ONCE MORE ON PARASTATISTICS

V. N. Tolstoy ${ }^{1}$
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow

Equivalence between algebraic structures, generated by parastatistics triple relations of Green (1953) and Greenberg-Messiah (1965), and certain orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebras is found explicitly. Moreover, it is shown that such superalgebras give more complex para-Fermi and para-Bose systems than ones of Green-Greenberg-Messiah.

PACS: 87.19.xe

INTRODUCTION

The usual creation and annihilation operators of identical particles, fermions $a_{i}^{ \pm}(i=$ $1, \ldots, m)$ and bosons $b_{j}^{ \pm}(j=1, \ldots, n)$, satisfy the canonical commutation relations:

$$
\begin{equation*}
\left\{a_{i}^{\zeta}, a_{j}^{\eta}\right\}=\frac{1}{2}|\eta-\zeta| \delta_{i j}, \quad\left[b_{i}^{\zeta}, b_{j}^{\eta}\right]=\frac{1}{2}(\eta-\zeta) \delta_{i j} . \tag{1}
\end{equation*}
$$

Here and elsewhere the Greek letters $\zeta, \eta \in\{+,-\}$, if they are upper indexes, are interpreted as +1 and -1 in the algebraic expressions of the type $\eta-\zeta$.

From the relations (1), follows the so-called «symmetrization postulate» (SP): States of more than one identical particle must be antisymmetric (fermions) or symmetric (bosons) under permutations.

In 1953, Green [1] proposed to refuse SP, and he introduced algebras with the triple relations:

$$
\begin{align*}
& {\left[\left[a_{i}^{\zeta}, a_{j}^{\eta}\right], a_{k}^{\xi}\right]=|\xi-\eta| \delta_{j k} a_{i}^{\zeta}-|\xi-\zeta| \delta_{i k} a_{j}^{\eta} \quad \text { (parafermions), }} \tag{2}\\
& {\left[\left\{b_{i}^{\zeta}, b_{j}^{\eta}\right\}, b_{k}^{\xi}\right]=(\xi-\eta) \delta_{j k} b_{i}^{\zeta}+(\xi-\zeta) \delta_{i k} b_{j}^{\eta} \quad \text { (parabosons). }} \tag{3}
\end{align*}
$$

The usual fermions and bosons satisfy these relations but another solutions also exist.
In 1962, Kamefuchi and Takahashi [2] (also see [3]) have shown that the parafermionic algebra is isomorphic to the orthogonal Lie algebra $\mathfrak{o}(2 m+1):=\mathfrak{o}(2 m+1, \mathbb{C})$. Later, in 1980, Ganchev and Palev [4] proved that the parabosonic algebra is isomorphic to the orthosymplectic \mathbb{Z}_{2}-graded Lie superalgebra $\mathfrak{o s p}(1 \mid 2 n)$.

[^0]In 1965, Greenberg and Messiah [5] considered parasystem consisting simultaneously of parafermions and parabosons, and they defined the relative commutation rules between parafermions and parabosons. There are two types of such relations:

$$
\begin{array}{rlrl}
{\left[\left[a_{i}^{\zeta}, a_{j}^{\eta}\right], b_{k}^{\xi}\right]} & =0, & {\left[\left\{b_{i}^{\zeta}, b_{j}^{\eta}\right\}, a_{k}^{\xi}\right]} & =0 \\
{\left[\left[a_{i}^{\zeta}, b_{j}^{\eta}\right], a_{k}^{\xi}\right]} & =-|\xi-\zeta| \delta_{i k} b_{j}^{\eta}, & \left\{\left[a_{i}^{\zeta}, b_{j}^{\eta}\right], b_{k}^{\xi}\right\} & =(\xi-\eta) \delta_{j k} a_{i}^{\zeta} \\
{\left[\left[a_{i}^{\zeta}, a_{j}^{\eta}\right], b_{k}^{\xi}\right]} & =0, & {\left[\left\{b_{i}^{\zeta}, b_{j}^{\eta}\right\}, a_{k}^{\xi}\right]=0} \tag{5}\\
\left\{\left\{a_{i}^{\zeta}, b_{j}^{\eta}\right\}, a_{k}^{\xi}\right\} & =|\xi-\zeta| \delta_{i k} b_{j}^{\eta}, & {\left[\left\{a_{i}^{\zeta}, b_{j}^{\eta}\right\}, b_{k}^{\xi}\right]=(\xi-\eta) \delta_{j k} a_{i}^{\zeta}}
\end{array}
$$

where $i, j, k=1,2, \ldots, m$ for the symbols a 's and $i, j, k=1,2, \ldots, n$ for the symbols b 's. The first case (4) was called as the relative para-Fermi set, and the second case (5) was called as the relative para-Boson set ${ }^{1}$.

In 1982, Palev [6] has shown that the case (4) with (2) and (3) is isomorphic to the orthosymplectic \mathbb{Z}_{2}-graded Lie superalgebra $\mathfrak{o s p}(2 m+1 \mid 2 n)$. No any similar solution for the second case (5) was known up to now.

Here we show that the case (5) is isomorphic to the orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra $\mathfrak{o s p}(1,2 m \mid 2 n, 0)$. Moreover, it will demonstrate that the more general mixed parasystem, which simultaneously involves the relative para-Fermi and relative para-Bose sets, contains two sorts of parafermions and one sort of parabosons, and it is isomorphic to the orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$. All previous cases are particular (degenerated) variants of this general case.

The paper is organized as follows. Section 1 provides a definition and general structure of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebras and also a matrix realization and a Cartan-Weyl basis of the general linear $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra $\mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right)$. In Sec. 2, we describe the orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$ and show that a part of its defining triple relations in the terms of short-root vectors coincides with the relative para-Bose set.

1. SUPERALGEBRA $\mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right)$

At first, we remind a general definition of the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra [7,8].
The $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded LSA $\tilde{\mathfrak{g}}$, as a linear space, is a direct sum of four graded components

$$
\begin{equation*}
\tilde{\mathfrak{g}}=\bigoplus_{\mathbf{a}=\left(a_{1}, a_{2}\right)} \tilde{\mathfrak{g}}_{\mathbf{a}}=\tilde{\mathfrak{g}}_{(0,0)} \oplus \tilde{\mathfrak{g}}_{(1,1)} \oplus \tilde{\mathfrak{g}}_{(1,0)} \oplus \tilde{\mathfrak{g}}_{(0,1)} \tag{6}
\end{equation*}
$$

[^1]with a bilinear operation $\llbracket \cdot, \cdot \rrbracket$ satisfying the identities (grading, symmetry, Jacobi):
\[

$$
\begin{gather*}
\operatorname{deg}\left(\llbracket x_{\mathbf{a}}, y_{\mathbf{b}} \rrbracket\right)=\operatorname{deg}\left(x_{\mathbf{a}}\right)+\operatorname{deg}\left(x_{\mathbf{b}}\right)=\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}\right), \tag{7}\\
\llbracket x_{\mathbf{a}}, y_{\mathbf{b}} \rrbracket=-(-1)^{\mathbf{a b}} \llbracket y_{\mathbf{b}}, x_{\mathbf{a}} \rrbracket, \tag{8}\\
\llbracket x_{\mathbf{a}}, \llbracket y_{\mathbf{b}}, z \rrbracket \rrbracket=\llbracket \llbracket x_{\mathbf{a}}, y_{\mathbf{b}} \rrbracket, z \rrbracket+(-1)^{\mathbf{a b}} \llbracket y_{\mathbf{b}}, \llbracket x_{\mathbf{a}}, z \rrbracket \rrbracket, \tag{9}
\end{gather*}
$$
\]

where the vector $\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ is defined $\bmod (2,2)$ and $\mathbf{a b}=a_{1} b_{1}+a_{2} b_{2}$. Here in (7)-(9) $x_{\mathbf{a}} \in \mathfrak{g}_{\mathbf{a}}, x_{\mathbf{b}} \in \mathfrak{g}_{\mathbf{b}}$, and the element $z \in \tilde{\mathfrak{g}}$ is not necessarily homogeneous. From (7) it follows that $\mathfrak{g}_{(0,0)}$ is a Lie subalgebra in \mathfrak{g}, and the subspaces $\mathfrak{g}_{(1,1)}, \mathfrak{g}_{(1,0)}$, and $\mathfrak{g}_{(0,1)}$ are $\mathfrak{g}_{(0,0)}$-modules. It should be noted that $\mathfrak{g}_{(0,0)} \oplus \mathfrak{g}_{(1,1)}$ is a Lie subalgebra in $\tilde{\mathfrak{g}}$ and the subspace $\mathfrak{g}_{(1,0)} \oplus \mathfrak{g}_{(0,1)}$ is a $\mathfrak{g}_{(0,0)} \oplus \mathfrak{g}_{(1,1)}$-module, and moreover $\left\{\mathfrak{g}_{(1,1)}, \mathfrak{g}_{(1,0)}\right\} \subset \mathfrak{g}_{(0,1)}$ and vice versa $\left\{\mathfrak{g}_{(1,1)}, \mathfrak{g}_{(0,1)}\right\} \subset \mathfrak{g}_{(1,0)}$. From (7) and (8) it follows that the general Lie bracket $\llbracket \cdot, \cdot \rrbracket$ for homogeneous elements possesses two values: commutator $[\cdot, \cdot]$ and anticommutator $\{\cdot, \cdot\}$ as well as in the case of usual \mathbb{Z}_{2}-graded Lie superalgebras [9].

Now we construct a $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded matrix superalgebras $\mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right)$.
Let an arbitrary $\left(m_{1}+m_{2}+n_{1}+n_{2}\right) \times\left(m_{1}+m_{2}+n_{1}+n_{2}\right)$-matrix M be presented in the following block form ${ }^{1}$:

$$
M=\left(\begin{array}{llll}
A_{(0,0)} & A_{(1,1)} & A_{(1,0)} & A_{(0,1)} \tag{10}\\
B_{(1,1)} & B_{(0,0)} & B_{(0,1)} & B_{(1,0)} \\
C_{(1,0)} & C_{(0,1)} & C_{(0,0)} & C_{(1,1)} \\
D_{(0,1)} & D_{(1,0)} & D_{(1,1)} & D_{(0,0)}
\end{array}\right)
$$

where the diagonal block matrices $A_{(0,0)}, B_{(0,0)}, C_{(0,0)}, D_{(0,0)}$ have the dimensions $m_{1} \times m_{1}$, $m_{2} \times m_{2}, n_{1} \times n_{1}$, and $n_{2} \times n_{2}$, correspondingly, the dimensions of the nondiagonal block matrices $A_{(1,1)}, A_{(1,0)}, A_{(0,1)}$, etc., are easy determined by the dimensions of these diagonal block matrices. The matrix M can be split into the sum of four matrices:

$$
\left.\begin{array}{rl}
M & =M_{(0,0)}+M_{(1,1)}+M_{(1,0)}+M_{(0,1)}= \\
& =\left(\begin{array}{cccc}
A_{(0,0)} & 0 & 0 & 0 \\
0 & B_{(0,0)} & 0 & 0 \\
0 & 0 & C_{(0,0)} & 0 \\
0 & 0 & 0 & D_{(0,0)}
\end{array}\right)+\left(\begin{array}{ccc}
0 & A_{(1,1)} & 0 \\
B_{(1,1)} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & D_{(1,1)} \\
0
\end{array}\right)+ \\
& +\left(\begin{array}{cccc}
0 & 0 & A_{(1,0)} & 0 \\
0 & 0 & 0 & B_{(1,0)} \\
C_{(1,0)} & 0 & 0 & 0 \\
0 & D_{(1,0)} & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & B_{(0,1)} \\
0 & C_{(0,1)} & 0 \\
0 \\
D_{(0,1)} & 0 & 0
\end{array}\right) 0 \tag{11}
\end{array}\right) .
$$

Let us define the general commutator $\llbracket \cdot, \cdot \rrbracket$ on a space of all such matrices by the following way:

$$
\begin{equation*}
\llbracket M_{\left(a_{1}, a_{2}\right)}, M_{\left(b_{1}, b_{2}\right)}^{\prime} \rrbracket:=M_{\left(a_{1}, a_{2}\right)} M_{\left(b_{1}, b_{2}\right)}^{\prime}-(-1)^{a_{1} b_{1}+a_{2} b_{2}} M_{\left(b_{1}, b_{2}\right)}^{\prime} M_{\left(a_{1}, a_{2}\right)} \tag{12}
\end{equation*}
$$

[^2]for the homogeneous components $M_{\left(a_{1}, a_{2}\right)}$ and $M_{\left(b, b_{2}\right)}$. For arbitrary matrices M and M^{\prime}, the commutator $\llbracket \cdot, \cdot \rrbracket$ is extended by linearity. It is easy to check that
\[

$$
\begin{equation*}
\llbracket M_{\left(a_{1}, a_{2}\right)}, M_{\left(b_{1}, b_{2}\right)}^{\prime} \rrbracket=M_{\left(a_{1}+a_{2}, b_{1}+b_{2}\right)}^{\prime \prime} \tag{13}
\end{equation*}
$$

\]

where the sum $\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$ is defined $\bmod (2,2)$. Thus the grading condition (7) is available. The symmetry and Jacobi identities (8) and (9) are available, too. Hence, we obtain a Lie superalgebra which is called $\mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right)$. It should be noted that

$$
\begin{align*}
& \llbracket M_{\mathbf{a}}, M_{\mathbf{b}}^{\prime} \rrbracket=\left[M_{\mathbf{a}}, M_{\mathbf{b}}^{\prime}\right], \quad \mathbf{a b}=0,2, \\
& \llbracket M_{\mathbf{a}}, M_{\mathbf{b}}^{\prime} \rrbracket=\left\{M_{\mathbf{a}}, M_{\mathbf{b}}^{\prime}\right\}, \quad \mathbf{a b}=1 . \tag{14}
\end{align*}
$$

Now, we consider the Cartan-Weyl basis of $\mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right)$ and its supercommutation ($\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded) relations. In accordance with the block structure of the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded matrix (10), we introduce a $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded function (grading) $\mathbf{d}(\cdot)$ defined on the integer segment $\left[1,2, \ldots, m_{1}, m_{1}+1, \ldots, m_{1}+m_{2}, m_{1}+m_{2}+1, \ldots, m_{1}+m_{2}+n_{1}, m_{1}+m_{2}+\right.$ $\left.n_{1}+1, \ldots, m_{1}+m_{2}+n_{1}+n_{2}\right]$ as follows:

$$
\mathbf{d}_{i}:=\mathbf{d}(i)=\left\{\begin{array}{l}
(0,0) \text { for } i=1,2, \ldots, m_{1} \tag{15}\\
(1,1) \text { for } i=m_{1}+1, \ldots, m_{1}+m_{2} \\
(1,0) \text { for } i=m_{1}+m_{2}+1, \ldots, m_{1}+m_{2}+n_{1} \\
(0,1)
\end{array} \text { for } i=m_{1}+m_{2}+n_{1}+1, \ldots, m_{1}+m_{2}+n_{1}+n_{2} .\right.
$$

Let $e_{i j}$ be the $\left(m_{1}+m_{2}+n_{1}+n_{2}\right) \times\left(m_{1}+m_{2}+n_{1}+n_{2}\right)$ matrix (10) with 1 being in the (i, j)-th place and other entries 0 . The matrices $e_{i j}\left(i, j=1,2, \ldots, m_{1}+m_{2}+n_{1}+n_{2}\right)$ are homogeneous, moreover, the grading $\operatorname{deg}\left(e_{i j}\right)$ is determined by

$$
\begin{equation*}
\operatorname{deg}\left(e_{i j}\right)=\mathbf{d}_{i j}:=\mathbf{d}_{i}+\mathbf{d}_{j} \quad(\bmod (2,2)) \tag{16}
\end{equation*}
$$

and the supercommutator for such matrices is given as follows:

$$
\begin{equation*}
\llbracket e_{i j}, e_{k l} \rrbracket:=e_{i j} e_{k l}-(-1)^{\mathbf{d}_{i j} \mathbf{d}_{k l}} e_{k l} e_{i j} \tag{17}
\end{equation*}
$$

It is easy to check that

$$
\begin{equation*}
\llbracket e_{i j}, e_{k l} \rrbracket=\delta_{j k} e_{i l}-(-1)^{\mathbf{d}_{i j} \mathbf{d}_{k l}} \delta_{i l} e_{k j} . \tag{18}
\end{equation*}
$$

The elements $e_{i j}\left(i, j=1,2, \ldots, m_{1}+m_{2}+n_{1}+n_{2}\right)$ with the relations (18) generate the Lie superalgebra $\mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right)$. The elements $h_{i}:=e_{i i}\left(i, j=1,2, \ldots, m_{1}+m_{2}+n_{1}+n_{2}\right)$ compose a basis in the Cartan subalgebra $\mathfrak{h}\left(m_{1}+m_{2} \mid n_{1}+n_{2}\right) \subset \mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right)$.

The Lie superalgebra $\mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right.$ plays a special role among all finite dimensional $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebras. Namely, a general Ado's theorem is valid. It states: Any finite dimensional Lie $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra can be realized in terms of a subalgebra of $\mathfrak{g l}\left(m_{1}, m_{2} \mid n_{1}, n_{2}\right)$. This theorem was proved by Scheunert [10] for all finite dimensional graded generalized Lie algebras including our cases.

As an illustration of Ado's theorem, in the next section we give realization of the orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded superalgebra $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$ in terms of the superalgebra $\mathfrak{g l}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$ and, moreover, we present a Cartan-Weyl basis of the orthosymplectic superalgebra and its explicit commutation relations, and we also show that a subset of the short root vectors of the Cartan-Weyl basis generates this superalgebra, and describe the parastatistics with the relative para-Fermi and para-Bose sets, simultaneously.

2. ORTHOSYMPLECTIC SUPERALGEBRA $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$ AND ITS RELATION WITH PARASTATISTICS

We start with an explicit description of embedding of the orthosymplectic Lie superalgebra $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$ in the general linear Lie superalgebra $\mathfrak{g l}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$. For this propose, the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded integer segment $\mathbb{S}_{N}^{(\mathbf{d})}:=[1,2, \ldots, 2 N+1]$, where $N=$ $m_{1}+m_{2}+n$, with the grading $d(\cdot)$ given by

$$
\mathbf{d}_{i}:=\mathbf{d}(i)=\left\{\begin{array}{l}
(0,0) \text { for } i=1,2, \ldots, 2 m_{1} \tag{19}\\
(1,1) \text { for } i=2 m_{1}+1, \ldots, 2 m_{1}+2 m_{2} \\
(1,0) \text { for } i=2 m_{1}+2 m_{2}+1, \ldots, 2 m_{1}+2 m_{2}+2 n
\end{array}\right.
$$

is reindexed by the following way $\tilde{\mathbb{S}}_{N}^{(\mathbf{d})}:=[0, \pm 1, \pm 2, \ldots, \pm N]$ with the grading $\mathbf{d}(\cdot)$ given by

$$
\mathbf{d}_{i}:=\mathbf{d}(i)= \begin{cases}(0,0) & \text { for } i=0, \pm 1, \pm 2, \ldots, \pm m_{1} \tag{20}\\ (1,1) & \text { for } i= \pm\left(m_{1}+1\right), \ldots, \pm\left(m_{1}+m_{2}\right) \\ (1,0) & \text { for } i= \pm\left(m_{1}+m_{2}+1\right), \ldots, \pm\left(m_{1}+m_{2}+n\right)\end{cases}
$$

Rows and columns of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded $(2 N+1) \times(2 N+1)$-matrices are enumerated by the indices $0,1,-1,2,-2, \ldots, N,-N\left(N=m_{1}+m_{2}+n\right)$. Let $e_{i j}\left(i, j \in \tilde{\mathbb{S}}_{N}^{(\mathbf{d})}\right)$ be the standard (unit) basis of $\mathfrak{g l}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$ with the given indexing and the canonical supercommutation relations:

$$
\begin{equation*}
\llbracket e_{i j}, e_{k l} \rrbracket=\delta_{j k} e_{i l}-(-1)^{\mathbf{d}_{i j} \mathbf{d}_{k l}} \delta_{i l} e_{k j} \tag{21}
\end{equation*}
$$

where $\mathbf{d}_{i j}=\mathbf{d}_{i}+\mathbf{d}_{j}$, and the grading $\mathbf{d}(\cdot)$ is given by (20).
The orthosymplectic ($\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded) Lie superalgebra $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$ is embedded in $\mathfrak{g l}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$ as a linear span of the elements

$$
\begin{equation*}
x_{i j}:=e_{i,-j}-(-1)^{\mathbf{d}_{i} \mathbf{d}_{j}+\mathbf{d}_{i j}^{2}} \phi_{i} \phi_{j} e_{j,-i} \quad\left(i, j \in \tilde{\mathbb{S}}_{N}^{(\mathbf{d})}\right) \tag{22}
\end{equation*}
$$

where the index function ϕ_{i} is given as follows:

It is easy to verify that elements (22) satisfy the following supercommutation relations:

$$
\begin{align*}
& \llbracket x_{i j}, x_{k l} \rrbracket=\delta_{j,-k} x_{i l}-\delta_{j,-l}(-1)^{\mathbf{d}_{k} \mathbf{d}_{l}+\mathbf{d}_{k l}^{2}} \phi_{k} \phi_{l} x_{i k}- \\
& \tag{24}\\
& \quad-\delta_{i,-k}(-1)^{\mathbf{d}_{i} \mathbf{d}_{j}+\mathbf{d}_{i j}^{2}} \phi_{i} \phi_{j} x_{j l}-\delta_{i,-l}(-1)^{\mathbf{d}_{i j} \mathbf{d}_{i k}} x_{k j} .
\end{align*}
$$

Not all elements (22) are linearly independent because they satisfy the relations

$$
\begin{equation*}
x_{i j}=-(-1)^{\mathbf{d}_{i} \mathbf{d}_{j}+\mathbf{d}_{i j}^{2}} \phi_{i} \phi_{j} x_{j i} \quad\left(i, j \in \tilde{\mathbb{S}}_{N}^{(\mathbf{d})}\right) \tag{25}
\end{equation*}
$$

and, what is more,

$$
\begin{equation*}
x_{i i}=0 \quad \text { for } i=0, \pm 1, \pm 2, \ldots, \pm\left(m_{1}+m_{2}\right) \tag{26}
\end{equation*}
$$

From the general supercommutation relations (24), it follows at once that the short root vectors $x_{0 i}\left(i= \pm 1, \pm 2, \ldots, \pm\left(m_{1}+m_{2}+n\right)\right)$ satisfy the following triple relations:

$$
\begin{equation*}
\llbracket \llbracket x_{0 i}, x_{0 j} \rrbracket, x_{0 k} \rrbracket=-\delta_{j,-k} \phi_{j} x_{0 i}+\delta_{i,-k}(-1)^{\mathbf{d}_{i} \mathbf{d}_{j}} \phi_{i} x_{0 j} \tag{27}
\end{equation*}
$$

Conversely, let the abstract $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded generators $x_{0 i}\left(i= \pm 1, \pm 2, \ldots, \pm\left(m_{1}+m_{2}+n\right)\right)$ with the grading $\operatorname{deg}\left(x_{0 i}\right)=\mathbf{d}_{0 i} \equiv \mathbf{d}_{0}+\mathbf{d}_{\mathbf{i}}=\mathbf{d}_{\mathrm{i}}$, where \mathbf{d}_{i} is given by (20), satisfy the relations (27), where the index function ϕ_{i} is determined by (23), then it is not difficult to check that these relations generate for the superalgebra $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$.

The defining relations (27) can be rewritten in detail in accordance with the explicit grading of their generators using the following notations ${ }^{1}$:

$$
\begin{array}{lll}
a_{i}^{-\zeta}:=\zeta \sqrt{2} x_{0, \zeta i} & \left(\operatorname{deg}\left(a_{i}^{\zeta}\right)=(0,0)\right) & \text { for } i=1,2, \ldots, m_{1}, \\
\tilde{a}_{i}^{-\zeta}:=\zeta \sqrt{2} x_{0, \zeta\left(m_{1}+i\right)} & \left(\operatorname{deg}\left(\tilde{a}_{i}^{\zeta}\right)=(1,1)\right) & \text { for } i=1,2, \ldots, m_{2}, \tag{28}\\
b_{i}^{-\zeta}:=\zeta \sqrt{2} x_{0, \zeta(m+i)} & \left(\operatorname{deg}\left(b_{i}^{\zeta}\right)=(1,0)\right) & \text { for } i=1,2, \ldots, n,
\end{array}
$$

where $m:=m_{1}+m_{2}$. Substituting (28) in (27), we obtain the different types of defining triple relations.

1. Parafermion relations:
(a1) the defining relations of $\mathfrak{o}\left(2 m_{1}+1\right)$:

$$
\begin{equation*}
\left[\left[a_{i}^{\zeta}, a_{j}^{\eta}\right], a_{k}^{\xi}\right]=|\xi-\eta| \delta_{j k} a_{i}^{\zeta}-|\xi-\zeta| \delta_{i k} a_{j}^{\eta} \quad \text { for } \quad i, j, k=1,2, \ldots, m_{1} \tag{29}
\end{equation*}
$$

(a2) the defining relations of $\mathfrak{o}\left(2 m_{2}+1\right)$:

$$
\begin{equation*}
\left[\left[\tilde{a}_{i}^{\zeta}, \tilde{a}_{j}^{\eta}\right], \tilde{a}_{k}^{\xi}\right]=|\xi-\eta| \delta_{j k} \tilde{a}_{i}^{\zeta}-|\xi-\zeta| \delta_{i k} \tilde{a}_{j}^{\eta} \quad \text { for } \quad i, j, k=1,2, \ldots, m_{2} \tag{30}
\end{equation*}
$$

(a3) the mixed parafermion relations:

$$
\begin{array}{ll}
{\left[\left[a_{i}^{\zeta}, a_{j}^{\eta}\right], \tilde{a}_{k}^{\xi}\right]=0,} & {\left[\left[\tilde{a}_{i}^{\zeta}, \tilde{a}_{j}^{\eta}\right], a_{k}^{\xi}\right]=0} \\
{\left[\left[a_{i}^{\zeta}, \tilde{a}_{j}^{\eta}\right], a_{k}^{\xi}\right]=-|\xi-\zeta| \delta_{i k} \tilde{a}_{j}^{\eta},} & {\left[\left[a_{i}^{\zeta}, \tilde{a}_{j}^{\eta}\right], \tilde{a}_{k}^{\xi}\right]=|\xi-\eta| \delta_{j k} a_{i}^{\zeta}} \tag{32}
\end{array}
$$

where $i, j, k=1, \ldots, m_{1}$ for the symbols a 's and $i, j, k=1, \ldots, m_{2}$ for the symbols b 's.
2. Paraboson relations:
(b1) the defining relations of $\mathfrak{o s p}\left(1 \mid 2 n_{1}\right)$:

$$
\begin{equation*}
\left[\left\{\tilde{b}_{i}^{\zeta}, \tilde{b}_{j}^{\eta}\right\}, \tilde{b}_{k}^{\xi}\right]=(\xi-\eta) \delta_{j k} \tilde{b}_{i}^{\zeta}+(\xi-\zeta) \delta_{i k} \tilde{b}_{j}^{\eta} \quad \text { for } i, j, k=1,2, \ldots, n \tag{33}
\end{equation*}
$$

[^3]3. Mixed parafermion and paraboson relations:
(ab1) the relative para-Fermi set:
\[

$$
\begin{array}{ll}
{\left[\left[a_{i}^{\zeta}, a_{j}^{\eta}\right], b_{k}^{\xi}\right]=0,} & {\left[\left\{b_{i}^{\zeta}, b_{j}^{\eta}\right\}, a_{k}^{\xi}\right]=0} \\
{\left[\left[a_{i}^{\zeta}, b_{j}^{\eta}\right], a_{k}^{\xi}\right]=-|\xi-\zeta| \delta_{i k} b_{j}^{\eta},} & \left\{\left[a_{i}^{\zeta}, b_{j}^{\eta}\right], b_{k}^{\xi}\right\}=(\xi-\eta) \delta_{j k} a_{i}^{\zeta} \tag{34}
\end{array}
$$
\]

where $i, j, k=1,2, \ldots, m_{1}$ for the symbols a 's and $i, j, k=1, \ldots, n$ for the symbols b 's;
(ab2) the relative para-Bose set:

$$
\begin{align*}
{\left[\left[\tilde{a}_{i}^{\zeta}, \tilde{a}_{j}^{\eta}\right], b_{k}^{\xi}\right] } & =0, & {\left[\left\{b_{i}^{\zeta}, b_{j}^{\eta}\right\}, \tilde{a}_{k}^{\xi}\right] } & =0, \tag{35}\\
\left\{\left\{\tilde{a}_{i}^{\zeta}, b_{j}^{\eta}\right\}, \tilde{a}_{k}^{\xi}\right\} & =|\xi-\zeta| \delta_{i k} b_{j}^{\eta}, & {\left[\left\{\tilde{a}_{i}^{\zeta}, b_{j}^{\eta}\right\}, b_{k}^{\xi}\right] } & =(\xi-\eta) \delta_{j k} \tilde{a}_{i}^{\zeta}
\end{align*}
$$

where $i, j, k=1,2, \ldots, m_{2}$ for the symbols \tilde{a} 's and $i, j, k=1, \ldots, n$ for the symbols b 's;
(ab3) the relations with distinct grading elements:

$$
\begin{equation*}
\left\{\left[a_{i}^{\zeta}, \tilde{a}_{j}^{\eta}\right], b_{k}^{\xi}\right\}=\left[\left\{\tilde{a}_{j}^{\eta}, b_{k}^{\xi}\right\}, a_{i}^{\zeta}\right]=\left\{\left[b_{k}^{\xi}, a_{i}^{\zeta}\right], \tilde{a}_{j}^{\eta}\right\}=0 \tag{36}
\end{equation*}
$$

The result connected with relation (27) can be reformulated in the following way. If we have two sorts of the parafermions $a_{i}^{\zeta}\left(i=1,2, \ldots, m_{1}\right)$ and $\tilde{a}_{i}^{\zeta}\left(i=1,2, \ldots, m_{2}\right)$ with the triple relations (29)-(32) and one sort of the parabosons $b_{i}^{\zeta}(i=1,2, \ldots, n)$ with the triple relations (33) which together satisfy the relative para-Fermi set (34) and relative para-Bose set (35), and they obey also the triple relations of the form (36), then this parasystem generates the orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebra $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$.

We consider two particular cases which are degenerations of $\mathfrak{o s p}\left(2 m_{1}+1,2 m_{2} \mid 2 n, 0\right)$.

- If the parasystem consists of only one sort of the parafermions $a_{i}^{\zeta}\left(i=1,2, \ldots, m_{1}\right)$ and one sort of the parabosons $b_{i}^{\zeta}(i=1,2, \ldots, n)$, then we have the parasystem with the relative Fermi set and it generates the orthosymplectic \mathbb{Z}_{2}-graded Lie superalgebra $\mathfrak{o s p}\left(2 m_{1}+1 \mid 2 n_{1}\right)=$ $\mathfrak{o s p}\left(2 m_{1}+1,0 \mid 2 n_{1}, 0\right)$.
- If the parasystem contains one sort of the parafermions $\tilde{a}_{i}^{\zeta}\left(i=1,2, \ldots, m_{2}\right)$ and one sort of the parabosons $b_{i}^{\zeta}\left(i=1,2, \ldots, n_{1}\right)$, then we have the case of a parasystem with the relative Bose set (see the relations (2), (3) and (5)), and it generates the orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebra $\mathfrak{o s p}\left(1,2 m_{2} \mid 2 n, 0\right)$.

Thus we shown that the para-Fermi and para-Boose triple relations (2), (3) together with the relative para-Bose set (5) generate the orthosymplectic $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded Lie superalgebra $\mathfrak{o s p}(1,2 m \mid 2 n, 0)$. Moreover, it was shown that the superalgebras $\mathfrak{o s p}\left(m_{1}, 2 m_{2} \mid 2 n, 0\right)$ give more complex para-Fermi and para-Bose system which contains the relative para-Fermi and para-Bose sets, simultaneously.

It should be noted that, probably, for the first time the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded structure of the relative para-Bose set (5) was observable in [11,12] (also see [13]).

It should be also noted that the obtained relation between the parastatistics and the orthosymplectic superalgebras allows one to apply all mathematical power of the representation theory of the superalgebras for a detailed description of the parastatistics, e.g., their Fock spaces, etc. (for example, see [14-16]).

Acknowledgements. The author would like to thank the Organizers for the kind invitation to speak at the International Workshop on Supersymmetries and Quantum Symmetries, Dubna, July 29 - August 3, 2013. The paper was supported by the RFBR grant No. 11-01-00980-a and the grant No. 12-09-0064 of the Academic Fund Program of the National Research University Higher School of Economics.

REFERENCES

1. Green H. S. A Generalized Method of Field Quantization // Phys. Rev. 1953. V.9. P. 270-273.
2. Kamefuchi S., Takahashi Y. A Generalization of Field Quantization and Statistics // Nucl. Phys. 1962. V.36. P. 177-206.
3. Ryan C., Sudarshan E. C. G. Representations of Para-Fermi Rings // Nucl. Phys. 1963. V. 47. P. 207-211.
4. Ganchev A. C., Palev T.D. A Lie Superalgebraic Interpretation of the Para-Bose Statistics // J. Math. Phys. 1980. V.21. P.797-799.
5. Greenberg O. W., Messiah A. M. L. Selection Rules for Parafields and the Absence of Paraparticles in Nature // Phys. Rev. B. 1965. V. 138. P. 1155-1167.
6. Palev T.D. Para-Bose and Para-Fermi Operators as Generators of Orthosymplectic Lie Superalgebras // J. Math. Phys. 1982. V.23. P. 1100-1102.
7. Rittenberg V., Wyler D. Sequences of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Graded Lie Algebras and Superalgebras // J. Math. Phys. 1978. V. 19, No. 10. P. 2193-2200.
8. Rittenberg V., Wyler D. Generalized Superalgebras // Nucl. Phys. B. 1978. V.139, No. 10. P. 189-202.
9. Kac V. G. Lie Superalgebras // Adv. Math. 1977. V. 26. P. 8-96.
10. Scheunert M. Generalized Lie Algebras // J. Math. Phys. 1979. V.20, No.4. P.712-720.
11. Yang W., Jing S. A New Kind of Graded Lie Algebra and Parastatistical Supersymmetry // Science in China. Ser. A. 2001. V.44, No. 9. P. 1167-1173; arXiv:math-ph/0212004v1.
12. Yang W., Jing S. Graded Lie Algebra Generating of Parastatistical Algebraic Structure // Commun. Theor. Phys. 2001. V.36. P. 647-665; arXiv:math-ph/0212009v1.
13. Kanakoglou K., Daskaloyannis C., Herrera-Aguilar A. Mixed Paraparticles, Colors, Braidings and a New Class of Realizations for Lie Superalgebras. arXiv:0912.1070v1 [math-ph]. 2009. P. 1-19.
14. Lievens S., Stoilova N. I., Van der Jeugt J. The Paraboson Fock Space and Unitary Irreducible Representations of the Lie Superalgebra $\mathfrak{o s p}(1 \mid 2 n)$ // Commun. Math. Phys. 2008. V. 281. P. 805826; arXiv:0706.4196v2 [hep-th].
15. Stoilova N. I., Van der Jeugt J. The Parafermion Fock Space and Explicit $\mathfrak{s o}(2 n+1)$ Representations // J. Phys. A. 2008. V. 41. P.075202-1-075202-13; arXiv:0712.1485v1 [hep-th].
16. Stoilova N. I. The Parastatistics Fock Space and Explicit Lie Superalgebra Representations. arXiv:1311.4042v1 [math-ph]. 2013. P. 1-14.

[^0]: ${ }^{1}$ E-mail: vntolstoy @ yandex.ru

[^1]: ${ }^{1}$ The names the relative para-Fermi and para-Boson set are directly related to the type of the Lie bracket (commutator or anticommutator) given between parafermion and paraboson elements.

[^2]: ${ }^{1}$ It is evidently supposed that all such matrices in each block-row or in each block-column have the same number of rows or columns.

[^3]: ${ }^{1}$ Here anywhere $\zeta, \eta, \xi \in\{+,-\}$.

