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HADRON AS COHERENT STATE
ON THE HOROSPHERE OF THE LOBACHEVSKY
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A model of hadron (proton) as a coherent state of transverse excitations on the horosphere in
momentum space identiˇed with partons is presented. The features of multiparticle production resulting
from the existence of theoretical and experimental constants characterizing the processes with high
multiplicity at the LHC are investigated.
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The investigation of the multiparticle production processes at high energies is designed to
provide important information about the properties of the fundamental interactions. In this
regard, the new results presented by the ATLAS and CMS collaborations require theoretical
understanding both in terms of existing models and theories and search for new approaches.

Typical sizes that characterize the processes of pion production, i.e., mainly processes due
to the strong interaction in the collision of two hadrons at centre-of-mass energy

√
S have

the following values:

r0S =
h

mπc
= 1.46 fm, r0 ∝ 2.33 fm, r ∝ hc√

S
,

(1)√
S = 7 TeV, reff � r0S ln P (S),

where r0S is the radius of the strong (nuclear) interaction, i.e., the Compton wavelength of
a pion; r0 is the experimental value of the correlation radius of the charged pions produced
in the protonÄproton collision (see the Figure), which can be regarded as the distance at
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The dependence of the correlation radius of the pion pairs on the multiplicity of charged particles. It
is evident that from the average multiplicity of charged particles 60 there is saturation Å correlation
radius does not change with increasing average multiplicity [1]

which the strong interactions are weak enough for the secondary hadrons formation; r is
the de Broglie wavelength corresponding to the energy of the colliding particles; the last
inequality is a limit on the possible increase in the effective radius of interaction in the strong
interactions of hadrons, which follows from the general principles of quantum ˇeld theory,
where P (S) is a polynomial of degree less than 2 [2].

The main goal of this work is to develop a model of a hadron as a coherent state of its
excitations interpreted as partons and to establish restrictions on the average multiplicity of
produced particles resulting from the model based on the values (1).

Let us note that there are quite a number of physical models that describe more or
less various aspects of multiparticle production processes [3]. The hydrodynamic model of
multiparticle production, proposed by L.D. Landau and S. Z. Belenky in [4], indicates one
characteristic dimension r0S . Indeed, the hydrodynamic description of a system of particles
is the approximation followed from the kinetic equations and it essentially depends on the
characteristic linear dimension L of the existing problem in the study.

In this paper, we suppose that the radius of nuclear forces (Compton length of the pion)
L = 1.46 · 10−15 m is the characteristic size of the investigated system.

Inˇnitesimal volumes used for the formulation of integral relations in hydrodynamics,
thus, have to be much smaller than L3 and much larger than the mean free path of the
particles. It follows from (1) that the energy of the LHC from 7 TeV and above satisˇes this
condition.

Let us consider the collision of two hadrons at high energy, for example, pro-
tonÄproton collision in the Large Hadron Collider. We suppose that colliding protons
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have a 4-momenta

p1 = (p01,p1), p2 = (p02,p2),
(2)

p2
1 = p2

1 − p2
01 = p2

2 − p2
02 = −m2

p,

where mp is the proton mass. We use a system of units where c = h = 1.
The collision is carried out at centre-of-mass energy

√
S which is determined as

S = −(p2
1 + p2

2) = −P 2 = −P 2
x − P 2

y − P 2
z + P 2

0 =

= −(px1 + px2)2 − (py1 + py2)2 − (pz1 + pz2)2 + (p01 + p02)2, (3)

where
P = (P, iP0) = [px1 + px2, py1 + py2, pz1 + pz2, +i(p01 + p02)]. (4)

It should be noted that in the laboratory frame (the rest system of the second proton)

P = (P, iP0) = [px, py, pz, i(p0 + mp)], (5)

where p = (px, py, pz, i(p0)) = (p, ip0) is four-momentum of the incident proton.
We introduce quasi-Cartesian coordinates in Lobachevsky space realized on the upper

sheet of the hyperboloid (3) in the momentum space [5] as

Pz =

√
S

2

[
exp

(
2qz√

S

)
+

(
q2
x + q2

y

S
− 1

)
exp

(
−qz√

S

)]
,

Px = qx exp
(
−2qz√

S

)
, Py = qy exp

(
−2qz√

S

)
, (6)

P0 =

√
S

2

[
exp

(
2qz√

S

)
+

(
q2
x + q2

y

S
+ 1

)
exp

(
−qz√

S

)]
.

The formula inverse to formula (6) is

qx =
Px

√
S

P0 − Pz
, qy =

Py

√
S

P0 − Pz
, qz =

√
S ln

√
S

P0 − Pz
. (7)

The metric element has the form

dS2 = exp
(
−2qz√

S

)
(dq2

x + dq2
y) + dq2

z , (8)

and the volume element is

dVm =
√

g dqx dqy dqz = exp
(
− 2qz√

S

)
dqx dqy dqz. (9)

The introduced quasi-Cartesian coordinates (6) allow us to separate variables qx, qy,
and qz . That is impossible in four-dimensional space (3). Therefore, we can consider the
physics in the plane of the variables qx, qy only.
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In addition, considering that Euclidean plane geometry is realized on the horosphere of
Lobachevsky space, the Fourier transformation F of the function φ1(qx, qy)φ2(qz) deˇned on
that plane (horosphere) deˇnes the function in the coordinate plane also with the Euclidean
geometry. That is not correct for the variable qz as is evident from (9),

Ψ1(x, y)Ψ2(z) ↔ Fφ1(qx, qy)φ2(qz). (10)

We note that quasi-Cartesian coordinates (6) and (7) automatically ensure the scale invari-
ance of the theory in the plane of qx, qy, i.e., invariance under the following transformations:

P ′
x = λPx, P ′

y = λPy, P ′
z = λPz, P ′

0 = λP0, (11)

which is valid for any
√

S.
The fundamental role of scale invariance in processes of multiparticle production has been

pointed out by V.A.Matveev, R.M.Muradyan, and A.N. Tavkhelidze in [6, 7].
Let us build the quantum mechanics of the system described by four-momentum (6).
Since the horosphere of three-dimensional Lobachevsky space includes the geometry of

the two-dimensional Euclidean space, we can introduce conjugate coordinates in momentum
space in the standard way [8]:

qx, x = −ih
∂

∂qx
, qy, y = −ih

∂

∂qy
. (12)

There is a HeisenbergÄWeyl algebra

[x, qx] = [y, qy] = ihI,

[x, y] = [qx, qy] = 0, (13)

[x, I] = [y, I] = [qx, I] = [qy , I] = 0,

where I is the identity operator.
The expressions (12) and (13) allow us to construct quantum coherent states on the

horosphere.
The extra dimensional constant characterizing the system is required to lead the coordinates

and momenta (12) to the same dimension. It is needed for the construction of creation and
annihilation operators. It is natural to take the size of hadron (proton) as such constant. This
size provides, due to the uncertainty relation, nonzero components x, y, even for a hadron
moving along the axis z, which in turn implies the existence of nonzero components qx, qy

in accordance with (7).
Then the creation and annihilation operators can be written in the following manner:

ax =
Rqx + i

x

R√
2

, a+
x =

Rqx − i
x

R√
2

,

ay =
Rqy + i

y

R√
2

, a+
y =

Rqy − i
y

R√
2

.

(14)

HeisenbergÄWeyl algebra in terms of the creation and annihilation operators is

[ak, a+
l ] = δklI, [a+

k , a+
l ] = [ak, al] = [ak, I] = [a+

k , I] = 0, (15)
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where k, l = 1, 2 correspond to x or y and h = 1. Coherent states are known to be deˇned
as a state of its own annihilation operators with complex eigenvalues

ax|z1〉 = z1|z1〉, ay|z2〉 = z2|z2〉. (16)

The coherent states (16) satisfy the following conditions:

〈z1|z1〉 = e|z1|2 , 〈z2|z2〉 = e|z2|2 . (17)

The expression for the total space of coherent states of two-dimensional problem on the
horosphere is the tensor product of states that are constructed using operators of the same
mode. These coherent states are determined by the formula

|z1, z2〉 = ez1a+
x ez2a+

y |0, 0〉, (18)

where the vacuum state |0, 0〉 is determined by the condition

ax|0, 0〉 = ay|0, 0〉 = 0. (19)

There is the completeness criterion for coherent states which for the states on the
horosphere (18) has the form∫

|z1, z2〉〈z1, z2|dμ(z1, z2) =
∫

|z1〉〈z1|dμ(z1)
∫

|z2〉〈z2|dμ(z2) = I, (20)

and the uncertainty relations are

ΔxΔqx =
h

2
, ΔyΔqy =

h

2
. (21)

Thus, if the uncertainty of x or y is of the order R, then the uncertainty of momentum will
be h/2R.

As you know, in the laboratory frame the incident particle (hadron) is 	attened in the
direction of the movement due to the Lorentz contraction. In this case, transverse degrees
of freedom (x and y) are important, since at high energies the kinetic energy of the hadron
constituents (partons) is much larger than the energy of their interaction.

Therefore, hadron moving at a speed close to the speed of light can be seen as a set of
almost free partons. Since components of hadron move in unison before collision, therefore
this state of a hadron can be considered as a coherent state of its transverse excitations, i.e.,
partons.

The main hypothesis is that the incident particle is a coherent state of partons, i.e.,
transverse excitations of a hadron.

It should be noted that expressions mentioned above are covariant.
Let us write expressions of coherent states in the occupation-number representation as

a+
x |z1〉 = a+

x

∑ zn1
1√
n1!

|n1〉 =
∑ n1z

n1−1
1√
n1!

|n1〉,
(22)

a+
y |z2〉 = a+

y

∑ zn2
2√
n2!

|n2〉 =
∑ n2z

n2−1
2√
n2!

|n2〉.
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The average number of quanta of excitation in each coherent state is deˇned by (see [9])

n̄1 = e−|z1|2〈z1|a+
x ax|z1〉 = |z1|2,

(23)
n̄2 = e−|z2|2〈z2|a+

y ay|z2〉 = |z2|2.

The total average number of excitations in both degrees of freedom is

n̄ = n̄1 + n̄2 = e−z2
1−z2

2 〈z1z2|a+
x ax + a+

y ay|z2z1〉 = |z1|2 + |z2|2, (24)

and the distribution of the number of excitations for each of the degrees of freedom obeys a
Poisson law

P (n) =
e−n̄ n̄n

n!
, (25)

where n̄ = n1 or n̄ = n2.
Therefore, the number of excitations corresponding to coherent state of hadron (25) is

a Poisson distribution and coincides with the multiplicity distribution in the multiperipheral
model [3].

The coordinate representation of a coherent state is given by (see [10])

〈x, y|z1, z2〉 ∝ exp

[
i
√

2
R

(β1x + β2y)

]
exp

{
−1
2R2

[(x −
√

2Rα1)2 + (y −
√

2Rα2)2]
}

.

(26)
The density distribution of the coordinates is

|〈x, y|z1, z2〉|2 ∝ exp
{
−1
R2

[(x −
√

2Rα1)2 + (y −
√

2Rα2)2]
}

. (27)

The corresponding momentum representation has the form

〈qx, qy|z1, z2〉 ∝ exp
[
iR

√
2(α1qx + α2qy)

]
×

× exp

⎧⎨
⎩−R2

2

⎡
⎣(

qx −
√

2
R

β1

)2

+

(
qy −

√
2

R
β2

)2
⎤
⎦

⎫⎬
⎭ , (28)

and therefore the density distribution is

|〈qx, qy|z1, z2〉|2 ∝ exp

⎧⎨
⎩−R2

⎡
⎣
(

qx −
√

2
R

β1

)2

+

(
qy −

√
2

R
β2

)2
⎤
⎦

⎫⎬
⎭ , (29)

where the following notation is used:

z1 = α1 + iβ1, α1 = |z1| cos θ1, β1 = |z1| sin θ1,
z2 = α2 + iβ2, α2 = |z2| cos θ2, β2 = |z2| sin θ2.

(30)

According to the Gaussian distribution in (21),
√

2Rα1 and
√

2Rα2 are the average
coordinates of the particles. We note that in this case the coordinates characterize the size of
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hadron. Let us estimate minimal value of n̄ assuming n = n1 in (25). Using the size of the
proton 0.84 fm (see [11]) and the relation

√
2Rα1 =

√
2R|z1| cos θ1 =

√
2nR cos θ1 = r0, (31)

we get the minimum value n̄ ≈ 4 for cos θ1 = 1. We can obtain the number of excitations
(partons) arbitrarily large varying cos θ1.

At this stage, restrictions on the phase change can be offered only on the basis of heuristic
arguments, for example, the symmetry. We consider θ1 = π/4 based on assumption of
symmetry between the coordinate and momentum representations which follows from the
explicit expressions (27) and (29). Then cos θ1 = sin θ2 = 1/

√
2 and we obtain n̄ ≈ 7.5.

If using the expression
√

2nR cos θ1 = r0S instead of (31) at the same θ1, θ2 we get
n̄ = 3. It is obvious that θ1,2 → π/2 at high multiplicity n and correspondingly high energy.

Thus, we constructed a model of hadron as a coherent state of excitations on the horosphere
of the Lobachevsky momentum space identiˇed with partons and hadron structure functions
which depend on number of partons.

The authors would like to thank V.G. Baryshevsky and V.V.Andreev for useful discus-
sions.
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