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INTRODUCTION

The integrability of the two-dimensional WZNW is based on the existence of an inˇnite
number of the local and nonlocal currents and on their charges. The n-dimensional WZNW
model is described by means of the chiral left JL

A = g−1∂Ag or the chiral right JR
A = ∂Ag g−1

currents for arbitrary space-time dimension (A = 1, . . . , n), where g is element of the group
symmetry of the model. The currents JA = Jμ

Atμ and tμ are the generators of the Lie
algebra. These chiral currents were related to the left and right multiplication on the group
space. The two-dimensional models (A = 0, 1) have the following additional chiral currents:

JL
μ (t, x) =

J0μ + δμνJν
1√

2
= Uμ(x + t), JR

μ (t, x) =
J0μ − δμνJν

1√
2

= Vμ(x − t)

related to the dynamics on the (t, x) plane. The chiral currents Uμ, Vμ play an important
role for the construction and investigation of this type of integrable systems. We cannot
separate the movement on the left-moving mode and on the right-moving mode for the
σ-model under consideration in order to formulate the movement on only one mode. It
was done by the introduction of the Witten term to the WessÄZumino model. This term
introduces a potential for the torsion tensor on the curved space of the group parameters in
addition to the metric tensor. It is possible to extract the movement on one mode with the
fulˇlling of some conditions between the constant torsion tensor and the structure constant
of Lie algebra. In this work, Lagrangian and equations of motion in the repere formalism
are considered, being the antisymmetric ˇeld Bab obtained in terms of the repere. Also,

1E-mail: diego@theor.jinr.ru
2E-mail: gershun@kipt.kharkov.ua



Integrable Hydrodynamic Chains for WZNW Model 1561

the Hamiltonian formalism and the commutations relations are rewritten in new variables.
These variables are precisely the chiral currents under the condition that the external torsion
coincides (anticoincides) with the structure constants of the SU(2), SO(3), SP (2) algebras.
In this manner, the equation of motion for the density of the ˇrst Casimir operator is obtained
as the inviscid Burgers equation, being its solution expressed as the Lambert function. The
integrable inˇnite dimensional hydrodynamic chains are constructed for WZNW model with
the constant SU(2), SO(3), SP (2) torsions and for this model with the SU(∞), SO(∞),
SP (∞) constant torsions. Finally, the new equations of motion of hydrodynamic type are
explicitly obtained for the initial chiral currents in terms of the symmetric structure constant
of the SU(∞), SO(∞), SP (∞) algebras.

LAGRANGIAN AND EQUATION OF MOTION

The conformal invariant two-dimensional nonlinear sigma model is described by WZNW
model which is the sigma model [1Ä4] with WessÄZumino term [5Ä8] on the group manifold.
To each point of a 2-dimensional world-sheet one associates an element g of a group G. We
want to construct an action with the Lagrangian density which is the element of volume of
the two-dimensional space invariant under the group transformations:

S =
1
4

∫
Tr (ω ∧ dxα)(ω ∧ dxβ)ηαβ

ελρdxλ ∧ dxρ
+

1
2

∫
Tr (ω(d) ∧ ω(d) ∧ ω(d)). (1)

Here xα = (t, x) are coordinates of the 	at two-dimensional space: α = (0, 1) with signature
(−1, 1) and ηαβ is the diagonal metric of this space. The form ω(d) = ω(d)μtμ is the
differential Cartan one-form which belongs to a simple Lie algebra

[tμ, tν ] = 2iCλ
μνtλ, Tr (tμtν) = 2gμν (μ, ν = 1, 2, . . . , n). (2)

In any parametrization, Cartan forms ω(d) = (g−1dg)μtμ depend on the group parameters
φa: ω(d) = ω(φ, dφ). The ˇrst term of the Lagrangian (1) has the form

Tr (ω ∧ dxα)(ω ∧ dxβ)ηαβ

ελρdxλ ∧ dxρ
= 2gab(φ)

∂φa

∂xα

∂φb

∂xβ
ηαβd2x. (3)

Here we introduce the notation

gab(φ) = gμνωμ
aων

b , dxγ ∧ dxα = εγαd2x. (4)

One can see that gab(φ) is metric tensor on the curved space of local ˇelds φa (a = 1, 2, . . . , n).
The ωμ

a (φ) forms a repere basis on the tangent space with the metric gμν in arbitrary point
of the curved space φa. Here we want to rewrite a WZNW model as sigma model of string
type, equipped with an antisymmetric ˇeld Bab(φ), in terms of the repere for the arbitrary
metric gab(φ) and for any dimension n:

Tr (ω(d) ∧ ω(d) ∧ ω(d)) = gμν

(
Ωμ

a

∂Ων
b

∂xC
− Ωμ

b

∂Ων
a

∂xC

)
∂Φa

∂xA

∂Φb

∂xB
εABCd3x. (5)
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The integrability condition ∂Ag = gΩμ
Atμ was used:

∂AΩμ
B − ∂BΩμ

A + 2iCμνλΩν
AΩλ

B = 0.

Here xA (A = 0, 1, 2) are coordinates of the three-dimensional space-time, Ωμ(d) is a one-
form on this space. Let us separate the last component of index A (A = α, 2; α = 0, 1) in
Eq. (5). Then the second term of the action has the following form:

∫
gμνεαβ2(Ωμ

a∂2Ων
b − ∂2Ωμ

aΩν
b )

∂Φa

∂xα

∂Φb

∂xβ
d3x =

∫
d2x

M∫
0

εαβ2Bab2
∂Φa

∂xα

∂Φb

∂xβ
dx2. (6)

Here Bab2 = gμν(Ωμ
a∂2Ων

b − ∂2Ωμ
aΩν

b ) = −Bba2. We will integrate on the coordinate x2 in
the limits (0, M ) with the following boundary conditions:

Φa(xα, x2) |x
2=M = φa(xα), Bab2(xα, x2) |x

2=M = Bab(xα).

The integral in x2 on the lower limit of integration equals zero, which is easily seen by using
the expansion of the integrand into the Taylor series. Consequently, the total action is

S =
1
2

∫
d2x[gab(φ)ηαβ + Bab(φ)εαβ ]

∂φa

∂xα

∂φb

∂xβ
. (7)

Here gab(φ) = gba(φ) is the metric tensor of the group space G and φa(x) are the group
parameters, a, b = 1, 2, . . . , n. The background ˇeld Bab(φ) on the group space G is the
antisymmetric tensor ˇeld Bab(φ(x)) = −Bba(φ(x)). The coordinates xα = (t, x), α = 0, 1
belong to the 2-dimensional word-sheet with the constant metric tensor ηαβ and the signature
(−1, 1). Let us introduce a repere ea

μ(φ) = ωa
μ on the compact group space G and its inverse

eμ
a(φ) = ωμ

a such that the metric tensor can be explicitly written as

gab(φ) = eμ
a(φ)eν

b (φ)δμν , δμν = ea
μ(φ)eb

ν (φ)gab(φ). (8)

Here δμν (μ, ν = 1, 2, . . . , n) is a constant tensor on the tangent space of the compact
group space G at some point φa(x) with the same signature as gab(φ). To introduce the
Hamiltonian, we rewrite the Lagrangian density and the equation of motion in terms the
world-sheet coordinates (t, x):

L =
1
2
gab(φ)

[
∂φa

∂t

∂φb

∂t
− ∂φa

∂x

∂φb

∂x

]
+ Bab(φ)

∂φa

∂t

∂φb

∂x
. (9)

Then the equation of motion takes the form

gab(φ)
[
∂2φa

∂t∂t
− ∂2φa

∂x∂x

]
+ Γabc(φ)

[
∂φb

∂t

∂φc

∂t
− ∂φb

∂x

∂φc

∂x

]
+ 2Habc(φ)

∂φb

∂t

∂φc

∂x
= 0, (10)

Γabc =
1
2

(
∂gab

∂φc
+

∂gac

∂φb
− ∂gbc

∂φa

)
, Habc =

∂Bab

∂φc
+

∂Bca

∂φb
+

∂Bbc

∂φa
, (11)
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where Γabc(φ) are the Christoffel symbols. It is a symmetric function in b, c. The canonical
momentum is as follows:

pa(φ(t, x)) =
δL

δ

(
∂φa

∂t

) = gab(φ)
∂φb

∂t
+ Bab(φ)

∂φb

∂x
. (12)

By deˇnition, the Hamiltonian is

H(φ, p) =
1
2
gab(φ)

[
pa − Bac(φ)

∂φc

∂x

] [
pb − Bbd(φ)

∂φd

∂x

]
+

1
2
gab(φ)

∂φa

∂x

∂φb

∂x
. (13)

Now let us introduce new dynamical variables as follows:

J0μ(φ) = ea
μ(φ)

[
pa − Bab(φ)

∂φb

∂x

]
, J1μ(φ) = eμ

a(φ)
∂φa

∂x
. (14)

We see that the Hamiltonian (13) is factorized in these variables:

H =
1
2

[δμνJ0μ(φ)J0ν (φ) + δμνJμ
1 (φ)Jν

1 (φ)] . (15)

The equations of motion in terms of these variables are of ˇrst order:

∂0J
μ
1 (φ) − ∂1J

μ
0 (φ) = Cμ

νλJν
0 (φ)Jλ

1 (φ),

∂0J
μ
0 (φ) − ∂1J

μ
1 (φ) = −Hμ

νλ(φ)Jν
0 (φ)Jλ

1 (φ).
(16)

Here Cμνλ is the structure constant tensor which can be obtained from the MaurerÄCartan
equation:

Cμ
νλ =

∂eμ
a(φ)

∂xb

[
eb

ν(φ)ea
λ(φ) − ea

ν(φ)eb
λ(φ)

]
=

[
∂eμ

a(φ)
∂xb

− ∂eμ
b (φ)

∂xa

]
eb

ν(φ)ea
λ(φ) (17)

and the canonical Poisson bracket (PB) is

{φa(x), pb(y)} = δa
b δ(x − y). (18)

Now we consider the commutation relations for the functions J0μ(φ(x)), J1μ(φ(x)) =
δμνJν

1 (φ(x)) on the phase space under the PB (18):

{J0μ(φ(x)), J0ν(φ(y))} = Cλ
μνJ0λ(φ(x))δ(x − y) + Hλ

μν(φ(x))J1λ(φ(x))δ(x − y),

{J0μ(φ(x)), J1ν(φ(y))} = Cλ
μνJ1λ(φ(x))δ(x − y) + gμν

∂

∂x
δ(x − y), (19)

{J1μ(φ(x)), J1ν(φ(y))} = 0.

Let us introduce the chiral variables

Uμ =
J0μ + δμνJν

1√
2

, Vμ =
J0μ − δμνJν

1√
2

. (20)
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The commutation relations for the chiral currents Uμ(φ), V μ(φ) are not Poisson brackets
because the torsion Hλ

μν(φ) is not a smooth function. These commutation relations form an

algebra, if Hλ
μν(φ) is a constant tensor. The interesting cases arise if Hλ

μν = ±Cλ
μν . In the

case Hλ
μν = −Cλ

μν the variables Uμ(φ) form the closed KacÄMoody algebra [9, 10] for the
right chiral currents:

{Uμ(φ(x)), Uν(φ(y))}2 = Cλ
μνUλ(φ(x))δ(x − y) + δμν∂xδ(x − y). (21)

Here we have noted the PB (21) as PB2. The last relations are not essential. In the case
of Hλ

μν = Cλ
μν , the variables Vμ(φ) form the closed KacÄMoody algebra for the left chiral

currents:

{Vμ(φ(x)), Vν(φ(y))} = Cλ
μνVλ(φ(x)) − δμν∂xδ(x − y). (22)

Notice that the KacÄMoody algebra [9, 10] has been considered as a hidden symmetry of the
two-dimensional chiral models [11]. In 1983 one of the authors (VDG) with Volkov and
Tkach [12] considered the algebra of the nonlocal charges in σ-model in the framework of
the integrability of this model. We have shown in this previous reference that the nonlocal
charges form the enveloped algebra over the KacÄMoody algebra. If Cλ

μν = Hλ
μν the equation

of motion is

∂+Vμ(φ(t, x)) = 0, ∂−Uμ(φ(t, x)) = Cνλ
μ Vν(φ)Uλ(φ). (23)

We see from Eqs. (21) and (23) that the chiral currents Uμ form the closed system in the ˇrst
case and, from Eqs. (22) and (23), that the chiral currents Vμ also form the closed system
in the second case. Precisely, the chiral currents are the generators of group transformations
with the structure constants Cμν

λ in the tangent space.

INTEGRABLE WZNW MODEL WITH CONSTANT TORSION

The components of the torsion Cabc are the structure constants of the Lie algebra. In
the bi-Hamiltonian approach to the integrable string models with the constant torsion, we
have considered the conserved primitive chiral invariant currents (densities of the dynamical
Casimir operators) Cn(U(x)), as the local ˇelds of a Riemann manifold [13, 14]. The
primitive and nonprimitive local charges of the invariant chiral currents form the hierarchy
of the new Hamiltonians. The primitive invariant currents are the densities of the Casimir
operators; in contrast, the nonprimitive currents are functions of the primitive ones. The
commutation relations (21) show that the currents Uμ form the closed algebra. Therefore, we
will consider PBs of the right chiral currents Uμ and the Hamiltonians constructed only from
the right currents. The constant torsion does not contributes to the equations of motion, but
it gives the possibility to introduce the group structure and the symmetric structure constants.
This paper was stimulated by the papers [16, 17] concerning the local conserved charges in
two-dimensional models. In [16] the local invariant chiral currents, as polynomials of the
initial chiral currents of he SU(n), SO(n), SP (n), were constructed for principal chiral
models. Their paper [16] was based on [17] involving the invariant tensors for the simple
Lie algebras. Let us take tμ the generators of the SU(n), SO(n), SP (n) Lie algebras (2).
There are additional relations for the generators of the Lie algebra in the deˇning matrix
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representation. There is the following relation for the symmetric double product of the
generators of SU(n) algebra:

{tμ, tν} =
4
n

δμν + 2dμνλtλ, μ = 1, . . . , n2 − 1, (24)

where dμνλ is a totally symmetric structure constant tensor. The Killing tensor gμν equals
δμν for the compact Lie algebras. Similar relation for the totally symmetric triple product of
the SO(n) and SP (n) algebras has the form

t(μtνtλ) = vρ
μνλ tρ, (25)

where vμνλρ is a totally symmetric structure constant tensor. The invariant chiral currents
are the Liouville coordinates and they can be constructed as the product of the invariant
symmetric tensors:

d(μ1...μn) = dk1
(μ1μ2

dk2
μ3k1

· · · dkn−3

μn−1μn), dμ1μ2 = δμ1μ2 .

For the SU(n) group and the initial chiral currents Uμ(φ(x)), we have

Cn(U(φ(x))) = d(μ1...μn)Uμ1Uμ2 · · ·Uμn , C2(U(φ(x))) = δμνUμUν . (26)

Analogously, a similar construction can be used for SO(n), SP (n) groups. The invariant
chiral currents can be constructed as product of the invariant symmetric constant tensors:

v(μ1...μ2n) = vν1
(μ1μ2μ3

vν1ν2
μ4μ5

· · · vν2n−3

μ2n−2μ2n−1μ2n), vμ1μ2 = δμ1μ2 ,

and the corresponding initial chiral currents Uμ

C2n(U(φ(x))) = vμ1···μ2nUμ1 · · ·Uμ2n , C2(U(φ(x))) = δμ1μ2U
μ1Uμ2 . (27)

The invariant chiral currents for SU(2), SO(3), SP (2) have the form

C2n = (C2)n. (28)

Another family of the invariant symmetric currents Jn based on the invariant symmetric
chiral currents of simple Lie groups are realized as the symmetric trace of the n product
chiral currents U(x) = tμUμ, μ = 1, . . . , n2 − 1:

Jn(U(φ(x))) = Sym Tr (U · · ·U). (29)

These invariant currents are the polynomials of the product of the basic chiral currents
Ck, k = 2, 3, . . . , k [13, 14]. Let us introduce the PB of hydrodynamic type for the chiral
currents in the Liouville form [18]:

{Cm(φ)(x), Cn(φ(y))} = −Wmn(φ(y))
∂

∂y
δ(y − x) + Wnm(φ(x))

∂

∂x
δ(x − y). (30)

The asymmetric Hamiltonian function Wmn(U(φ(x))) for the ˇnite dimensional SU(n),
SO(n), SP (n) group has the following form:

Wmn(C(U(x))) =
n − 1

m + n − 2

∑
k

akCm+n−2,k(U(x)),
∑
k=0

ak = mn. (31)
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This PB can be rewritten as the PB of the hydrodynamic type by using the following equalities:

B(y)A(x)
∂

∂x
δ(x − y) = B(y)A(y)

∂

∂x
δ(x − y) − B(y)

∂A(y)
∂y

δ(x − y),

∂A(y)
∂y

δ(x − y) + A(x)
∂

∂x
δ(x − y) = A(y)

∂

∂x
δ(x − y),

∂

∂x
δ(x − y) = − ∂

∂y
δ(y − x).

Above, the invariant total symmetric currents Cn,k, k = 1, 2 . . . are new currents, polynomials
of the product of the basic invariant currents Cn1Cn2 · · ·Cnn , n1 + . . . + nn = n. They can
be obtained by means of the explicit computation of the total symmetric invariant currents
Jn using the different replacements of the double product (24) for the SU(n) group and of
the triple product (25) for the SO(n), SP (n) groups into the expressions for the invariant
currents Jn [13]. Here are only l = n − 1 primitive invariant tensors for SU(n) algebra,
l = (n − 1/2) for SO(n) algebra and l = (n/2) for SP (n) algebra. Higher invariant currents
Cn for n � l+1 are nonprimitive currents and they are polynomials of primitive currents. By
using formula (30) we can obtain the expression for these polynomials within the condition
Jk = 0 for k > l for the generating function:

det (1 − λtμUμ) = exp Tr (ln (1 − λU)) = exp

(
−

∞∑
k=2

λk

k
Jk

)
.

The corresponding charges for nonprimitive chiral currents Cn are not Casimir operators.
Consequently, the WZNW model is not an integrable system for the group symmetry of the
ˇnite rank l � 1.

INTEGRABLE WZNW MODELS
WITH SU(2), SO(3), SP (2) CONSTANT TORSIONS

There is one primitive invariant tensor for the algebras of SU(2), SO(3), SP (2). As
we have pointed out, the invariant nonprimitive tensors for n � 2 are functions of the
primitive tensors. Let us introduce the local chiral currents based on the invariant symmetric
polynomials on the SU(2), SO(3), SP (2) Lie groups:

C2(U) = δμνUμUν , C2n(U) = (δμνUμUν)n,

where n = 1, 2, . . . and μ, ν = 1, 2, 3. The PB of Liouville coordinate C2(U(x)) has the
following form:

{C2(U(x)), C2(U(y))} = −2C2(U(y))∂yδ(y − x) + 2C2(U(x))∂xδ(x − y).

We will consider the invariant chiral C2(U(x)) as a local ˇeld on the Riemann space of the
chiral currents. As the Hamiltonians we choose the following functions:

H2(n+1) =
1

2(n + 1)

2π∫
0

Cn+1
2 (U(y))dy, n = 0, 1, . . . ,∞. (32)
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The equation of motion for the density of the ˇrst Casimir operator is as follows:

∂C2

∂t2(n+1)
− (2n + 1)(C2)n dC2

dx
= 0, (33)

and the equation for the currents Cn
2 = C2n is

∂Cn
2

∂τn
+ (C2)n dCn

2

dx
= 0, τn = −(2n + 1)t2(n+1). (34)

The above equation is precisely inviscid Burgers equation. We will ˇnd the solution
in the form

Cn
2 (τn, x) = exp (a + i(x − τnCn

2 (τn, x))). (35)

To obtain the solution of Eq. (34), it is convenient to rewrite this equation of motion as

Yn = Zn eZn , Yn = iτn e(a+ix), Zn = iτnCn
2 . (36)

Then the inverse transformation Zn = Zn(Yn) is deˇned by means of the periodical Lambert
function [14]:

Cn
2 (τn, x) =

1
iτn

W (iτn ea+ix). (37)

Consequently, the solution for the ˇrst Casimir operator is

C2(t2(n+1), x) =
[

i

(2n + 1)t2(n+1)
W (−i(2n + 1)t2(n+1) ea+ix)

]1/n

. (38)

With these results, the equation of motion for the initial chiral current Uμ deˇned by
the PB (21) and the Hamiltonian (32) is

∂Uμ

∂t2(n+1)
=

∂

∂x
[Uμ(UU)n] = nUμCn−1

2

∂

∂x
C2 + Cn

2

∂

∂x
Uμ, μ = 1, 2, 3. (39)

It is easy to test that equation of motion (33) is in full agreement with Eq. (39) simply by
multiplication with the chiral current Uμ on the both sides of Eq. (39). It is possible to rewrite
this equation as a linear equation by using the solution (37) which diagonalizes Eq. (39):

∂Uμ

∂t2(n+1)
=

∂Uμ

∂x
fn + Uμ

∂

∂x
fn

or as the linear nonhomogeneous equation

∂zμ

∂t2(n+1)
=fn(tn, x)

∂zμ

∂x
+

∂

∂x
fn(tn, x), zμ = lnUμ,

fn = Cn
2 ,

∂zμ

∂x
=

1
Uμ

∂Uμ

∂x
(not sum).

(40)
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INFINITE DIMENSIONAL HYDRODYNAMIC CHAINS

The ˇrst example of the inˇnite dimensional hydrodynamic chains is based on the invariant
chiral currents C2n = (C2)n, n = 1, 2, . . . ,∞ of the WZNW model with the SU(2), SO(3),
SP (2) constant torsions. The PB of the different degrees of the invariant chiral currents
Cn

2 (x), Cm
2 (x) has the form

{Cm
2 (x), Cn

2 (y)} =
2nm(2m − 1)

n + m − 1
Cn+m−1

2 (x)
∂δ(x − y)

∂x
−

− 2nm(2n− 1)
n + m − 1

Cn+m−1
2 (y)

∂δ(y − x)
∂y

. (41)

The equation of motion for invariant current Cm
2 with Hamiltonian

H2n =
1
2n

2pi∫
0

C2n(y) dy

has the form
∂Cm

2

∂t2n
=

m(2n − 1)
m + n − 1

∂Cm+n−1
2

∂x
.

After the redeˇnition Cn
2 = C2n = Cp we can obtain the standard form of the hydrodynamic

chain:

{Cp(x), Cq(y)} =
pq(p − 1)
p + q − 2

Cp+q−2(x)
∂δ(x − y)

∂x
− pq(q − 1)

p + q − 2
Cp+q−2(y)

∂δ(y − x)
∂y

. (42)

The second example of the inˇnite dimensional chain is based on the invariant chiral currents
of the WZNW model with the SU(∞), SO(∞), SP (∞) constant torsions. If dimension
of matrix representation n is not ended (n → ∞), all the chiral currents are the primitive
currents. This is easy to see from the expression for the new chiral currents Cm,k (see,
e.g., [13, 14]). The PB in Liouville coordinates Cm(x), m = 2, 3, . . . ,∞ takes the form

{Cm(x), Cn(y)} = −Wmn(C(y))
∂

∂y
δ(y − x) + Wnm(C(x))

∂

∂x
δ(x − y), (43)

Wmn(C(x)) =
mn(n − 1)
m + n − 2

Cm+n−2(x). (44)

This PB obeys the skew-symmetric condition: {Cm(x), Cn(y)} = −{Cn(y), Cm(x)}. How-
ever, the Jacobi identity imposes conditions on the Hamiltonian function Wmn(C(x)) [18]:

(Wkp + Wpk)
∂Wmn

∂Ck
= (Wkm + Wmk)

∂Wpn

∂Ck
,

dWkp

dx

∂Wnm

∂Ck
=

dWkm

dx

∂Wnp

∂Ck
. (45)

The Jacobi identity is satisˇed by the metric tensor Wmn(C(x)) (44). The algebra of charges
2π∫
0

Cn(x) dx is the Abelian algebra. Now let us choose the Casimir operators Cn as the

Hamiltonians:

Hn =
1
n

2π∫
0

Cn(x) dx, n = 2, 3 . . . . (46)
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Then the equations of motion for the densities of Casimir operators are the following:

∂Cm(x)
∂tn

=
m(n − 1)
m + n − 2

∂Cm+n−2

∂x
. (47)

Thus, the invariant chiral currents with the SU(2), SO(3), SP (2) constant torsion and the
invariant chiral currents with the SU(∞), SO(∞), SP (∞) constant torsion form the same
inˇnite hydrodynamic chain (42), (43), (44). This PB (43) is particular case of the M -bracket
given by Dorfman [19] and Kupershmidt [20] for M = 2 and describes the hydrodynamic
chains. We can construct new nonlinear equations of motion for the initial chiral currents Uμ

using the 	at PB2 (21) and the Hamiltonians Hn (46), where Cn(x) is deˇned by Eq. (26)
for the SU(∞) group:

∂Uμ(x)
∂tn

=
1
n

2π∫
0

dy{Uμ(x), Cn(U(y))}2,

∂Uμ(x)
∂tn

=
∂

∂x
[dk1

ν1ν2
dk2

k1ν3
. . . dkn−3

νn−1μUν1(x) · · ·Uνn−1(x)].

(48)

As an example, we consider n = 3:

∂Uμ

∂t3
=

∂

∂x
(dμνλUνUλ), μ = 1, 2, . . . ,∞. (49)

It is easy to see that this dynamical system is a bi-Hamiltonian one:

∂Uμ(x)
∂t3

=
1
3

2π∫
0

dy{Uμ(x), C3(U(y))}2 =
1
2

2π∫
0

dy{Uμ(x), C2(U(y))}3. (50)

Above, the PB3 has the form

{Uμ(x), Uν(y)}3 = 2dμνλUλ. (51)

Let us remind that dμνλ are the symmetric structure constants of the SU(∞) algebra in a
matrix representation. This PB satisˇes Jacobi identity for (n → ∞):

dσμνdσλρ + dσμλdσνρ + dσμρdσνλ =
1
n

(δμνδλρ + δμλδνρ + δνρδνλ).

Analogously, we can obtain the equation of motion for the chiral currents of SO(∞) and
SP (∞):

∂Uμ(x)
∂tn

=
∂

∂x
[vk1

ν1ν2ν3
· · · vk2n−3

ν2n−2ν2n−1μUν1 · · ·Uν2n−1 ]. (52)

To see how it works, for example, let us consider n = 4:

∂Uμ

∂t4
=

∂

∂x
(vμνλρUνUλUρ), μ = 1, 2, . . . ,∞. (53)
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Also we can obtain a solution for the metric function Wmn(C(x)) which is analog of the

DubrovinÄNovikov metric tensor Wμν =
∂2F

∂Uμ∂Uν
:

Cm(U(x)) = mF ((U(x)), F (x, tn) = g

(
tn +

x

n − 1

)
,

and g

(
tn +

x

n − 1

)
is an arbitrary function of its argument.
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