DEFORMED $\mathcal{N} = 4$, d = 1 **SUPERSYMMETRY**

S. Sidorov¹

Joint Institute for Nuclear Research, Dubna

By this contribution we give a brief account of the recently proposed new models of supersymmetric quantum mechanics [1]. They are associated with the nonstandard world-line SU(2|1) supersymmetry which is considered as a deformation of the standard $\mathcal{N} = 4$, d = 1 supersymmetry by a mass parameter m. Employing chiral superfields defined on the cosets of the supergroup SU(2|1), we construct the quantum model on a complex plane and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry.

PACS: 11.30.Pb; 12.60.Jr

1. THE SUPERALGEBRA

We focus on constructing SU(2|1) superspace as a coset superspace of the (centrally extended) superalgebra su(2|1):

$$\{Q^{i}, \bar{Q}_{j}\} = 2m \left(I^{i}_{j} - \delta^{i}_{j}F\right) + 2\delta^{i}_{j}H, \quad \left[I^{i}_{j}, I^{k}_{l}\right] = \delta^{k}_{j}I^{i}_{l} - \delta^{i}_{l}I^{k}_{j}, \left[I^{i}_{j}, \bar{Q}_{l}\right] = \frac{1}{2}\delta^{i}_{j}\bar{Q}_{l} - \delta^{i}_{l}\bar{Q}_{j}, \quad \left[I^{i}_{j}, Q^{k}\right] = \delta^{k}_{j}Q^{i} - \frac{1}{2}\delta^{i}_{j}Q^{k}, \left[F, \bar{Q}_{l}\right] = -\frac{1}{2}\bar{Q}_{l}, \quad \left[F, Q^{k}\right] = \frac{1}{2}Q^{k}.$$

$$(1)$$

All other (anti)commutators are vanishing. The parameter m is a contraction parameter deforming the standard $\mathcal{N} = 4$, d = 1 Poincaré supergroup to SU(2|1). Sending $m \to 0$, the su(2|1) superalgebra becomes the standard $\mathcal{N} = 4$, d = 1 Poincaré superalgebra. In the limit m = 0, the generators I_j^i and F become the U(2) automorphism generators of this $\mathcal{N} = 4$, d = 1 superalgebra. The internal U(2) symmetry is presented by the dimensionless generators I_j^i and F. The mass-dimension generator H commutes with everything and so can be interpreted as the central charge generator. In the quantum-mechanical realization of SU(2|1) we will be interested in, this generator becomes just the canonical Hamiltonian, while in the superspace realization it is interpreted as the time-translation generator.

¹E-mail: sidorovstepan88@gmail.com

1508 Sidorov S.

2. SU(2|1) **SUPERSPACE**

The superspace coordinates $\{t, \theta_i, \overline{\theta}^j\}$ are identified with the parameters associated with the coset of the supergroup SU(2|1):

$$\frac{SU(2|1)}{SU(2) \times U(1)} \sim \frac{\{Q^i, \bar{Q}_j, H, I^i_j, F\}}{\{I^i_j, F\}}.$$
(2)

An element of this supercoset can be conveniently parametrized as

$$g = \exp\left(itH + i\tilde{\theta}_i Q^i - i\tilde{\theta}^j \bar{Q}_j\right), \quad \tilde{\theta}_i = \left[1 - \frac{2m}{3}\left(\bar{\theta} \cdot \theta\right)\right]\theta_i. \tag{3}$$

All generators of (1) are realized on the superspace coordinates as

$$Q^{i} = -i\frac{\partial}{\partial\theta_{i}} + 2im\bar{\theta}^{i}\bar{\theta}^{j}\frac{\partial}{\partial\bar{\theta}^{j}} + \bar{\theta}^{i}\frac{\partial}{\partial t},$$

$$\bar{Q}_{j} = i\frac{\partial}{\partial\bar{\theta}^{j}} + 2im\theta_{j}\theta_{k}\frac{\partial}{\partial\theta_{k}} - \theta_{j}\frac{\partial}{\partial t}, \quad H = i\partial_{t},$$

$$I^{i}_{j} = \left(\bar{\theta}^{i}\frac{\partial}{\partial\bar{\theta}^{j}} - \theta_{j}\frac{\partial}{\partial\theta_{i}}\right) - \frac{\delta^{i}_{j}}{2}\left(\bar{\theta}^{k}\frac{\partial}{\partial\bar{\theta}^{k}} - \theta_{k}\frac{\partial}{\partial\theta_{k}}\right), \quad F = \frac{1}{2}\left(\bar{\theta}^{k}\frac{\partial}{\partial\bar{\theta}^{k}} - \theta_{k}\frac{\partial}{\partial\theta_{k}}\right).$$
(4)

The supercharges Q^i, \bar{Q}_j generate the following transformation properties of superspace:

$$\delta\theta_i = \epsilon_i + 2m\left(\bar{\epsilon}\cdot\theta\right)\theta_i, \quad \delta\bar{\theta}^j = \bar{\epsilon}^i - 2m\left(\epsilon\cdot\bar{\theta}\right)\bar{\theta}^i, \quad \delta t = i\left[\left(\epsilon\cdot\bar{\theta}\right) + \left(\bar{\epsilon}\cdot\theta\right)\right]. \tag{5}$$

Then we have the invariant integration measure $\mu = dt d^2 \theta d^2 \bar{\theta} (1 + 2m \bar{\theta} \cdot \theta), \ \delta \mu = 0$. The deformed covariant derivatives $\mathcal{D}^i, \bar{\mathcal{D}}_j$ are written as

$$\mathcal{D}^{i} = \left[1 + m\left(\bar{\theta}\cdot\theta\right) - \frac{3m^{2}}{4}\left(\bar{\theta}\cdot\theta\right)^{2}\right]\frac{\partial}{\partial\theta_{i}} - m\bar{\theta}^{i}\theta_{j}\frac{\partial}{\partial\theta_{j}} - i\bar{\theta}^{i}\frac{\partial}{\partial t} + m\bar{\theta}^{i}\tilde{F} - m\bar{\theta}^{j}\tilde{I}_{j}^{i} + \frac{m^{2}}{2}\left(\bar{\theta}\cdot\theta\right)\bar{\theta}^{j}\tilde{I}_{j}^{i} - \frac{m^{2}}{2}\bar{\theta}^{i}\bar{\theta}^{j}\theta_{k}\tilde{I}_{j}^{k},$$
$$\bar{\mathcal{D}}_{j} = -\left[1 + m\left(\bar{\theta}\cdot\theta\right) - \frac{3m^{2}}{4}\left(\bar{\theta}\cdot\theta\right)^{2}\right]\frac{\partial}{\partial\bar{\theta}^{j}} + m\bar{\theta}^{k}\theta_{j}\frac{\partial}{\partial\bar{\theta}^{k}} + i\theta_{j}\frac{\partial}{\partial t} -$$
(6)

$$-m\theta_{j}\tilde{F} + m\theta_{k}\tilde{I}_{j}^{k} - \frac{m^{2}}{2}\left(\bar{\theta}\cdot\theta\right)\theta_{k}\tilde{I}_{j}^{k} + \frac{m^{2}}{2}\theta_{j}\bar{\theta}^{l}\theta_{k}\tilde{I}_{l}^{k}.$$

3. CHIRAL MULTIPLET

One can define SU(2|1) counterpart of the $\mathcal{N} = 4$, d = 1 chiral multiplet (2, 4, 2). This is due to the existence of the invariant chiral coset SU(2|1) superspace

$$t_L = t + \frac{i}{2m} \ln(1 + 2m\,\bar{\theta}\cdot\theta), \quad \delta\theta_i = \epsilon_i + 2m\,(\bar{\epsilon}\cdot\theta)\theta_i, \quad \delta t_L = 2i\,(\bar{\epsilon}\cdot\theta). \tag{7}$$

Deformed $\mathcal{N} = 4$, d = 1 Supersymmetry 1509

The multiplet (2, 4, 2) is described by the chiral superfield Φ :

$$\bar{\mathcal{D}}_j \Phi = 0, \quad \tilde{I}^i_j \Phi = 0, \quad \tilde{F} \Phi = 2\kappa \Phi,$$
(8)

where κ is a fixed external U(1) charge. The constraints give the solution

$$\Phi(t,\theta,\bar{\theta}) = \left[1 + 2m\left(\bar{\theta}\cdot\theta\right)\right]^{-\kappa} \left(z + \sqrt{2}\,\theta_i\xi^i + \varepsilon^{ij}\theta_i\theta_jB\right). \tag{9}$$

General superfield Lagrangian is constructed as

$$\mathcal{L}_{k} = \frac{1}{4} \int d^{2}\theta \, d^{2}\bar{\theta} \left(1 + 2m\,\bar{\theta}\cdot\theta\right) f(\Phi,\Phi^{\dagger}). \tag{10}$$

Eliminating auxiliary fields by their equations of motion, we obtain the on-shell Lagrangian where bosonic part is

$$\mathcal{L} = g\bar{z}\dot{z} + 2i\kappa m \left(\bar{z}z - \dot{z}\bar{z}\right)g - \frac{im}{2}\left(\bar{z}f_{\bar{z}} - \dot{z}f_{z}\right) - m^{2}V,$$
(11)

where

$$V = \kappa \left(\bar{z}\partial_{\bar{z}} + z\partial_{z} \right) f - \kappa^{2} \left(\bar{z}\partial_{\bar{z}} + z\partial_{z} \right)^{2} f, \quad g = g(z, \bar{z}) = \partial_{z}\partial_{\bar{z}}f(z, \bar{z}).$$
(12)

Thus, the standard $\mathcal{N} = 4$, d = 1 kinetic term is deformed to nontrivial Lagrangian with WZ term, and potential term. The latter vanishes for $\kappa = 0$; however, the WZ term vanishes only in the limit m = 0. So, the basic novel point compared to the standard $\mathcal{N} = 4$ Kähler sigma model for the multiplet (2, 4, 2) is the necessary presence of the WZ term with the strength m, together with the Kähler kinetic term.

4. THE MODEL ON A PLANE

The model on a plane corresponds to the Lagrangian

$$\mathcal{L} = \frac{1}{4} \int d^2\theta \, d^2\bar{\theta} \left(1 + 2m\,\bar{\theta}\cdot\theta\right) \Phi\Phi^{\dagger}.$$
(13)

Then, the explicit on-shell Lagrangian takes the form

$$\mathcal{L} = \dot{\bar{z}}\dot{z} + im\left(2\kappa - \frac{1}{2}\right)(\dot{\bar{z}}z - \dot{z}\bar{z}) + \frac{i}{2}\left(\bar{\eta}_i\dot{\eta}^i - \dot{\bar{\eta}}_i\eta^i\right) + 2\kappa\left(2\kappa - 1\right)m^2\bar{z}z + (1 - 2\kappa)m\left(\bar{\eta}\cdot\eta\right).$$
 (14)

It is invariant under the following on-shell transformations:

$$\delta z = -\sqrt{2} \epsilon_i \eta^i, \qquad \delta \eta^i = \sqrt{2} \, i \bar{\epsilon}^i \dot{z} - 2\sqrt{2} \kappa m \bar{\epsilon}^i z. \tag{15}$$

Performing Legendre transformations, we obtain the corresponding canonical Hamiltonian

$$H = \left[p_z - \frac{i}{2} (1 - 4\kappa) m\bar{z} \right] \left[p_{\bar{z}} + \frac{i}{2} (1 - 4\kappa) mz \right] + 2\kappa (1 - 2\kappa) m^2 \bar{z}z + (1 - 2\kappa) m \eta^k \bar{\eta}_k.$$
 (16)

1510 Sidorov S.

The full set of eigenfunctions reads

$$\Psi^{(\ell;n)} = a^{(\ell;n)} \Omega^{(\ell;n)} + b_i^{(\ell;n)} \eta^i \,\Omega^{(\ell-1;n+1)} + c^{(\ell;n)} \,\varepsilon_{ij} \eta^i \eta^j \,\Omega^{(\ell-2;n+2)} \tag{17}$$

for $\ell \ge 2$, and

$$\Psi^{(1;n)} = a^{(1;n)} \Omega^{(1;n)} + b_i^{(1;n)} \eta^i \Omega^{(0;n+1)},$$

$$\Psi^{(0;n)} = a^{(0;n)} \Omega^{(0;n)}.$$
(18)

These superfunctions are constructed in terms of the bosonic functions

$$\Omega^{(\ell;n)} = \bar{z}^n \exp\left(-\frac{mz\bar{z}}{2}\right) L_\ell^{(n)}(mz\bar{z}) = \frac{z^{-n}}{\ell!} \exp\left(\frac{mz\bar{z}}{2}\right) \left.\frac{d^\ell}{dw^\ell} \left(\mathrm{e}^{-mw}w^{n+\ell}\right)\right|_{w=z\bar{z}}, \quad (19)$$

where $L_{\ell}^{(n)}$ are generalized Laguerre polynomials. The numbers ℓ and n are integers satisfying $\ell \ge 0, n \ge -\ell$. The spectrum depends on ℓ and n as

$$\hat{H} \Psi^{(\ell;n)} = m(\ell + 2\kappa n) \Psi^{(\ell;n)}.$$
(20)

We observe that the ground state $(\ell = 0)$ and the first excited states $(\ell = 1)$ are special, in the sense that they encompass nonequal numbers of bosonic and fermionic states. Indeed, $\Omega^{(0;n)}$ is a singlet of SU(2|1) for any n. The wave functions for $\ell = 1$ form the fundamental representation of SU(2|1) (one bosonic and two fermionic states), while those for $\ell \ge 2$ form the typical (2|2) representations. It can be explained by the eigenvalues of the Casimir operators [2]

$$C_2(\ell) = (\ell - 1)\ell, \quad C_3(\ell) = \left(\ell - \frac{1}{2}\right)(\ell - 1)\ell.$$
 (21)

Thus, they are vanishing for the wave functions with $\ell = 0, 1$, confirming the interpretation of the corresponding representations as atypical, and are nonvanishing on the wave functions with $\ell \ge 2$, implying them to form typical representations of SU(2|1).

The same deviations from the standard rule of equality of the bosonic and fermionic states were observed in [3]. As it turned out, these d = 1 supersymmetric models with $\mathcal{N} = 4$ "weak supersymmetry" are easily reproduced from our superfield approach based on the SU(2|1)multiplet $(\mathbf{1}, \mathbf{4}, \mathbf{3})$ [1].

CONCLUSIONS

We constructed the SU(2|1) superspace and used it for constructing deformed models associated with the chiral multiplet (2, 4, 2). We systematically studied the (2, 4, 2) model on a plane. The relevant Hilbert space of wave superfunctions were constructed. We found the spectrum of wave functions and analyzed the structure of wave functions in the framework of the SU(2|1) representation theory [2].

REFERENCES

- 1. Ivanov E., Sidorov S. Deformed Supersymmetric Mechanics. arXiv:1307.7690 [hep-th].
- Scheunert M., Nahm W., Rittenberg V. Irreducible Representations of the osp(2,1) and spl(2,1) Graded Lie Algebras // J. Math. Phys. 1977. V. 18. P. 155.
- 3. Smilga A. V. Weak Supersymmetry // Phys. Lett. B. 2004. V. 585. P. 173; arXiv:hep-th/0311023.