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RENORMDYNAMICS, UNIFIED FIELD THEORIES
AND UNIVERSAL DISTRIBUTIONS OF THE

MULTIPARTICLE PRODUCTION PROCESSES

N.Makhaldiani 1

Joint Institute for Nuclear Research, Dubna

Short introduction to renormdynamics (in and beyond critical dimensions) is given. The ˇxed
points of the pionÄ(rho-meson)Änucleon and uniˇed ˇeld ˇne structure coupling constants are predicted.
Universal distributions for the higher energy multiparticle production processes are constructed.

PACS: 11.15.-q; 05.10.Cc; 12.10.Kt
Renormdynamics uniˇes different
renormgroups in one society

1. RENORMDYNAMICS

Quantum Field Theory (QFT) and Fractal Calculus (FC) provide universal language of
fundamental physics (see, e.g., [7]). In QFT existence of a given theory means that we can
control its behavior at some scales (short or large distances) by renormalization theory [1,2].
If the theory exists, then we want to solve it, which means to determine what happens on
other (large or short) scales. This is the problem (and content) of Renormdynamics. The
result of the Renormdynamics, the solution of its discrete or continual motion equations, is
the effective QFT on a given scale (different from the initial one).

1.1. p-Adic Convergence of Perturbation Theory Series. Perturbation theory series
(PTS) have the following qualitative form:

f(g) = f0 + f1g + . . . + fngn + . . . ,
(1)

f(x) =
∑
n�0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1 − x
, fn = n!P (n), δ = x

d

dx
.

So, we reduce the previous series to the standard geometric progression series. This
series is convergent for |x| < 1 or for |x|p = p−k < 1, x = pka/b, k � 1, p =
2, 3, 5, . . . , 29, . . . , 137, . . .
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With an appropriate nomalization of the expansion parameter, the coefˇcients of the
series are rational numbers and if experimental data indicates for some prime value for g,
e.g., in QED

g =
e2

4π
=

1
137.0 . . .

, (2)

then we can take the corresponding prime number and consider p-adic convergence of the
series. In the Yukawa theory of strong interactions (see, e.g., [1]), we take g = 13,

f(g) =
∑

fnpn, fn = n!P (n), p = 13, |f |p �
∑

|fn|pp−n <
1

1 − p−1
. (3)

So, the series is convergent. If the limit is rational number, we consider it as an observable
value of the corresponding physical quantity. In MSSM (see [5]) coupling constants unify at
α−1

u = 26.3 ± 1.9 ± 1. So, 23.4 < α−1
u < 29.2.

Question: How many primes are in this interval? 24, 25, 26, 27, 28, 29.
Only one! Proposal: Take the value α−1

u = 29.0 . . . which will be two orders of magnitude
more precise than prediction and ˇnd the consequences for the SM scale observables.

1.2. The GoldbergerÄTreiman Relation and the PionÄNucleon Coupling Constant. The
GoldbergerÄTreiman Relation (GTR) [3] plays an important role in theoretical hadronic and
nuclear physics. GTR relates the mesonÄnucleon coupling constants to the axial-vector cou-
pling constant in β-decay:

gπNfπ = gAmN , (4)

where mN is the nucleon mass; gA is the axial-vector coupling constant in nucleon β-decay
at vanishing momentum transfer; fπ is the π decay constant, and gπN is the πÄN coupling
constant. Since the days when the GoldbergerÄTreiman relation was discovered, the value of
gA has increased considerably. Also, fπ decreased a little, on account of radiative corrections.
The main source of uncertainty is gπN . If we take

απN =
g2

πN

4π
= 13 ⇒ gπN = 12.78 (5)

experimental values for fπ from pion decay and nucleon mass

fπ =
130√

2
= 91.9 MeV, mN = 940 MeV, (6)

from (4), we ˇnd

gA =
fπgπN

mN
=

91.9 ·
√

52π

940
= 1.2496 � 1.25 =

5
4
. (7)

2. RENORMDYNAMICS OF QCD

QCD is the theory of the strong interactions with one mass parameter for each quark
species and the value of the QCD coupling constant at some energy or momentum scale
in some renormalization scheme. This last free parameter of the theory can be ˇxed by
ΛQCD, the energy scale used as the typical boundary condition for the integration of the
Renormdynamic (RD) equation for the strong coupling constant. This is the parameter which
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expresses the scale of strong interactions, the only parameter in the limit of massless quarks.
While the evolution of the coupling with the momentum scale is determined by the quantum
corrections induced by the renormalization of the bare coupling and can be computed in
perturbation theory, the strength itself of the interaction, given at any scale by the value
of the renormalized coupling at this scale, or equivalently by ΛQCD, is one of the above-
mentioned parameters of the theory and has to be taken from experiment. The RD equations
play an important role in our understanding of Quantum Chromodynamics and the strong
interactions. The beta function and the quarks mass anomalous dimension are among the
most prominent objects for QCD RD equations. The MS-scheme [4] belongs to the class of
massless schemes where the β function does not depend on masses of the theory and the ˇrst
two coefˇcients of the β function are scheme-independent. The RD equation for the coupling
constant is

ȧ = β(a) = β2a
2 + β3a

3 + β4a
4 + β5a

5 + O(a6),

a∫
a0

da

β(a)
= t − t0 = ln

μ2

μ2
0

, (8)

μ is the 't Hooft unit of mass, the renormalization point in the MS-scheme. To calculate
the β function, we need to calculate the renormalization constant Z of the coupling constant,
ab = Za, where ab is the bare (unrenormalized) charge. The expression of the β function
can be obtained in the following way:

0 =
d(abμ

2ε)
dt

= μ2ε

(
εZa +

∂(Za)
∂a

da

dt

)
⇒ da

dt
= β(a, ε) =

−εZa

∂(Za)
∂a

= −εa + β(a),

(9)

β(a) = a
d

da
(aZ1), β(a, ε) =

D − 4
2

a + β(a),

where Z1 is the residue of the ˇrst pole in ε expansion

Z(a, ε) = 1 + Z1ε
−1 + . . . + Znε−n + . . . (10)

For quark anomalous dimension, RD equation is

ḃ = γ(a) = γ1a + γ2a
2 + γ3a

3 + γ4a
4 + O(a5),

(11)

b(t) = b0 +

t∫
t0

dtγ(a(t)) = b0 +

a∫
a0

daγ(a)/β(a).

To calculate the quark mass anomalous dimension γ(a), we need to calculate the renormal-
ization constant Zm of the quark mass mb = Zmm, mb is the bare quark mass. Then we
ˇnd the function γ(a) in the following way:

0 = ṁb = Żmm + Zmṁ = Zmm((lnZm)· + (lnm)·) ⇒ γ(a) = −d ln Zm

dt
=

= ḃ = −d lnZm

da

da

dt
= −d lnZm

da
(−εa + β(a)) = a

dZm1

da
, b = − ln Zm = ln

m

mb
, (12)

where Zm1 is the coefˇcient of the ˇrst pole in the ε-expansion of the Zm in MS-scheme

Zm(ε, a) = 1 + Zm1ε
−1 + Zm2ε

−2 + . . . (13)
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2.1. Reparametrization and Solution of the RD Equation. RD equation

ȧ = β1a + β2a
2 + . . . (14)

can be reparametrized:

a(t) = f(A(t)) = A + f2A
2 + . . . + fnAn + . . . , Ȧ = b1A + b2A

2 + . . . ,

ȧ = Ȧf ′(A) = (b1A + b2A
2 + . . .)(1 + 2f2A + . . . + nfnAn−1 + . . .) =

= β1(A + f2A
2 + . . . + fnAn + . . .) + β2(A2 + 2f2A

3 + . . .) + . . . =

= β1A + (β2 + β1f2)A2 + (β3 + 2β2f2 + β1f3)A3+
+ . . . + (βn + (n − 1)βn−1f2 + . . . + β1fn)An + . . . , (15)

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,

b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f2
2 − f3)β1,

b4 = β4 + 3f2β3 + f2
2 β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, . . . ,

bn = βn + . . . + β1fn − 2f2bn−1 − . . . − nfnb1, . . .

so, by reparametrization, beyond the critical dimension (β1 �= 0) we can change any coefˇcient
but β1. We can ˇx any higher coefˇcient with zero value. In the critical dimension of space-
time, β1 = 0, and we can change by reparametrization any coefˇcient but β2 and β3. From
the relations (15), in the critical dimenshion (β1 = 0), we ˇnd that we can deˇne the minimal
form of the RD equation

Ȧ = β2A
2 + β3A

3. (16)

We can solve (16) as implicit function,

uβ3/β2 e−u = c eβ2t, u =
1
A

+
β3

β2
, (17)

then, as in the noncritical case, explicit solution for a will be given by reparametrization
representation (15) [9]. If we know somehow the coefˇcients βn, e.g., for ˇrst several
exact and for other asymptotic values (see, e.g., [6]) then we can construct reparametrization
function (15) and ˇnd the dynamics of the running coupling constant. At any given scale by
reparametrization a = f(A) we can deˇne new expansion parameter A as appropriate prime
number. For example, if beyond critical dimension we determine all bn = 0, n � 3, demand
that A = p, then

0 = Ȧ = b1A + b2A
2 ⇒ b2 = −b1

p
= β2 − f2β1 ⇒ f2 =

β2 + β1/p

β1
. (18)

Statement: The reparametrization series for a is p-adically convergent, when βn is rational
number. The scale at which we have a ˇxed point is reparametrization-invariant, universal.
Indeed,

0 = ȧ = f ′(A)Ȧ = 0. (19)

So, when we calculate the scale, e.g., the hadronization scale in the case of QCD by lattice
gauge theory methods, we can improve precision by comparing results of different deˇnitions.
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Let us take the anomalous dimension of some quantity

γ(a) = γ1a + γ2a
2 + γ3a

3 + . . . , a = f(A) = A + f2A
2 + f3A

3 + . . . ,

γ(a) = γ1(A + f2A
2 + f3A

3 + . . .) + γ2(A2 + 2f2A
3 + . . .) + γ3(A3 + . . .) + . . . =

= Γ1A + Γ2A
2 + Γ3A

3 + . . . , (20)
Γ1 = γ1, Γ2 = γ2 + γ1f2, Γ3 = γ3 + 2γ2f2 + γ1f3, . . .

When γ1 �= 0, we can take Γn = 0, n � 2. So, we get the exact value for the anomalous
dimension

γ(A) = γ1A = γ1f
−1(a) = γ1

(
a +

γ2

γ1a2
+

γ3

γ1a3
+ . . . :

)
. (21)

2.2. QCD, Parton Model, Valence Quarks and αs = 2. While it has been well established
in the perturbative regime at high energies, QCD still lacks a comprehensive solution at low
and intermediate energies, even 40 years after its invention. In order to deal with the wealth
of non-perturbative phenomena, various approaches are followed with limited validity and
applicability. This is especially also true for lattice QCD, various functional methods, or
chiral perturbation theory, to name only a few. In neither one of these approaches the full
dynamical content of QCD can yet be included. Basically, the difˇculties are associated
with a relativistically covariant treatment of conˇnement and the spontaneous breaking of
chiral symmetry, the latter being a well-established property of QCD at low and intermediate
energies. As a result, most hadron reactions, like resonance excitations, strong and electroweak
decays, etc., are nowadays only amenable to models of QCD. Most famous is the constituent-
quark model (CQM), which essentially relies on a limited number of effective degrees of
freedom with the aim of encoding the essential features of low- and intermediate-energy QCD.
The CQM has a long history, and it has made important contributions to the understanding
of many hadron properties, think only of the fact that the systematization of hadrons in the
standard particle-data base follows the CQM or valence-quark picture.

It was noted [10] that parton densities given by the following solution:

M2(Q2) =
3
25

+
2
3
ω32/81 +

16
75

ω50/81, M̄2(Q2) = M s
2 (Q2) =

3
25

− 1
3
ω32/81 +

16
75

ω50/81,

MG
2 (Q2) =

16
25

(1 − ω50/81), ω =
αs(Q2)
αs(m2)

, Q2 ∈ (5, 20) GeV2, (22)

b = 11 − 2
3
nf = 9, αs(Q2) � 0.2

of the AltarelliÄParisi equation

Ṁ = AM, MT = (M2, M̄2, M
s
2 , MG

2 ),

M2 =

1∫
0

dxx(u(x) + d(x)), M̄2 =

1∫
0

dxx(ū(x) + d̄(x)),

M s
2 =

1∫
0

dxx(s(x) + s̄(x)), MG
2 =

1∫
0

dxxG(x),
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A = −a(Q2)

⎛
⎜⎜⎝

32/9 0 0 −2/3
0 32/9 0 −2/3
0 0 32/9 −2/3

−32/9 −32/9 −32/9 2

⎞
⎟⎟⎠ , (23)

a =
( g

4π

)2

, Ṁ = Q2 dM

dQ2

with the following valence quark initial condition at a scale m:

M̄2(m2) = M s
2 (m2) = MG

2 (m2) = 0, M2(m2) = 1 (24)

and
αs(m2) = 2, (25)

give the experimental values

M2 = 0.44, M̄2 = M s
2 = 0.04, MG

2 = 0.48. (26)

So, for valence quark model (VQCD), αs(m2) = 2. We have seen that for πρN model
απρN = 3 and for πN model απN = 13. It is nice that α2

s + α2
πρN = απN . Note that to

αs = 2 corresponds
g =

√
4παs = 5.013 = 5 + . (27)
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