

{
μναβ
abcd

}
Fμν

abFαβ
cd + a2 { μν

ab } Bμ
acBν

bc + a3 { μνα
abc } Bμ

abTνα
c+

+ a4 { μνα
abc }Fμν

abΠα
c + a5 { μν

ab }Πμ
aΠν

b + a6 { μν
ab } Bμ

abΦν . (17)



Massive Spin-2 in FradkinÄVasiliev Formalism 1337

3.2. Cubic Vertices. As in the partially massless case, we have considered two examples Å
self-interaction and interaction with massless graviton. Qualitative results are the following.

Self-Interaction
• There are three independent cubic vertices.
• By adjusting coefˇcients one can obtain one particular solution that has no more than

two derivatives on-shell.
• General solution is singular in the partially massless limit and only one particular

solution admits smooth limit.
Gravitational Interaction
• We obtained three independent solutions, two having four derivatives and one with no

more than two.
• All three admit nonsingular partially massless limit.
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