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The two-loop (NNLO) electroweak radiative corrections to the parity-violating M	ller scattering
asymmetry induced by insertions to boxes of electron and neutrino mass operators (fermion self-
energies), vertex functions and boson self-energies are discussed. The results will be relevant to the
ultraprecise 11 GeV MOLLER experiment planned at the Jefferson Laboratory (USA), which will
measure the weak charge of the electron and search for new physics. The numerical estimations for the
NNLO contribution to the cross-section asymmetry are presented.
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INTRODUCTION

The M	ller scattering [1] with polarized electrons has attracted active interest from both
experimental and theoretical standpoints for several reasons. It has allowed the high-precision
determination of the electron-beam polarization at SLC [2], SLAC [3,4], JLab [5] and MIT-
Bates [6] (and as a future prospect Å the ILC [7]). The polarized M	ller scattering can
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be an excellent tool in measuring parity-violating weak interaction asymmetries [8]. The
ˇrst observation of Parity Violation (PV) in the M	ller scattering was made by the E158
experiment at SLAC [9Ä11], which studied scattering of 45- to 48-GeV polarized electrons
on the unpolarized electrons of a hydrogen target. It results at Q2 = −t = 0.026 GeV2

for the observable parity-violating asymmetry APV = (1.31 ± 0.14 (stat.) ± 0.10 (syst.)) ×
10−7 [12, 13], which allowed one of the most important parameters in the Standard Model
(SM) Å the sine of the Weinberg angle sin θW Å to be determined with the accuracy of 0.5%.

The MOLLER (Measurement Of a LeptonÄLepton Electroweak Reaction) experiment
planned at the Jefferson Laboratory (USA) aims to measure the parity-violating asymmetry
in the scattering of 11 GeV longitudinally-polarized electrons from the atomic electrons in a
liquid hydrogen target with a combined statistical and systematic uncertainty of 2% [14Ä17].
At such a precision, any inconsistency with the Standard Model (SM) predictions will
clearly signal the new physics. However, a comprehensive analysis of radiative correc-
tions is needed before any conclusions can be made. Since MOLLER's stated precision
goal is signiˇcantly more ambitious than that of its predecessor E158, theoretical input for
this measurement must include not only a full treatment of one-loop (next-to-leading order,
NLO) electroweak radiative corrections, but also two-loop corrections (next-to-next-to-leading
order, NNLO).

The signiˇcant theoretical effort has been dedicated to one-loop radiative corrections
already. A short review of the references on that topic is done in [18, 19], where we
calculated a full set of the one-loop electroweak corrections (EWC) both numerically with no
simpliˇcations using computer algebra packages and by hand in a compact form analytically
free from nonphysical parameters, and found the total relative correction to the observable
asymmetry to be close to −70%. It is possible that a large theoretical uncertainty in the
prediction for the asymmetry may come from two-loop corrections. One way to ˇnd some
indication of the size of higher-order contributions is to compare the results that are expressed
in terms of quantities related to different renormalization schemes. In [20], we provided
a tuned comparison between the results obtained with different renormalization conditions,
ˇrst within one scheme, then between two schemes. Our calculations in the on-shell and
constrained differential renormalization schemes show the difference of about 11%, which
is comparable with the difference of 10% between MS [21] and the on-shell scheme [22].
It is also worth noting that although two-loop corrections to the cross section may seem to be
small, it is much harder to estimate their scale and behavior for such a complicated observable
as the parity-violating asymmetry to be measured by the MOLLER experiment.

The two-loop EWC to the Born cross section (∼ M0M+
0 ) can be divided onto two classes:

Q-part induced by quadratic one-loop amplitudes ∼ M1M+
1 , and T -part Å the interference

of the Born and two-loop amplitudes ∼ 2 Re (M0M+
2 ) (here index i in the amplitude Mi

corresponds to the order of perturbation theory). The Q-part was calculated exactly in [23]
(using the FeynmanÄ't Hooft gauge and the on-shell renormalization), where we show that
the Q-part is much higher than the planned experimental uncertainty of MOLLER, i.e., the
two-loop EWC are larger than it was assumed in the past. The large size of the Q-part
demands detailed and consistent treatment of T -part, but this formidable task will require
several stages. Our ˇrst step was to calculate the gauge-invariant double boxes [24]. In this
paper, we do the next step Å we consider the EWC arising from the contribution of a wide
class of the gauge-invariant Feynman amplitudes of the box type with one-loop insertions:
fermion mass operators (or Fermion Self-Energies in Boxes (FSEB)), vertex functions (or
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Vertices in Boxes (VB)), and polarization of vacuum for bosons (or Boson Self-Energies in
Boxes (BSEB)).

The paper is organized as follows. We deˇne the basic notations in Sec. 1 and present
FSEB, VB, and BSEB in Sec. 2. In Sec. 3, we provide the numerical results for asymmetry
for the kinematics conditions of the MOLLER experiment and discuss the work still to be
done in the future. In Appendix A, the mass operators of electron and neutrino are presented.
In Appendix B, we show the result for one-loop corrections to vertex functions for the case
when only one fermion is on the mass shell. In Appendix C, we consider the polarization
of vacuum for the virtual photon, Z and W boson. The details of calculation of ultraviolet
cut-off loop momenta integrals can be found in Appendix D.

1. BASIC NOTATIONS

We consider the process of electronÄelectron elastic scattering, i.e., M	ller process:

e−(p1, λ1) + e−(p2, λ2) → e−(p3, λ3) + e−(p4, λ4), (1)

where λi (i = 1, 4) are the chiral states of initial and ˇnal electrons. The kinematical
invariants were deˇned in the standard way:

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2. (2)

In the MOLLER experiment, the expected beam energy is Ebeam = 11 GeV, that is s =
2mEbeam ≈ 0.01124 GeV2, where m is the electron mass (p2

i = m2). For the central region
of MOLLER (at θ ∼ 90◦ in the center-of-mass system of initial electrons), −t ≈ −u ≈
s/2, thus we can use an approximation that s, |t|, |u| � m2. Also, as for the MOLLER
kinematics in the central region s, |t|, |u| � m2

Z,W , we neglect in following the terms of
order O(s/mZ,W ).

We consider the process (1) in terms of chiral amplitudes Mλ, where λ = {λ1λ2λ3λ4} is
the chiral state of initial and ˇnal electrons. The PV asymmetry to be measured by MOLLER
is then deˇned as

A =
|M−−−−|2 − |M++++|2∑

λ |Mλ|2
,

∑
λ

∣∣Mλ
∣∣2 = 2(8πα)2

s4 + t4 + u4

t2u2
. (3)

In the Born approximation, this asymmetry has the form

A(0) =
s

2m2
W

s2tu

s4 + t4 + u4

a

s2
W

(4)

proportional to
a = 1 − 4s2

W . (5)

Let us now recall that sW (cW ) is the sine (cosine) of the Weinberg angle expressed in terms
of the Z- and W -boson masses according to the Standard Model rules:

sW =
√

1 − c2
W , cW =

mW

mZ
. (6)
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a) Fermion self-energies in boxes (FSEB); b) boxes with vertices (VB); c) boson self-energies in boxes
(BSEB). In these diagrams, all wavy lines are assumed to be photons or Z bosons. We also considered
crossed box diagrams, which can also contain W -boson legs

Thus, the factor a is just a ≈ 0.109, and the asymmetry is therefore suppressed by both
s/m2

W and a. Even at θ = 90◦, where the Born asymmetry is maximal, it is extremely small:

A(0) =
s

9m2
W

a

s2
W

≈ 9.4968 · 10−8. (7)

We denote the speciˇc contribution to the asymmetry by the index C, which thus can be
BSEB, FSEB, VB or IB = BSEB + FSEB + VB for the whole set of diagrams (see the Figure),
respectively.

The contribution to the asymmetry (ΔA)C and the relative correction DC
A are deˇned as

(ΔA)C =
|M−−−−

C |2 − |M++++
C |2∑

|Mλ
0 |2

, (8)

DC
A =

(ΔA)C

A(0)
=

|M−−−−
C |2 − |M++++

C |2
|M−−−−

0 |2 − |M++++
0 |2

. (9)

The relative correction to observable asymmetry from the contribution of type C looks as
(see derivation in more detail in [19]):

δC
A =

AC − A(0)

A(0)
=

DC
A − δC

1 + δC
, (10)

where the relative correction to unpolarized cross section σ0
00 (we used short notation for

differential cross section σ ≡ dσ/d(cos θ)) is

δC =
σC

00

σ0
00

. (11)

For the two-loop effects, where δC is small, we can use an approximate equation for relative
correction to asymmetry δC

A ≈ DC
A .

2. INSERTION OF MASS OPERATOR, VERTEX AND
VACUUM POLARIZATION FUNCTIONS TO THE BOX-TYPE AMPLITUDE

The numerical value of loop momentum squared |k2| in the box-type amplitudes with the
heavy boson exchange is large compared with the square of electron mass |k2| � m2, since if
|k2| is far from M2

Z,W , the contribution is suppressed with the mass of heavy boson squared in
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denominator. So, we can use the asymptotic expressions for the one-loop vertex functions as
well as the mass and vacuum polarization operators. Using the well-known approach [25,26],
which we successfully employed for the box-type chiral amplitudes in [24] (see also [27]),
we can write for the direct ZZ-box chiral amplitude of ©+ + ++ª type:

ū3γμ(a + γ5)k̂γν(a + γ5)u1 ū4γ
μ(a + γ5)(−k̂)γν(a + γ5)u2 =

= − (a + 1)4

gf
Sp

[
p̂3γμk̂γν p̂1p̂2p̂4γ

μk̂γν p̂2p̂1ω+

]
= −8k2s2t(a + 1)4

gf
. (12)

Easily we can get a similar expression for the crossed box and for the amplitude of ©−−−−ª
type. The quantities g and f in (12) coincide with a and b from [24], respectively, and are
deˇned as

g = ū1ω−p̂2ω+u4, f = ū2ω−p̂1ω+u3,

where ω± = (1 ± γ5) /2 are the chirality projection operators. Let us calculate the t-channel
amplitude; the u-channel amplitude can be obtained by the replacement t ↔ u. This inter-
change will be denoted below as the operator Ptu.

The box-type amplitude with the double Z-boson exchange with all the possible insertions
(i.e., VB, FSEB and BSEB) has the form

MZZ,± = i
α2(1 ± a)4

(4cW sW )4
6s2t

gfm2
Z

∞∫
0

dτ

(1 + τ)2
IZZ(τ), (13)

where ©±ª sign corresponds to the chiral amplitudes M±±±±. The expression for the box
amplitude with Zγ exchange is similar:

MZγ,± = i
2α2(1 ± a)2

(4cW sW )2
6s2t

gfm2
Z

∞∫
0

dτ

τ(1 + τ)
IZγ(τ). (14)

At last, for γγ-exchange amplitude we have

Mγγ,± = iα2 6s2t

gfm2
Z

∞∫
z

dτ

τ2
Iγγ(τ). (15)

In all the above cases, the integration variable is related to the loop momentum as τ =
−k2/m2

Z . The lower limit of integration z = −t/m2
Z for Mγγ is introduced to avoid the

double counting for the region of small loop momenta squares −k2 < s, where we use the
YennieÄFrautschiÄSuura approach [28]. Finally, the contribution to M−−−− arises from the
box-type Feynman diagram with two-W -boson exchange:

M−−−−
WW = −i

α2

2s4
W

s2t

gfm2
W

∞∫
0

dτW

(1 + τW )2
IWW (τW ), τW = −k2/m2

W . (16)
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The structure of the quantities Iij in (13), (14), (15) and (16) corresponds to three types
of radiative corrections, FSEB, VB and BSEB, respectively:

IZZ = 2Me + 4VeeZ + 2ΠZZ ,

IZγ = 2Me + 2VeeZ + 2Veeγ + ΠZZ + Πγγ ,
(17)

Iγγ = 2Me + 4Veeγ + 2Πγγ ,

IWW = 2Mν + 4VeνW + 2ΠWW .

Here, we use the dimensionless quantities for the product of the fermion Green function and
the truncated mass operators of electron Me and neutrino Mν (see Appendix A):

Me,ν =
ik̂

k2
Me,ν . (18)

The vertex function V μ
eeγ(k2) with one electron on the mass shell and another electron off the

mass shell is normalized as

V μ
eeγ(k2) = −ieγμVeeγ(k2), Veeγ(0) = 0. (19)

The vertex function V μ
eeZ (k2) is normalized at the point k2 = m2

Z :

V μ
eeZ (k2) = − ie

4cW sW
γμVeeZ (k2), VeeZ (m2

Z) = 0, (20)

and similarly for eνW -vertex function we have

V μ
eνW (k2) =

ie√
2sW

γμω−VeνW (k2), VeνW (m2
W ) = 0. (21)

The explicit expressions for the vertices Veeγ , VeeZ and VeνW are given in Appendix B.
The dimensionless products of the boson Green function with the relevant regularized

polarization operator Πμν(q) = Π(q2)gμν + B(q2)qμqν are deˇned as

Πγ =
−i

q2
Πtr

γγ(q2), Πtr
γγ(0) =

∂

∂q2
Πtr

γγ(0) = 0;

ΠZ =
−i

q2 − m2
Z

Πtr
ZZ(q2), Πtr

ZZ(m2
Z) =

∂

∂q2
Πtr

ZZ(m2
Z) = 0;

(22)

ΠZγ =
−i

q2
Πtr

Zγ(q2), Πtr
Zγ(0) = 0;

ΠW =
−i

q2 − m2
W

Πtr
WW (q2), Πtr

WW (m2
W ) =

∂

∂q2
Πtr

WW (m2
W ) = 0.

The structure B(q2)qμqν does not contribute due to the gauge invariance. The explicit
expressions for the ©truncatedª quantities are given in Appendix C.
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3. NUMERICAL RESULTS AND CONCLUSION

For the numerical calculations, we use the central kinematical point of the MOLLER
experiment and α, mW and mZ in accordance with the Particle Data Group [29]. The effective
quark masses used for the vector boson self-energy loop contributions are extracted from the

shifts in the ˇne structure constant due to hadronic vacuum polarization Δα
(5)
had

(
m2

Z

)
=

0.02757 [30]. For the mass of the Higgs boson, we take mH = 125 GeV.
The contribution relevant to the observed asymmetry is the interference of the two-loop

box-type amplitudes with the Born amplitudes Mγ,Z . The contribution to the matrix element
squared (i.e., cross section) has the form

|M±±±±
IB |2 = 2 (1 + Ptu)

[(
MZZ + MZγ + MWW

)
M∗

γ + MγγM∗
Z

]
. (23)

In the right-hand side of this equation, we assume that the amplitudes are taken in the same
chiral state corresponding to the state of the left-hand side. Note that the intermediate states
with W± bosons and the FaddeevÄPopov ghosts G±

W contribute to the mass and vertex
operators in the M−−−− chiral amplitude. Since the parameter a is very small, we can
present the ˇnal result as

∣∣M−−−−
IB

∣∣2 − ∣∣M++++
IB

∣∣2 = −H(a) + (H(−a) + Y ) = −2a
∂H(a)

∂a

∣∣∣
a→0

+ Y, (24)

and thus the relative correction DIB
A has the form

DIB
A =

t2u2

128 (πα)2 (s4 + t4 + u4)

(
−2a

∂H(a)
∂a

∣∣∣
a→0

+ Y
) 1

A(0)
. (25)

We deˇne H and Y as

H = HZZ + HZγ + Hγγ + HWW + Hmix,
(26)

Y = YZZ + YZγ + Yγγ + YWW + Ymix,

where the ˇrst four terms in both H and Y correspond to the box-type amplitudes with ZZ,
Zγ, γγ and WW bosons exchanged between electrons, and the last term corresponds to the
cases with Z or γ and the mixed boson Green function with polarization operator ΠZγ .

Using the following relations (see, for example, [24] and [27]):

1
gf

(
1
gf

− 1
cd

)∗
= − 1

st2u
,

1
gf

(
t

gf
− u

cd

)∗
=

2
s2t

, (27)

we obtain the following numerical results:

HZZ = −3α3π(1 + a)4

8(cW sW )4
s3

m2
Ztu

(1 + Ptu)

∞∫
0

dτ

(1 + τ)2
[
2(Mγ

e + (1 + a)2MZ
e )+

+ 2ΠZZ + 4(V γ + (1 + a)2V Z)
]

= −1.653 · 10−13 (1 + a)4
(
−81.36− 1.1293 (1 + a)2

)
,
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YZZ = − 3α3π

8(cW sW )4
s3

m2
Ztu

(1 + Ptu)

∞∫
0

dτ

(1 + τ)2
[2MW

e + 4(V ν + V 2ν)] =

= 3.139 · 10−12,

HZγ = −12α3π(1 + a)2

(cW sW )2
s3

m2
Ztu

(1 + Ptu)

∞∫
0

dτ

τ(1 + τ)
[2(Mγ

e + (1 + a)2MZ
e )+

+ ΠZZ + Πγγ + 2(V γ + V γ
eeγ + (1 + a)2(V Z + V Z

eeγ))] =

= −9.155 · 10−11 (1 + a)2
(
−4.30744− 0.04567 (1 + a)2

)
,

YZγ = − 12α3π

(cW sW )2
s3

m2
Ztu

(1 + Ptu)

∞∫
0

dτ

τ(1 + τ)
[2MW

e + 2(V ν + V 2ν + V W
eeγ)] =

= 6.974 · 10−11, (28)

Hγγ =
12α3π(1 + a)2

(cW sW )2
(1 + Ptu)

s2z

m2
Zt

∞∫
z

dτ

τ2
[2(Mγ

e + (1 + a)2MZ
e )+

+ 2Πγγ + 4(V γ
eeγ + (1 + a)2V Z

eeγ)] =

= −3.094 · 10−12(1 + a)2(−2.52038− 5.04456 · 10−6(1 + a)2),

Yγγ =
12α3π

(cW sW )2
(1 + Ptu)

s2z

m2
Zt

∞∫
z

dτ

τ2
[2MW

e + 4V W
eeγ ] = −4.4261 · 10−17,

HWW = 0,

YWW =
8α3π

(sW )4
s3

m2
Ztu

(1 + Ptu)

∞∫
0

dτW

(1 + τW )2
[2Mν + 2ΠWW + 4VeWν ] =

= −3.36 · 10−10.

The ©mixedª-type amplitude in two-loop approximation has two different contributions

(H, Y )mix = (H, Y )(1)mix + (H, Y )(2)mix. The ˇrst contribution is associated with the two-loop
box-type amplitude:

H
(1)
mix = −6α3π(1 + a)

(cW sW )3
s3

m2
Ztu

(1 + Ptu)

∞∫
0

dτW

(1 + τW )
RγZ(τW )×

×
(

(4cW sW )2
1

τW
+ (1 + a)2

1
1 + τW

)
=

= −1.10029 · 10−9(1 + a)(0.007746− 0.000340(1 + a)2),
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Y
(1)
mix = 0,

RγZ(τW ) =
αcW

8πsW

(
−3 + 2(3 − 2c2

W )
1

τW

)
LW (τW ),

LW (τW ) =

1∫
0

dx log (1 + x(1 − x)τW ).

The second contribution arises from the interference of the Born-type amplitude with the
mixed Green function and the box-type one-loop amplitude with the γγ exchange:

H
(2)
mix =

48α3π(1 + a)
cW sW

(1 + Ptu)
s3z

t2u
RγZ (z) = −3.982 · 10−13(1 + a),

(29)
Y

(2)
mix = 0.

The contributions to the asymmetry from the transition polarization operator ΠZγ with leptons
in the fermion loop are proportional to higher powers of a, which is small. The same reasoning
is valid for the quarkÄantiquark state contribution. Speciˇcally, it enters with the factor

2
3

(
1 − 8

3
s2

W

)
− 1

3

(
1 − 4

3
s2

W

)
=

a

3
. (30)

The contributions from (W+W−), (W±G∓
W ), (G±

W G∓
W ) intermediate states are considered

in Appendix C.
At last, we are ready to present ˇnal numerical value for the relative corrections considered

in this paper to the observable cross-section asymmetry. The one-loop (NLO) corrections [18,
19] give the biggest contribution,

δNLO
A = −0.6953. (31)

Several categories of the NNLO contributions (Q-part and double boxes) are calculated in [23]
and [24] and give the following values:

δNLO+Q
A = −0.6535, δdouble box

A ≈ Ddouble box
A = −0.0101. (32)

Summing up all the contributions in (25), the numerical result of the class of the gauge-
invariant Feynman amplitudes considered in this paper (boxes with one-loop insertions of
fermion mass operators, vertex functions and polarization of vacuum for bosons) is

δIB
A ≈ DIB

A = −0.0039. (33)

As one can see, the relative correction we obtained is much less than the expected MOLLER
experimental error, but it is still a non-negligible contribution to the MOLLER error budget.
Most likely, the entire set of two-loop corrections will be smaller than the experimental
statistical error, but, in the light of the MOLLER success depending so crucially on its
precision, the two-loop corrections still need to be controlled.

As the low-energy precision experiment, MOLLER is complementary to the LHC efforts
and may discover new physics signal that could escape the LHC detection. However, for



1008 Aleksejevs A. G. et al.

the MOLLER experiment to produce meaningful physics, the uncertainties in the NNLO
EWC must be much smaller than the MOLLER statistical error. Clearly, there is a need
for the complete study of the two-loop electroweak radiative corrections in order to meet the
MOLLER precision goals.
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Appendix A

MASS OPERATORS

Here, we will deˇne the explicit form of the quantities Me, Mν , which enter to Iij

from (17). The quantity Me has the following form:

Me = Mγ
e + (a ± γ5)2MZ

e + ω2
−MW

e . (34)

The explicit expression for the truncated mass operator in QED was found by R. Karplus and
N. Kroll in 1950 [31,32]:

Mγ
e =

iα

2πm
(p̂ − m)2

[
1

2(1 − ρ)

(
1 − 2 − 3ρ

1 − ρ
log ρ

)
−

− p̂ + m

mρ

(
1

2(1 − ρ)

(
2 − ρ +

ρ2 + 4ρ − 4
1 − ρ

log ρ

)
+ 1 + 2 log

λ

m

)]
, (35)

ρ = 1 − p2

m2
.

It is useful to note that the expression in the square brackets is ˇnite at ρ → 1. In the limit
of large τ1 = −p2/m2 with logarithmical accuracy we have

Mγ
e = Mγ

e (τ1) · p̂ ≈ − α

4π
log (τ1) · p̂, τ1 � 1. (36)

This mass operator contribution to the integral in (15) with logarithmical accuracy gives

− t

m2
Z

∞∫
−t/m2

Z

dτ

τ2
Mγ

e (τ1) = − α

4π
log

−t

m2
. (37)

The mass operators induced by additional Z and W bosons have the following form:

MZ
e =

α

2π(4cW sW )2

1∫
0

(1 − x) log (1 + τx) dx,

(38)

Mν = MW
e =

α

πs2
W

1∫
0

(1 − x) log (1 + τx) dx.
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Appendix B

VERTICES

The general form of the vertex function is V μ(k) = Aγμ +Bkμ; the term Bkμ inserted in
the box-type amplitude gives no contribution due to the gauge invariance. The vertex function
with one electron on the mass shell and other electron off the mass shell V μ

eeγ(p, p − k, k) =
−ieγμVeeγ(k2), normalized as Veeγ(0) = 0, has three contributions:

Veeγ = V γ
eeγ + (a ± γ5)2V Z

eeγ + ω2
−V W

eeγ . (39)

First, let us consider the QED-type contribution with the virtual photon intermediate state
V γ

eeγ . The standard procedure of joining denominators and performing the loop momenta
integration leads to

V γ
eeγ(k2) =

α

4π

1∫
0

dx

1∫
0

y dy

(
log

Λ2

D
+

k2bb̄

2D

)
, b = xy, b̄ = 1 − b,

(40)
D = (m2 − k2x(1 − x))y2 + (1 − y)λ2 − y(1 − y)(k2 − 2p1k),

where Λ is a cut-off regularization parameter. Since the subset of the diagrams considered here
is gauge invariant on its own, it was not essential for us to use the dimensional regularization
scheme providing gauge invariance, so we simply applied the cut-off technique. There is no
signiˇcant numerical difference between two schemes in this situation.

The renormalization procedure consists in subtraction at k = 0 and leads to

V γ
eeγ (τe) = − α

4π

1∫
0

log (1 + x(1 − x)τe) dx, τe = − k2

m2
. (41)

The contribution of this vertex function to the integral in (15) has the form

− t

m2
Z

∞∫
−t/m2

Z

dτ

τ2
V γ

eeγ(τe) ≈
α

4π

(
1 − log

−t

m2

)
. (42)

The other contributions are

V Z
eeγ =

α

2π(4cW sW )2

1∫
0

dx

1∫
0

y dy

(
log

1 − y

1 − y + bb̄τ
− bb̄τ

2(1 − y + bb̄τ)

)
,

(43)

V W
eeγ =

α

4πs2
W

1∫
0

dx

1∫
0

y dy

(
3 log

yc2
W + τbb̄

yc2
W

− τb(b̄ − b)
2(yc2

W + τbb̄)

)
.

Vertex function V μ
eeZ = −iGγμ(a ± γ5)VeeZ , G = e/(4sW cW ) has four different contribu-

tions:
VeeZ = ω−V γ + (a ± γ5)2V Z + ω−V ν + V 2ν , (44)
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and is normalized as VeeZ (k2 = m2
Z) = 0. These contributions are

V γ = − α

4π
log τ,

V Z =
1

(4cW sW )2
α

2π

1∫
0

dx

1∫
0

y dy

(
log

1 − y − bb̄

1 − y + bb̄τ
− bb̄τ

2(1 − y + bb̄τ)
− bb̄

2(1 − y − bb̄)

)
,

V ν = −αc2
W

4π

1∫
0

dx

1∫
0

y dy

(
3 log

yc2
W + τbb̄

yc2
W − bb̄

− τb(b̄ − b)
2(yc2

W + τbb̄)
− b(b̄ − b)

2(yc2
W − bb̄)

)
, (45)

V 2ν =
α

2πs2
W

1∫
0

dx

1∫
0

y dy

(
log

(1 − y)c2
W − bb̄

(1 − y)c2
W + τbb̄

− τbb̄

2(yc2
W + τbb̄)

− bb̄

2(yc2
W − bb̄)

)
.

And ˇnally, the vertex function V μ
eνW = i

γμω−√
2

VeνW as well contains three contributions:

VeνW = V ZW + V WZ + V γW , (46)

and is normalized as VeνW (τ = −c2
W ) = 0 and V ZW = V WZ . So, the contributions are

V ZW =
α

4πs2
W

1∫
0

dx

1∫
0

y dy×

×
(
−3 log

yax + τbb̄

yax − c2
W bb̄

+
τb(b̄ − b)

2(yax + τbb̄)
+

c2
W b(b̄ − b)

2(yax − c2
W bb̄)

)
,

V γW = − α

4π

⎡
⎣

1∫
0

dx

1∫
0

dy ×

×
(

3 log
bc2

W + τ + c2
W

bc2
W

+
τ(b̄ − b)

2(c2
W + τ b̄)

)
− 1 +

1
4

log
m2

W

m2
+

1
4

log
m2

λ2

]
,

where ax = x + (1 − x)c2
W . Note that the term containing log(m2/λ2) in expression V γW

can be omitted as it will be absorbed by the similar terms in two-loop contributions after
applying the YennieÄFrautschiÄSuura regularization (see [33] for details).

Appendix C

POLARIZATION OPERATORS

While considering the vacuum polarization operators of photon, Z and W boson at one
loop, one should recall that the regularization implies the double subtraction procedure. The
©truncatedª operators imply including only the vertices of interaction of bosons with the
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fermion loop. From now on, we will omit index ©trª. The general form of the polarization
operator is

Πμν(q) = gμνΠ(q2) + qμqνB(q2). (47)

We only need to consider a part of polarization tensor proportional to gμν . The reason is
the gauge invariance of the whole set of the double-box amplitudes, which leads to a zero
contribution for terms proportional to qμqν tensor.

Let us deˇne Πγ as

Πγ = − i

q2
Πγ(q2). (48)

It has ˇve types of contributions, corresponding to the intermediate state of leptonÄantilepton
pairs, quarkÄantiquark pairs, W+W− and the charged ghost state G+

W G−
W :

Πγ = Πl + Πq + ΠWW + ΠG±
W G∓

W + ΠW±G∓
W . (49)

The contribution of leptons and quarks is associated with the quadratic divergent integral over
the loop momentum:

1
4

∫
dk

(k2 − m2) ((k − q)2 − m2)
Sp

[
(k̂ + m)γμ(k̂ − q̂ + m)γν

]
. (50)

Using the set of divergent integrals (see Appendix D) and performing the regularization
procedure, we include the contribution of leptons and quarks as

Πl + Πq =
α

πτ

⎛
⎝ ∑

l=e,μ,τ

G(τ, σl) + 3
∑

q=u,d,s,...

Q2
qG(τ, σq)

⎞
⎠ , (51)

where

G(τ, σ) =
1
3
(τ − 2σ)L

( τ

σ

)
+

1
9
τ, L(z) =

1∫
0

dx log (1 + x(1 − x)z),

σf =
m2

f

m2
Z

, τ = − q2

m2
Z

.

Factor 3 takes into account the number of quark colours. The last three contributions
in (49) are

ΠWW + ΠG±
W G∓

W + ΠW±G∓
W = − α

12πτ

(
1
6
τ + (5τ − c2

W )L
(

τ

c2
W

))
, (52)

the known result for the FeynmanÄ't Hooft gauge used in [34,35].
The polarization operator for Z boson has seven types of contributions:

ΠZ = Πl
Z + Πq

Z + Πν
Z + ΠW+W−

Z + ΠG+
W G−

W

Z + ΠG1G2
Z + ΠW±G∓

W

Z , (53)
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where we used the deˇnition

ΠZ = − i

q2 − m2
Z

ΠZ
tr(q

2). (54)

The contribution of lepton Πl
Z , quark Πq

Z and the neutrino Πν
Z loops can be calculated in the

nonrenormalized approach:

Πμν =
α

12π

(
q2 log

Λ2

q2
+ O(q2)

)
gμν . (55)

The renormalization of R(τ) for any contribution to the polarization operator of Z boson
consists of the following replacement:

R(τ) → R(τ) − R(−1) − (τ + 1)R′(−1). (56)

In particular, for example,

−q2 log
q2

m2
→ m2

ZF (τ), F (τ) = τ log τ − 1 − τ. (57)

Keeping in mind that there are three generations of charged leptons, neutrinos, and quarks,
we obtain

Πl+q+ν
Z =

α

12π

F (τ)
1 + τ

[
3 +

3
4(sW cW )2

+
1

2(sW cW )2

(
1 − 2s2

W +
20
9

s4
W

)]
. (58)

The contribution of W+W− pair in the intermediate state to the Z-boson polarization operator
looks like

ΠW+W−

Z =
αc2

W

8πs2
W

1
1 + τ

×

×
[(

19
6

τ − 16
3

)
L

(
τ

c2
W

)
−

(
19
6

τ − 16
3

)
c1 +

17
2

(τ + 1)c2

]
,

c1 = L

(
− 1

c2
W

)
≈ −0.248, c2 =

1∫
0

x(1 − x)
1 − x(1 − x)/c2

W

dx ≈ 0.226.

The contribution of the charged ghosts G±
W is

ΠG+
W G−

W

Z = −
α

(
1 − 2s2

W

)2

4π(cW sW )2
1

1 + τ
×

×
[(

1
12

τ +
1
3
c2
W

) (
L

(
τ

c2
W

)
− c1

)
+

1
c2
W

(τ + 1)
(

1
12

− 1
3
c2
W

)
c2

]
,

ΠW±G∓
W

Z = −αs4
W

2π

1
1 + τ

[
L

(
τ

c2
W

)
− c1 −

1
c2
W

c2(1 + τ)
]

.
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And ˇnally, the contribution from the state with ghosts G1,2 is

ΠG1G2
Z =

α

4π(cW sW )2
1

1 + τ
[τ(A(τ) − A(−1)) + (τ + 1)A′(−1)], (59)

with explicit form of A(τ) given in Appendix D.
The polarization operator for W boson has contributions from the loop Feynman dia-

grams with (ν, e), (d̄ + s̄)(u + c), (W, Z), (W, γ) and the states with ghosts. Deˇning the
dimensionless combination

ΠW = − i

q2 − m2
W

ΠZ
tr(q

2) = ΠW (τW ), τW = − q2

m2
W

, (60)

we write

ΠW = Πlν̄l

W +
∑

q

Πq
W + ΠW,Z

W + ΠW,GZ

W + ΠGW ,GZ

W + ΠW,γ
W + ΠGW ,γ

W . (61)

From now on, when considering the deˇnite contributions to ΠW , we imply that τ → τW .
Let us ˇrst consider the contributions from fermions. For the state with a charged lepton and
the corresponding antineutrino we obtain

∑
Πlν̄l

W = 3
α

24πs2
W

1
1 + τ

F (τ), (62)

with function F given in (57). Factor 3 corresponds to the number of lepton generations.
The contribution of quark states is

∑
q=u,d,s,c

Πq
W = 4

α

24πs2
W

1
1 + τ

F (τ), (63)

where factor 4 corresponds to the number of pairs (d̄ + s̄)(u + c). For the (W, Z) state we
have

ΠW,Z
W = − αc2

W

4s2
W (1 + τW )

[Ψ(τW ) − Ψ(−1) − (1 + τW )Ψ′(−1)],

Ψ(z) =
(

4z − 1 − 1
c2
W

) 1∫
0

log
(

x +
1 − x

c2
W

+ x(1 − x)z
)

dx−

−
(

1
12

z +
1
3

) 1∫
0

log (1 + x(1 − x)z) dx+

+
1
2
s2

W

1∫
0

dx

1∫
0

y log
(

y + (1 − y)
(

x +
1 − x

c2
W

)
+ y(1 − y)z

)
dy, (64)

Ψ(−1) = 0.226, Ψ′(−1) = −1.26.
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Now we consider the intermediate states (W, GZ) and (GW , GZ). For the insertion to the
box amplitude we have

ΠW,GZ

W + ΠGW ,GZ

W = − α

2π

1
1 + τ

⎡
⎣

1∫
0

dx log
(

x + (1 − x)(1 + τx)c2
W

x + (1 − x)2c2
W

)
−

− τ

(
A(τ) − A

(
− 1

c2
W

))
− (τ + c2

W )A′
(
− 1

c2
W

)]
, (65)

with A(τ) taken with γ = 1/c2
W .

For the last two terms we have

ΠW,γ
W + ΠGW ,γ

W =
α

4π(τ + 1)

(
−4Q(τ) +

5
36

R(τ)
)

,

Q(τ) = τ

1∫
0

dx log (1 + τx) + 3 + (1 + τ)
(

1 +
1
2

log
m2

Z

λ2

)
,

R(τ) = − 6
τ2

− 15
τ

+ 11 + 6
(

1 + τ

τ

)3

log (1 + τ) − 20 − 27(1 + τ).

Note that the term log
(
m2/λ2

)
in the expression for Q(τ) is compensated by the correspond-

ing contributions from the two-box amplitudes.
Let us now consider the contributions to the transition polarization ΠZγ

μν = ΠZγgμν and
deˇne the dimensionless function

ΠZγ = − i

q2
ΠZγ

tr (q2). (66)

As shown above, the fermions contribution is proportional to a2 and can be omitted. The
contributions of (W+W−), (W±G∓

W ), (G±
W G∓

W ) to ΠZγ are, respectively:

−i
αcW

8πsW

(
−19

6
+

16
3τW

)
L(τW ), −i

αcW

8πsW

(
1
6

+
2

3τW

)
L(τW ), i

αc3
W

2πsW τW
L(τW ).

Thus, the total is

ΠZγ = − iαcW

8πsW

(
−3 +

1
τW

(6 − 4c2
W )

)
L(τW ). (67)

Appendix D

LOOP INTEGRALS AND REGULARIZATION

To calculate loop integrals, we perform the Wick rotation of the loop momentum k
(k0 → ik4, k2 = −k2

E < 0). In order to regularize ultraviolet divergence, we introduce
the cut-off parameter Λ so k2

E < Λ2, and all of the kinematical invariants much less (i.e.,



NNLO Electroweak Corrections for Polarized M�ller Scattering 1015

Λ2 � |pipj |). The ˇnal result will be independent of Λ after the renormalization procedure.
Let us now list all the integrals we need:

∫
k2dk

(k2 − D)3
= log

Λ2

D
− 3

2
,

∫
dk

(k2 − D)2
= log

Λ2

D
− 1,

∫
dk

(k2 − D)3
= − 1

2D
,

∫
dk

(k2 − D)4
=

1
6D2

, (68)

∫
(k2)2dk

(k2 − D)4
= log

Λ2

D
− 11

6
,

∫
k2dk

(k2 − D)4
= − 1

3D
.

Here, we use the notation dk ≡ d4k/(iπ2) = k2
Edk2

E , where kE is the Euclidean 4-vector
(i.e., k2

E = k2
1 + k2

2 + k2
3 + k2

4 > 0), and omit the terms of order O(D/Λ2). We also use the
consequence of the integrand symmetry:

∫
f(k2) kμdk = 0 (69)

for any function f(k2). The standard procedure of shifting variable in loop integrals [32]
leads to ∫

dk

((k − b)2 − d)2
= log

Λ2

d
− 1,

∫
kμdk

((k − b)2 − d)2
= bμ

(
log

Λ2

d
− 3

2

)
.

Let us consider the divergent integrals with A ≡ k2 − m2 and B ≡ (q − k)2 − m2:
∫

dk

AB
= LΛ − 1 − L,

∫
kμdk

AB
=

1
2
qμ

(
LΛ − 3

2
− L

)
,

(70)∫
kμkνdk

AB
= gμν

{
−Λ2

4
+

q2

72
− m2

4
+

1
2

(
m2 − q2

6

)
LΛ +

1
3

(
q2

4
− m2

)
L

}
+

+ qμqν

{
1
3
LΛ − 5

9
+

1
3

(
m2 − q2

)
L

}
,

where

LΛ = log
Λ2

m2
, L = L(τ) =

1∫
0

dx log (1 + x(1 − x)τ), τ = − q2

m2
.

By contracting indices in the tensor integral (70), we obtain

∫
k2dk

AB
= −Λ2 − q2

2
− m2 + 2m2LΛ − m2L. (71)
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According to the renormalization procedure, we can omit the terms having the form aq2+bm2

and (cq2 + dm2)Lλ.
Let us consider now the general integral of the form

Iμν =
∫

kμkν dk

(k2 − m2
1)((k − q)2 − m2

2)
. (72)

Now, let us use the following algebraic identity:

1
(q − k)2 − m2

2

=
1

k2 − m2
2

+
2qk − q2

(k2 − m2
2)2

+
(2qk − q2)2

(k2 − m2
2)2((q − k)2 − m2

2)
. (73)

Due to our renormalization convention, we can omit the ˇrst and the second terms in the
right-hand side of this equation, so the integral reads as

Iμν =
∫

kμkν(2qk − q2)2 dk

(k2 − m2
1)(k2 − m2

2)2((k − q)2 − m2
2)

. (74)

First, we combine the factors (k2 − m2
1) and (k2 − m2

2)
2 in the denominator, using the

Feynman trick

1
a2b

= 2

1∫
0

(1 − x) dx

(a(1 − x) + bx)3
, (75)

and obtain

1
(k2 − m2

1)(k2 − m2
2)2

= 2

1∫
0

(1 − x) dx

(k2 − M2
x)3

, M2
x = (1 − x)m2

2 + xm2
1.

Next, we join the resulting expression with the factor ((k−q)2−m2
2) with the similar Feynman

identity

1
c3d

= 3

1∫
0

(1 − y)3 dy

(c(1 − y) + dy)4
. (76)

And ˇnally, get

1
(k2 − M2

x)3((q − k)2 − m2
2)

= 3

1∫
0

(1 − y)2dy

((k − yq)2 − m2
1d)4

, (77)

where

d = τ1y(1 − y) + μ2, μ2 = x(1 − y) + γ[y + (1 − x)(1 − y)],

τ1 = − q2

m2
1

, γ =
m2

2

m2
1

.
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Thus, we have the logarithmically-divergent loop momentum integral, which allows the op-
eration of the loop momentum shifting k = k̄ + qy. After that, we can use the loop integrals
from the beginning of this Appendix. Now, we have

Iμν = A(τ1, γ) q2gμν + O(qμqν),
(78)

A(τ1, γ) = −
1∫

0

dx

1∫
0

dy(1 − x)(1 − y)2
(

log d − τ1(1 − 2y)2

2d

)
,

therefore the renormalization procedure for this integral has the form

τ1A(τ1, γ) → τ1(A(τ1, γ) − A(−1, γ)) + (1 + τ1)A′(−1, γ), (79)

where A(−1, γ) ≈ −0.0896 and A′(−1, γ) ≈ 0.00654 for γ = m2
H/m2

Z = 1.879.
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