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Qubits are realized as polarization states of photons or as superpositions of the spin states of
electrons. In this paper, we propose a scheme to probabilistically teleport an unknown arbitrary two-
qubit state using a nonmaximally entangled GHZ-like state and a nonmaximally entangled Bell state
simultaneously as quantum channels. We also discuss the success probability of our scheme. We
perform POVM in the protocol which is operationally advantageous. In our scheme, we show that the
nonmaximal quantum resources perform better than maximal ones.

ŠÊ¡¨ÉÒ ·¥ ²¨§μ¢ ´Ò ± ± ¶μ²Ö·¨§ Í¨μ´´Ò¥ ¸μ¸ÉμÖ´¨Ö ËμÉμ´μ¢ ¨²¨ ¸Ê¶¥·¶μ§¨Í¨¨ ¸¶¨´μ¢ÒÌ
¸μ¸ÉμÖ´¨° Ô²¥±É·μ´μ¢. �·¥¤² £ ¥É¸Ö ¸Ì¥³  ¢¥·μÖÉ´μ¸É´μ£μ É¥²¥¶μ·É¨·μ¢ ´¨Ö ´¥¨§¢¥¸É´μ£μ ¶·μ¨§-
¢μ²Ó´μ£μ ¤¢ÊÌ±Ê¡¨Éμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¸ ¶μ³μÐÓÕ ´¥³ ±¸¨³ ²Ó´μ § ¶ÊÉ ´´μ£μ GHZ-¶μ¤μ¡´μ£μ ¸μ-
¸ÉμÖ´¨Ö ¨ ´¥³ ±¸¨³ ²Ó´μ£μ ¸μ¸ÉμÖ´¨Ö 	Ô²²  μ¤´μ¢·¥³¥´´μ ¢ ± Î¥¸É¢¥ ±¢ ´Éμ¢ÒÌ ± ´ ²μ¢. ’ ±¦¥
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´¥³ ±¸¨³ ²Ó´Ò¥ ±¢ ´Éμ¢Ò¥ ¨¸ÉμÎ´¨±¨ ¶·μÖ¢²ÖÕÉ ¸¥¡Ö ²ÊÎÏ¥ ³ ±¸¨³ ²Ó´ÒÌ.
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INTRODUCTION

Quantum teleportation is a method of transmission of a quantum state using entangled
resources with classical communication and local operations. Originally the quantum telepor-
tation was presented by Bennett et al. [1] for arbitrary single-qubit quantum states by using
a maximally entangled Bell state. After that several theoretical and experimental aspects of
different teleportation protocols with various types of quantum resources appeared in the lit-
erature, some of which are noted in [2Ä15]. We describe some of the works below. In 1994,
Vaidman [2] proposed a teleportation protocol of system quantum states with continuous
variables. In 2004, Zheng [5] presented a scheme for approximate conditional teleportation of
an unknown atomic state without the Bell-state measurement. In 2005, Rigolin [6] proposed
a quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entan-
glement. In 2005, Cardoso et al. [7] proposed a teleportation protocol of entangled states
without Bell-state measurement. In 2010, Tsai and Hwang [11] presented a teleportation of
a pure EPR state using GHZ-like state. In 2014, Nandi and Mazumdar [12] presented a
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teleportation protocol of a more general two-qubit state using the GHZ-like state as quantum
channel. In 2014, Zhu [13] presented a quantum teleportation of an arbitrary two-qubit state
via maximally entangled GHZ-like states. In 2011, Nie et al. [14] attempted the teleportation
of a three-qubit state which is an arbitrary GHZ-type state using four-qubit cluster states as
quantum channel. In 2016, Li et al. [15] described a perfect teleportation protocol for a more
general three-qubit state using four-qubit cluster states as quantum channel.

The protocol given by Bennett et al. [1] is a perfect teleportation protocol; that is, the
transmission of qubit state is performed with ˇdelity one. Many of the subsequent teleportation
protocols are not perfect Å the state obtained after transmission has less ˇdelity than the one
with the original state. Probabilistic teleportation is a method by which a state is teleported
perfectly with some probability. There is a chance of failure with nonzero probability in
which case the quantum information is totally lost. There are two different schemes of
probabilistic teleportation, in one of which the sender performs an unambiguous quantum
state discrimination [16], while in the other the receiver performs for extracting the quantum
state [17]. In both schemes, the probability for total information loss is nonzero. Several works
on probabilistic teleportation using different types of entanglement resources are obtainable
in [17Ä21].

In 2000, Wan-Li et al. [17] presented a probabilistic teleportation of a single-qubit arbitrary
state through a partially entangled quantum channel. In the same year, Shi et al. [18] proposed
a probabilistic teleportation of two-particle entangled state by pure entangled three-particle
state. In 2002, Agrawal and Pati [19] proposed a probabilistic teleportation protocol for an
unknown two-qubit state using nonmaximally entangled state as a shared resource. In 2003,
Yan and Wang [20] proposed a probabilistic and controlled teleportation scheme of the
unknown one-particle quantum states and unknown two-particle quantum states. In 2013, Yu
and Wu [21] proposed a probabilistic teleportation of an unknown three-qubit entangled state
via a quantum channel of ˇve-qubit nonmaximally entangled cluster state.

In this paper, we present a probabilistic teleportation scheme for an arbitrary two-qubit
quantum state by using simultaneously two types of entangled resources, namely, the non-
maximally entangled GHZ-like state and a nonmaximally entangled Bell state. The operations
we perform are POVM measurement, local operations, and classical communication.

We mention two specialities of the present protocol. First, POVM is used in place of
the usual quantum measurements with respect to the orthogonal bases. Second, the nonmaxi-
mally entangled resources perform better in our scheme than the maximally entangled ones.
Demonstration of the latter is the main motivation of the paper.

1. THE MAIN RESULTS

Alice wants to transmit an unknown two-qubit entangled state to a distant receiver Bob.
An arbitrary two-qubit pure quantum state is described as

|ψ〉12 = (a00|00〉 + a01|01〉+ a10|10〉+ a11|11〉)12, (1)

where the parameter
1∑

i=0,j=0

|aij |2 = 1. Alice wants to teleport the state |ψ〉12 to Bob.
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Suppose two quantum channels shared between Alice and Bob: one nonmaximally entan-
gled GHZ-like state and one nonmaximally entangled Bell state given by

|ψ〉345 = (a|000〉+ b|011〉+ c|101〉 + d|110〉)345 and

|ψ〉67 = (e|00〉 + f |11〉)67,

where a, b, c, d, e, and f 's are all real and nonzero, a2 + b2 + c2 + d2 = 1, and e2 + f2 = 1;
the particles 3, 4, and 6 are in the possession of the sender Alice, the particles 5 and
7 belong to the receiver Bob. It may be noted that maximally entangled GHZ-like state
(1/2)(|000〉+ |011〉 + |101〉+ |110〉) has been used in communication protocols in [13].

Therefore, the state of the whole system composed of an unknown two-qubit state and
two quantum channels is given by

|Ψ〉1234567 = |ψ〉12 ⊗ |ψ〉345 ⊗ |ψ〉67. (2)

Consider GHZ-like category mutually orthogonal states given by

|ξ±〉 =
1
2
{(|100〉+ |111〉)± (|001〉 + |010〉)} and

|η±〉 =
1
2
{(|000〉+ |011〉)± (|101〉 + |110〉)},

and the Bell basis given by

|Φ±〉 =
1√
2
(|00〉 ± |11〉), |Ψ±〉 =

1√
2
(|01〉 ± |10〉).

We choose the POVM as follows:

E1 = |ξ+〉134|Φ+〉26134〈ξ+|26〈Φ+|, E2 = |ξ−〉134|Φ+〉26134〈ξ−|26〈Φ+|,

E3 = |ξ+〉134|Φ−〉26134〈ξ+|26〈Φ−|, E4 = |ξ−〉134|Φ−〉26134〈ξ−|26〈Φ−|,

E5 = |η+〉134|Φ+〉26134〈η+|26〈Φ+|, E6 = |η−〉134|Φ+〉26134〈η−|26〈Φ+|,

E7 = |η+〉134|Φ−〉26134〈η+|26〈Φ−|, E8 = |η−〉134|Φ−〉26134〈η−|26〈Φ−|,

E9 = |η+〉134|Ψ+〉26134〈η+|26〈Ψ+|, E10 = |η−〉134|Ψ+〉26134〈η−|26〈Ψ+|,

E11 = |η+〉134|Ψ−〉26134〈η+|26〈Ψ−|, E12 = |η−〉134|Ψ−〉26134〈η−|26〈Ψ−|,

E13 = |ξ+〉134|Ψ+〉26134〈ξ+|26〈Ψ+|, E14 = |ξ−〉134|Ψ+〉26134〈ξ−|26〈Ψ+|,

E15 = |ξ+〉134|Ψ−〉26134〈ξ+|26〈Ψ−|, E16 = |ξ−〉134|Ψ−〉26134〈ξ−|26〈Ψ−|,

E17 = I −
16∑

i=0

Ei.

The possible outcomes for Bob after Alice performs the POVM measurement on her pairs
of three qubits (1, 3, 4) and two qubits (2, 6) are given in Table 1.

For the case of E17, the protocol fails.
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Table 1

Alice's
After the measurement outcome state of Bob

measurement

E1
1

2
√

2
{a10(a + d)e|00〉 + a11(a + d)f |01〉 + a00(b + c)e|10〉 + a01(b + c)f |11〉}57

E2
1

2
√

2
{a10(a + d)e|00〉 + a11(a + d)f |01〉 − a00(b + c)e|10〉 − a01(b + c)f |11〉}57

E3
1

2
√

2
{a10(a + d)e|00〉 − a11(a + d)f |01〉 + a00(b + c)e|10〉 − a01(b + c)f |11〉}57

E4
1

2
√

2
{a10(a + d)e|00〉 − a11(a + d)f |01〉 − a00(b + c)e|10〉 + a01(b + c)f |11〉}57

E5
1

2
√

2
{a00(a + d)e|00〉 + a01(a + d)f |01〉 + a10(b + c)e|10〉 + a11(b + c)f |11〉}57

E6
1

2
√

2
{a00(a + d)e|00〉 + a01(a + d)f |01〉 − a10(b + c)e|10〉 − a11(b + c)f |11〉}57

E7
1

2
√

2
{a00(a + d)e|00〉 − a01(a + d)f |01〉 + a10(b + c)e|10〉 − a11(b + c)f |11〉}57

E8
1

2
√

2
{a00(a + d)e|00〉 − a01(a + d)f |01〉 − a10(b + c)e|10〉 + a11(b + c)f |11〉}57

E9
1

2
√

2
{a01(a + d)e|00〉 + a00(a + d)f |01〉 + a11(b + c)e|10〉 + a10(b + c)f |11〉}57

E10
1

2
√

2
{a01(a + d)e|00〉 + a00(a + d)f |01〉 − a11(b + c)e|10〉 − a10(b + c)f |11〉}57

E11
1

2
√

2
{−a01(a + d)e|00〉 + a00(a + d)f |01〉 − a11(b + c)e|10〉 + a10(b + c)f |11〉}57

E12
1

2
√

2
{−a01(a + d)e|00〉 + a00(a + d)f |01〉 + a11(b + c)e|10〉 − a10(b + c)f |11〉}57

E13
1

2
√

2
{a11(a + d)e|00〉 + a10(a + d)f |01〉 + a01(b + c)e|10〉 + a00(b + c)f |11〉}57

E14
1

2
√

2
{a11(a + d)e|00〉 + a10(a + d)f |01〉 − a01(b + c)e|10〉 − a00(b + c)f |11〉}57

E15
1

2
√

2
{−a11(a + d)e|00〉 + a10(a + d)f |01〉 − a01(b + c)e|10〉 + a00(b + c)f |11〉}57

E16
1

2
√

2
{−a11(a + d)e|00〉 + a10(a + d)f |01〉 + a01(b + c)e|10〉 − a00(b + c)f |11〉}57

The probabilities of obtaining the measurement results E1 to E16 are given below:

for Ei, i = 1, 2, 3, 4, P1 =
1
8
{|a10|2(a + d)2e2 + |a11|2(a + d)2f2 + |a00|2(b + c)2e2+

|a01|2(b + c)2f2};
for Ei, i = 5, 6, 7, 8, P2 =

1
8
{|a00|2(a + d)2e2 + |a01|2(a + d)2f2 + |a10|2(b + c)2e2+

|a11|2(b + c)2f2};
for Ei, i = 9, 10, 11, 12, P3 =

1
8
{|a01|2(a + d)2e2 + |a00|2(a + d)2f2 + |a11|2(b + c)2e2 +

|a10|2(b + c)2f2};



538 Choudhury Binayak S., Dhara Arpan

for Ei, i = 13, 14, 15, 16, P4 =
1
8
{|a11|2(a + d)2e2 + |a10|2(a + d)2f2 + |a01|2(b + c)2e2 +

|a00|2(b + c)2f2};
for E17, P5 = 1 − P1 − P2 − P3 − P4.

Now Alice informs Bob of her measurement result, and Bob gives a corresponding
general evolution. To carry out the general evolution, Bob introduces an auxiliary qubit
in an initial state |0〉aux and makes another unitary transformation Uaux under the ba-
sis {|000〉, |010〉, |100〉, |110〉, |001〉, |011〉, |101〉, |111〉}58aux, the form of collective unitary

transformation Uaux which is a 8 × 8 matrix given by Uaux =
(

A B
B −A

)
, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(b + c)f
(a + d)e

0 0 0

0
(b + c)f
(a + d)f

0 0

0 0
(b + c)f
(b + c)e

0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1 −

{
(b + c)f
(a + d)e

}2

0 0 0

0

√
1 −

{
(b + c)f
(a + d)f

}2

0 0

0 0

√
1 −

{
(b + c)f
(b + c)e

}2

0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After applying the unitary transformation Uaux, Bob performs a measurement on the
auxiliary particle. If the measurement result is |0〉aux, then by applying the appropriate
unitary operations U1 to U16 given below, Bob gets the desired state corresponding to the
16 states available to Bob. If the measurement result is |1〉aux, the teleportation protocol fails.
The details are given in Table 2.

Here the unitary operations Ui's are given by

U1 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , U2 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , U3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

U4 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , U5 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , U6 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,
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Table 2

Alice's
measurement

After applying Uaux and the measurement
outcome |0aux〉

Unitary operator
to achieve

the desired state

E1 {a10|00〉 + a11|01〉 + a00|10〉 + a01|11〉}57 U1

E2 {a10|00〉 + a11|01〉 − a00|10〉 − a01|11〉}57 U2

E3 {a10|00〉 − a11|01〉 + a00|10〉 − a01|11〉}57 U3

E4 {a10|00〉 − a11|01〉 − a00|10〉 + a01|11〉}57 U4

E5 {a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉}57 U5

E6 {a00|00〉 + a01|01〉 − a10|10〉 − a11|11〉}57 U6

E7 {a00|00〉 − a01|01〉 + a10|10〉 − a11|11〉}57 U7

E8 {a00|00〉 − a01|01〉 − a10|10〉 + a11|11〉}57 U8

E9 {a01|00〉 + a00|01〉 + a11|10〉 + a10|11〉}57 U9

E10 {a01|00〉 + a00|01〉 − a11|10〉 − a10|11〉}57 U10

E11 {−a01|00〉 + a00|01〉 − a11|10〉 + a10|11〉}57 U11

E12 {−a01|00〉 + a00|01〉 + a11|10〉 − a10|11〉}57 U12

E13 {a11|00〉 + a10|01〉 + a01|10〉 + a00|11〉}57 U13

E14 {a11|00〉 + a10|01〉 − a01|10〉 − a00|11〉}57 U14

E15 {−a11|00〉 + a10|01〉 − a01|10〉 + a00|11〉}57 U15

E16 {−a11|00〉 + a10|01〉 + a01|10〉 − a00|11〉}57 U16

U7 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ , U8 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ , U9 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ ,

U10 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠ , U11 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , U12 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

U13 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , U14 =

⎛
⎜⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , U15 =

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠ ,

U16 =

⎛
⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎠ .

As an illustration, corresponding to E1, the unitary transformation Uaux transforms the
state

1
2
√

2
{a10(a + d)e|00〉|0〉aux + a11(a + d)f |01〉|0〉aux + a00(b + c)e|10〉|0〉aux+

+ a01(b + c)f |11〉|0〉aux}
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to the state

|Ψ〉58aux =
(b + c)f

2
√

2
{a10|00〉 + a11|01〉 + a00|10〉 + a01|11〉}57|0〉aux+

+
1

2
√

2
{a10(a + d) e

√
1 −

{
(b + c)f
(a + d)e

}2

|00〉 + a11(a + d)f

√
1 −

{
(b + c)f
(a + d)f

}2

|01〉+

+ a00(b + c) e

√
1 −

{
(b + c)f
(b + c)e

}2

|10〉}57|1〉aux.

Then from the measurement on the auxiliary particle it follows that if the measurement
result is |0〉aux, then the corresponding state is given by {a10|00〉 + a11|01〉 + a00|10〉 +
a01|11〉}57; and after applying the unitary transformation U1, Bob gets the desired state
which is given by {a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉}57, that is, the teleportation is

successful. The probability of getting |0〉aux in the single-qubit measurement is
(b + c)2f2

8
.

So the probability of success in case of the POVM yielding E1 is P1
(b + c)2f2

8
. Simi-

larly we can calculate the probabilities corresponding to the measurements E2, E3, . . . , E16

being performed. The protocol fails for the measurement E17. Then the total probability of
success for the teleportation process is

P = 4P1
(b + c)2f2

8
+ 4P2

(b + c)2f2

8
+ 4P3

(b + c)2f2

8
+ 4P4

(b + c)2f2

8
=

=
(b + c)2f2

2
{P1 + P2 + P3 + P4} =

=
(b + c)2f2

2 × 8
{(a + d)2e2 + (a + d)2f2 + (b + c)2e2 + (b + c)2f2} =

=
(b + c)2f2

16
{(a + d)2 + (b + c)2} =

=
(b + c)2f2

16
{a2 + d2 + b2 + c2 + 2ad + 2bc} =

(b + c)2f2

16
{1 + 2ad + 2bc}.

2. DISCUSSION AND CONCLUSIONS

The teleportation scheme was ˇrst advanced with a maximally entangled Bell state [1].
Gradually it has been established that nonmaximally entangled states have also their roles in
problems of quantum information and communication. There are entanglement concentration
protocols (ECPs) for generating maximal entanglements. But the use of nonmaximally entan-
gled states in communications can be more encouraging rather than passing through an ECP
and then opting for a communication protocol with maximally entangled channels. This is
one of the goals of probabilistic schemes.

Normally the probabilistic teleportation protocols use nonmaximally entangled quantum
channels in contrast to the perfect teleportations which are generally performed with the help
of maximally entangled states. There are also exceptions to the latter fact. For instance, it
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is possible to teleport perfectly arbitrary single-qubit states using class of W states which are
not maximally entangled [22]. In several cases the probabilistic teleportation tends to perfect
teleportation, as we use more entangled resources, and reduces to that when the quantum
channel is maximal. Thus, the success probability can be increased to any degree by proper
adjustment of parameters characterizing the quantum channel thereby making it nearer to a
maximally entangled channel.

Our protocol differs from the above category in that particular choice of the channels,
as maximally entangled resources do not supply us with the maximum possible probability
of success. This is the reason why the success probability cannot be arbitrarily increased
by adjustment of parameters. In fact, the use of maximal entanglement which results with
the particular choice of parameters as a = b = c = d = 1/2, and e = f = 1/

√
2, gives

a success probability 0.0625, whereas the maximum probability of success in our scheme
is 0.25. Thus, one implication of our result is that the maximal resource need not always give
the maximum probability of success. Neither of our protocols is related in the limit to the
perfect teleportation protocol. The nonmaximal resources perform better in our scheme.

Another speciality of our protocol is that we use POVM which is operationally more
advantageous compared to measurements with respect to orthogonal bases which are generally
performed in perfect as well as probabilistic teleportations.
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