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SO(2, 3) NONCOMMUTATIVE GRAVITY MODEL

M.Dimitrijevi�c 1, V. Radovanovi�c 2

Faculty of Physics, University of Belgrade, Belgrade, Serbia

In this paper, the noncommutative gravity is treated as a gauge theory of the noncommutative
SO(2, 3)� group, while the noncommutativity is canonical. The SeibergÄWitten (SW) map is used to
express noncommutative ˇelds in terms of the corresponding commutative ˇelds. The commutative
limit of the model is the EinsteinÄHilbert action plus the cosmological term and the topological GaussÄ
Bonnet term. We calculate the second-order correction to this model and obtain terms that are the
zeroth, ˇrst, . . . and fourth power of the curvature tensor. Finally, we discuss physical consequences of
those correction terms in the limit of big cosmological constant.

PACS: 11.25.Wx

INTRODUCTION

Recently, a lot of attention was given to the Anti-de Sitter (AdS) gauge theory and its
application to studies of General Relativity (GR), quantization of gravity, AdS/CFT and its
applications [1]. In our previous paper [2], we began the study of NonCommutative (NC)
gravity based on the AdS gauge group. We started form the MacDowellÄMansouri action in
the commutative space-time and generalized it to the NC MacDowellÄMansouri on the canon-
ically deformed space. In this paper, we brie	y describe the NC SO(2, 3)� gauge theory.
More details can be found in [3].

The NC space-time is the canonically deformed space-time with the MoyalÄWeyl �-product
given by

f(x) � g(x) = exp
(

i

2
θμν ∂

∂xμ

∂

∂yν

)
f(x) g(y)|y→x. (1)

Here θμν is a constant antisymmetric matrix and is considered to be a small deformation
parameter. Indices μ, ν take values 0, 1, 2, 3, and the four-dimensional Minkowski metric
is ημν = diag (1,−1,−1,−1). In the next section, we shortly describe the commutative
SO(2, 3) gravity theory. In Sec. 2, the NC SO(2, 3)� gauge theory via the SW map is intro-
duced. We expand the NC action to the second order in the deformation parameter θαβ and
calculate the correction terms to the commutative action. The ˇrst-order correction vanishes
and we conˇrm the results already present in the literature. Namely, it was shown that if
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reality of the NC gravity action is imposed, all odd-order corrections (in the NC parame-
ter) have to vanish. The ˇrst nonvanishing correction is then the second-order correction.
The correction terms we obtain are of the zeroth, ˇrst, . . . and fourth power in the curvature
tensor and are written in a manifestly covariant way. The term that is the zeroth power in
the curvature tensor renormalizes the cosmological constant, i.e., we obtain an x-dependent
cosmological constant.

1. COMMUTATIVE GRAVITY AS AN AdS GAUGE THEORY

We assume that the space-time has the structure of the 4-dimensional Minkowski space M4

and follow the usual steps for constructing a gauge theory on M4 taking the SO(2, 3) group as
the gauge group. The gauge ˇeld takes values in the SO(2, 3) algebra, ωμ = (1/2)ωAB

μ MAB.
Here MAB are the generators of the SO(2, 3) group and they fulˇll

[MAB, MCD] = i(ηADMBC + ηBCMAD − ηACMBD − ηBDMAC). (2)

The 5D metric is ηAB = diag (+,−,−,−, +). Indices A, B, . . . take values 0, 1, 2, 3, 5,
while indices a, b, . . . take values 0, 1, 2, 3. A representation of this algebra is given by

Mab =
i

4
[γa, γb] =

1
2
σab, M5a =

1
2
γa, (3)

where γa are four-dimensional Dirac gamma matrices. Then the gauge potential ωAB
μ decom-

poses into ωab
μ and ωa5

μ

ωμ =
1
2
ωAB

μ MAB =
1
4
ωab

μ σab −
1
2
ωa5

μ γa. (4)

The ˇeld strength tensor is deˇned in a usual way by

Fμν = ∂μων − ∂νωμ − i[ωμ, ων ] =
1
2
FAB

μν MAB =

=
(

Rab
μν − 1

l2
(ea

μeb
ν − eb

μea
ν)

)
σab

4
− F a5

μν

γa

2
, (5)

where

R ab
μν = ∂μωab

ν − ∂νωab
μ + ωac

μ ωcb
ν − ωbc

μ ωca
ν , (6)

lF a5
μν = Dμea

ν − Dνea
μ = T a

μν . (7)

Equations (4), (5), (6), and (7) suggest that one can identify ωab
μ with the spin connection of

the Poincar
e gauge theory; ωa5
μ , with the vielbeins; Rab

μν , with the curvature tensor; and F a5
μν ,

with the torsion. It was shown in the seventies that one can really do such an identiˇcation
and relate AdS gauge theory with GR. Different ways were discussed in the literature, see [4].
One way is to start from the following action:

S =
il

64πGN
Tr

∫
d4xεμνρσFμνFρσφ, (8)
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where GN is the Newton gravitational constant. An additional auxiliary ˇeld φ = φAΓA,
ΓA = (iγaγ5, γ5), transforming in the adjoint representation of SO(2, 3), is introduced. One
can show that the action (8) is invariant under the SO(2, 3) gauge symmetry. However, if
we restrict the ˇeld φ to be φa = 0, φ5 = l, with an arbitrary constant l, then the symmetry
of the action is reduced to the SO(1, 3) gauge symmetry. The constraint on the ˇeld φ can
be introduced via a Lagrange multiplier or dynamically [4]. We are not concerned with that
problem here. The action obtained after symmetry breaking is given by

S =
il2

64πGN
εμνρσ

∫
d4xTr(FμνFρσγ5) =

= − 1
16πGN

∫
d4x

[ l2

16
εμνρσεabcdR

ab
μν R cd

ρσ + eR + 2eΛ
]
, (9)

where Λ = −3/l2 and e = det (ea
μ). This action is written in the ˇrst-order formalism:

the spin connection ωμ and the vielbeins ea
μ are independent ˇelds. Varying the action

with respect to the spin connection, we obtain an equation that relates the spin connection
and the vielbeins. After the analysis of the equations of motion, we see that after the
symmetry breaking, the action (9) describes GR with the negative cosmological constant and
the topological GaussÄBonnet term.

2. NC SO(2, 3)� GAUGE THEORY

In order to construct the NC SO(2, 3)� gauge theory, we use the enveloping algebra
approach and the SeibergÄWitten (SW) map [5]. The NC action is given by

SNC = − il

16πGN
Tr

∫
d4xεμνρσF̂μν � F̂ρσ � φ̂. (10)

The �-product is the MoyalÄWeyl �-product (1), ˇelds with a ®hat¯ are NC ˇelds, and we
will use the SW map to expand them in terms of the corresponding commutative ˇelds. One
can show that this action is invariant under the NC SO(2, 3) gauge transformations. In the
limit θαβ → 0, the action (10) reduces to the commutative action (8). The solutions of the
SW map for the ˇeld strength tensor and the ˇeld φ̂ are given in terms of the recursive
relations [6]

F̂ (n+1)
μν = − 1

4(n + 1)
θκλ

(
{ω̂κ

�, ∂λF̂μν + DλF̂μν}
)(n)+

+
1

2(n + 1)
θκλ

(
{F̂μκ, �, F̂νλ}

)(n)
, (11)

φ̂(n+1) = − 1
4(n + 1)

θκλ
(
{ω̂κ

�, ∂λφ̂ + Dλφ̂}
)(n)

. (12)

We expand the action (10) in orders of the deformation parameter θαβ , using the SW map
solutions and expanding the �-products that appear in the action. The ˇrst-order correction
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vanishes, as expected. The second-order correction is given by

S
(2)
NC =

il

64πGN

1
8
θαβθκλ×

× Tr
∫

d4xεμνρσ

{
−1

8
{Fαβ , {Fμν , Fρσ}}{φ, Fκλ} +

1
2
{Fαβ , {Fρσ, {Fκμ, Fλν}}}φ+

+
1
4
{{Fμν , Fρσ}, {Fκα, Fλβ}}φ+

i

4
{Fαβ , [DκFμν , DλFρσ ]}φ+

i

2
[{DκFμν , Fρσ , DλFαβ}]φ−

− 1
2
{Fρσ, {Fαμ, Fβν}}{φ, Fκλ} + {Fαμ, Fβν , {Fκρ, Fλσ}}φ+

+2{Fρσ, {Fβν , {Fκα, Fλμ}}}φ+ i{Fρσ, [DκFαμ, DλFβν ]}φ+2i[{Fβν, DκFαμ}, DλFρσ ]φ−

− 1
4
{φ, Fκλ}[DαFμν , DβFρσ ] +

i

2
{DκDαFμν , DλDβFρσ}φ+

+ [{Fκα, DλFμν}, DβFρσ]φ + [{Fλν , DαFκμ}, DβFρσ ]φ + [{Fκμ, DαFλν}, DβFρσ ]φ
}

.

This expanded action is manifestly invariant under the commutative SO(2, 3) gauge transfor-
mations. This result is guaranteed by the SW map. After the symmetry breaking, which is
obtained by taking the ˇeld φ to be φa = 0 and φ5 = l, we obtain

S
(2)
NC = − l2

64πGN
θαβθκλεμνρσεabcd

∫
d4x

{
1

256

(
F cd

μνF ab
ρσFmn

αβ Fκλmn−

− 8F ab
μνF c5

ρσF de
κλF 5

αβe + F ab
αβF cd

κλ(Fmn
μν Fρσmn + 2Fm5

μν F 5b
ρσm)

)
−

− 1
32

(
F ab

κλF cd
μνFmn

αρ Fβσmn + 2F ab
αβF cd

ρσFm5
κμ F 5

λνm + F ab
κμF cd

λνFmn
αβ Fρσmn

)
−

− 1
128

(
F ab

καF cd
λβ(Fmn

μν Fρσmn + 2Fm5
μν F 5

ρσm) + F ab
μνF cd

ρσ(Fmn
κα Fλβmn + 2Fm5

κα F 5
λβm)

)
+

+
1
16

F ab
αβ

(
(DκFμν)cm)(DλFρσ) d

m + (DκFμν)c5(DλFρσ) d
5

)
−

− 1
16

(
(DκFμν)ab(DλFαβ)d5F c5

ρσ + (DκFμν)a5(DλFαβ)b5F cd
ρσ

)
+

+
1
16

F ab
αμF cd

βν

(
Fmn

κρ Fλσmn + 2Fm5
κρ Fλσm5

)
+

+
1
16

(
F ab

ρσF cd
βν(Fmn

κα Fλμmn + 2Fm5
κα Fλμm5) + F ab

καF cd
λμFmn

ρσ Fβνmn−

− 4(F ab
καF c5

λμ + F a5
καF bc

λμ)F de
ρσFβνe5

)
−

− 1
8
F ab

ρσ

(
(DκFαμ)cm(DλFβν)d

m + (DκFαμ)c5(DλFβν) d
5

)
+

+
1
2

(
F ab

κμ(DαFλν)c5(DβFρσ)d5 + F a5
κμ(DαFλν)bc

)
(DβFρσ)d5+

+
1
8

(
F ab

κα(DλFμν)c5 + F a5
κα(DλFμν)bc

)
(DβFρσ)d5 − 1

32
(DκDαFμν)ab(DλDβFρσ)cd

}
.

(13)
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Here DαFμν is the SO(2, 3) covariant derivative and its components are

(DαFμν)ab = ∇αF ab
μν − 1

l2
(ea

αT b
μν − eb

αT a
μν),

(DαFμν)a5 =
1
l
(∇αT a

μν + em
α F a

μνm).

3. DISCUSSION

The result (13) is very complicated. In order to see the physical consequences of this
model, we have to make some additional requirements. We will ˇrst assume that the torsion
in the zeroth order vanishes, F a5

μν = 0. Since we have no fermionic matter, this assumption is

valid. Then we will expand F bc
μν in terms of the curvature tensor and the vielbeins, using (5).

Since the torsion vanishes, the curvature tensor will have the usual symmetry properties:
Rμνρσ = Rρσμν = Rνμρσ = −Rμνσρ. Finally, we discuss different scales in the theory.
We have three parameters: the cosmological constant Λ = −3/l2 (the length parameter l
is related with the radius of the AdS space), the NC parameter θαβ , and the powers of the
curvature tensor (powers of derivatives). Depending on the values of these three parameters,
we can analyze different limits of the model: big cosmological constant and low energies
(lower powers of curvature dominate), or big cosmological constant and high energies (higher
powers of curvature dominate), and so on.

Let us assume that we are interested in the limit of the big cosmological constant and
low energies. In that case, from (13), we include only the term that is zeroth order in the
curvature. The resulting action is given by

S = − 1
16πGN

∫
d4x

[
l2

16
εμνρσεabcdR

ab
μνRcd

ρσ +
√
−gR + 2

√
−gΛ

]
+

+
3θαβθκλ

16πGN l6

∫
d4x

√
−ggακgβλ. (14)

To obtain the equations of motion, we vary the action with respect to the metric gρσ . The
result is

Rρσ − 1
2
gρσ(R + 2Λ) +

3
l6

θαβθκλ

(
1
2
gρσgακgβλ + 2gβλgαρgκσ

)
= 0. (15)

A simple analysis shows that the 	at space gρσ = ηρσ is not the solution of these equations.
Therefore, although in the action (14) the cosmological constant is renormalized with the
x-dependent term θαβθκλgακgβλ, this is not enough to completely cancel its effect and the
resulting space-time remains curved. If we are interested in the linearized theory, we would
have to expand around the AdS space-time. This problem and further analysis are the subject
of the future investigations.
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