
�¨¸Ó³  ¢ �—�Ÿ. 2016. ’. 13, º 4(202). ‘. 660Ä677

”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��. ’…��ˆŸ

LIGHT-LIKE WILSON LINE IN QCD
WITHOUT PATH ORDERING

G. C.Nayak1

665 East Pine Street, Long Beach, New York 11561, USA

Unlike the Wilson line in QED, the Wilson line in QCD contains path ordering. In this paper, we
get rid of the path ordering in the light-like Wilson line in QCD by simplifying all the inˇnite number
of noncommuting terms in the SU(3) pure gauge. We prove that the light-like Wilson line in QCD
naturally emerges when path integral formulation of QCD is used to prove factorization of the soft and
collinear divergences at all orders in coupling constant in QCD processes at high-energy colliders.
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INTRODUCTION

In the Feynman diagrams the infrared divergences appear whenever the energy-momen-
tum kμ involved with the massless particle becomes very small. Similarly, the collinear diver-
gences occur when the momenta k,p of two massless particles become parallel in the region
0 < k � p. Typically, the soft and collinear divergences occur in the Feynman diagrams
due to momentum integration in the quantum loop diagrams involving massless propagators
and due to momentum integration in the Feynman diagrams involving emission/absorption of
massless particles. In quantum electrodynamics (QED) the massless particle is photon, and
in quantum chromodynamics (QCD) the massless particle is gluon. The soft and collinear
divergences are more severe in QCD than those in QED, because massless gluons interact
with each other, whereas massless photons do not interact with each other. Since massless
particle is always light-like, one ˇnds that the soft and collinear divergences can be described
by the light-like Wilson line.

However, the physical quantities measured are all soft and collinear divergences free.
Hence, it is important to prove that all the noncanceling soft and collinear divergences in
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the perturbative Feynman diagrams are factorized in the deˇnition of the (physical) gauge-
invariant nonperturbative quantities in QCD, such as in the deˇnition of the parton distribution
function and fragmentation function at high-energy colliders, because the soft and collinear
limit corresponds to long-distance regime. This is done by supplying the Wilson line in the
deˇnition of the parton distribution function and fragmentation function [1]. The factorization
refers to separation of the short-distance effects from the long-distance effects in quantum
ˇeld theory.

The proof of factorization theorem in QCD is very nontrivial by using the diagrammatic
method of QCD [2, 3], but it is enormously simpliˇed by using the path integral method of
QCD [4, 5]. The main idea behind the path integral method of QCD to prove factorization
is to study the soft and collinear behavior of nonperturbative correlation function, such as
〈0|ψ̄(x)ψ(x′)ψ̄(x′′)ψ(x′′′) . . . |0〉 in QCD, due to the presence of the light-like Wilson line
in QCD. Note that the light-like quark with the light-like four-velocity lμ produces the
SU(3) pure gauge potential at all the time-space points xμ, except at the spatial position
x transverse to the motion of the quark at the time of the closest approach [2, 6, 7]. The
soft and collinear divergences in the Feynman diagrams in QCD can be studied by using the
eikonal approximation for the propagators and vertices [1,2,8Ä15]. Hence, due to the eikonal
approximation for the soft and collinear divergences arising from the soft and collinear gluon
interactions with the light-like quark, the light-like quark ˇnds the gluon ˇeld Aμa(x) as the
SU(3) pure gauge [4,5]. The U(1) pure gauge

Aμ(x) = ∂μω(x) (1)

gives the light-like Wilson line in QED

exp

⎡
⎣ie

xf∫
xi

dxμAμ(x)

⎤
⎦ , (2)

which is used to study factorization of the soft and collinear divergences in QED [8, 13]. In
QCD, the SU(3) pure gauge

T aAμa(x) =
1
ig

[∂μU(x)]U−1(x), U(x) = eigT aωa(x), (3)

gives the light-like Wilson line in QCD

P exp

⎡
⎣igT a

xf∫
xi

dxμAa
μ(x)

⎤
⎦ , (4)

which is used to study factorization of the soft and collinear divergences in QCD [4,5]. Note
that, unlike the Wilson line in QED in Eq. (2), which does not contain path ordering P , the
Wilson line in QCD in Eq. (4) contains path ordering P .

In this paper, we get rid of path ordering P in the light-like Wilson line in QCD by
simplifying all the inˇnite number of noncommuting terms in the SU(3) pure gauge in Eq. (3).
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We ˇnd that the light-like Wilson line in QCD without path ordering is given by

P exp

⎡
⎣ig

xf∫
xi

dxμAa
μ(x)T a

⎤
⎦ = exp

{
igT a

[
1

2l · D[A(xf )]
l · d[gA(xf )]

dg

]a}
×

× exp

{
−igT b

[
1

2l · D[A(xi)]
l · d[gA(xi)]

dg

]b
}

, (5)

where the right-hand side of the above equation does not contain path ordering P . In Eq. (5),
Dab

μ [A] is the covariant derivative, lμ is the light-like four-velocity, and Aμa(x) is the SU(3)
pure gauge in QCD, which, unlike the U(1) pure gauge Aμ(x) in QED, contains inˇnite
powers of g [6].

Since the light-like Wilson line in QCD does not depend on the path but depends only
on the end points [4,5], we ˇnd from Eq. (5) that the non-Abelian phase or the gauge link in
QCD without path ordering is given by

P exp

⎡
⎣−ig

∞∫
0

dλl · Aa(x + lλ)T a

⎤
⎦ = exp

{
igT a

[
1

2l · D[A(x)]
l · d[gA(x)]

dg

]a}
, (6)

which is used to study factorization of the soft and collinear divergences in QCD, where the
right-hand side of the above equation does not contain path ordering P .

In this paper, we will provide a derivation of Eq. (5).
In [4], we have shown that the light-like Wilson line in QCD naturally emerges when path

integral formulation is used to prove nonrelativistic QCD (NRQCD) factorization at all orders
in coupling constant in heavy quarkonium production. Similarly, in [5], we have shown that
the light-like Wilson line in QCD naturally emerges when path integral formulation is used
to prove factorization of the soft and collinear divergences of the gluon distribution function
at high-energy colliders at all orders in coupling constant. In this paper, we will prove that
the light-like Wilson line in QCD naturally emerges when path integral formulation is used
to prove factorization of the soft and collinear divergences of the quark distribution function
at high-energy colliders at all orders in coupling constant. Hence, we ˇnd that the light-like
Wilson line in QCD naturally emerges when path integral formulation of QCD is used to
prove factorization of the soft and collinear divergences at all orders in coupling constant in
QCD processes at high-energy colliders.

The paper is organized as follows. In Sec. 1, we derive the light-like Wilson line in QCD
without path ordering as given by Eq. (5). In Sec. 2, we study the gauge transformation of the
light-like Wilson line in QCD without path ordering. In Sec. 3, we prove that the light-like
Wilson line in QCD naturally emerges when path integral formulation of QCD is used to
prove factorization of the soft and collinear divergences at all orders in coupling constant in
QCD processes at high-energy colliders. Finally, we draw conclusions.

1. THE LIGHT-LIKE WILSON LINE IN QCD WITHOUT PATH ORDERING

The SU(3) pure gauge in QCD is given by Eq. (3), which contains inˇnite number of
noncommuting terms. Simplifying all the inˇnite number of noncommuting terms in Eq. (3),
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we ˇnd that the SU(3) pure gauge Aμa(x) is given by [6]:

Aμa(x) = ∂μωb(x)
[
egM(x) − 1

gM(x)

]
ab

, (7)

where

Mab(x) = fabcωc(x). (8)

Expanding the exponential in Eq. (7), we ˇnd

Aμa(x) = [∂μωb(x)]
[
1 +

g

2!
M(x) +

g2

3!
M2(x) +

g3

4!
M3(x) + . . .

]
ab

. (9)

In QED, the U(1) pure gauge potential produced by a point charge e is linearly proportional
to the electric charge e [2, 6, 7], i.e.,

∂μω(x) ∝ e. (10)

Since ω(x) is linearly proportional to e, we ˇnd that ωa(x) is linearly proportional to g [6,7].
Since ωa(x) is linearly proportional to g, we write

ωa(x) = gβa(x), (11)

where βa(x) is independent of g. Using Eq. (11) in (9), we ˇnd

1
g
Aμa(x) = [∂μβb(x)]

[
1 +

g2

2!
N(x) +

(g2)2

3!
N2(x) +

(g2)3

4!
N3(x) + . . .

]
ab

, (12)

where

Nab(x) = fabcβc(x). (13)

Multiplying g2Nab(x) in Eq. (12), we obtain

[gN(x)Aμ(x)]a =

= [∂μβb(x)]
[
g2N(x) +

(g2)2

2!
N2(x) +

(g2)3

3!
N3(x) +

(g2)4

4!
N4(x) + . . .

]
ab

. (14)

Adding ∂μβb(x) in Eq. (14), we ˇnd

Dμ[A(x)]βa(x) =

= [∂μβb(x)]
[
1 + g2N(x) +

(g2)2

2!
N2(x) +

(g2)3

3!
N3(x) +

(g2)4

4!
N4(x) + . . .

]
ab

, (15)

where

Dab
μ [A(x)] = δab∂μ + gfacbAc

μ(x). (16)



664 Nayak G.C.

Multiplying g2 in Eq. (12) and then taking derivative with respect to g2, we obtain

1
2g

d[gAμa(x)]
dg

=
[
∂μβb(x)

] [
1 + g2N(x) +

(g2)2

2!
N2(x) +

(g2)3

3!
N3(x) + . . .

]
ab

. (17)

Since right-hand sides of Eqs. (15) and (17) are equal, we ˇnd

Dμ[A(x)]βa(x) =
1
2g

d[gAμa(x)]
dg

. (18)

Converting βa(x) to ωa(x) by using Eq. (11), we ˇnd from Eq. (18)

Dμ[A(x)]ωa(x) =
1
2

d[gAμa(x)]
dg

. (19)

Multiplying the same xμ independent four-vector lμ in Eq. (19), we ˇnd

l · d[gAa(x)]
dg

= 2l · D[A(x)]ωa(x). (20)

Dividing l · D[A(x)] from left in Eq. (20), we obtain

ωa(x) =
[

1
2l · D[A(x)]

]
ab

d[l · gAb(x)]
dg

=
[

1
2l · D[A(x)]

l · d[gA(x)]
dg

]a

, (21)

which gives the non-Abelian phase

Φ(x) = eigT aωa(x) = exp
{

igT a

[
1

2l · D[A(x)]
l · d[gA(x)]

dg

]a}
. (22)

From [4,5] we ˇnd that the light-like Wilson line in QCD for the soft and collinear divergences
is given by

P exp

⎡
⎣ig

xf∫
xi

dxμAa
μ(x)T a

⎤
⎦ = eigT aωa(xf ) e−igT bωb(xi) =

=

⎧⎨
⎩P exp

⎡
⎣−ig

∞∫
0

dλ l · Aa(xf + lλ)T a

⎤
⎦
⎫⎬
⎭P exp

⎡
⎣ig

∞∫
0

dλ l · Ab(xi + lλ)T b

⎤
⎦ . (23)

Using Eq. (22) in Eq. (23), we ˇnd that the light-like Wilson line in QCD without path ordering
is given by

P exp

⎡
⎣ig

xf∫
xi

dxμAa
μ(x)T a

⎤
⎦ = exp

{
igT a

[
1

2l · D[A(xf )]
l · d[gA(xf )]

dg

]a}
×

× exp

{
−igT b

[
1

2l · D[A(xi)]
l · d[gA(xi)]

dg

]b
}

, (24)

which reproduces Eq. (5), where the right-hand side does not contain path ordering P .
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Since the light-like Wilson line in QCD does not depend on the path but depends only on
the end points [4,5], we ˇnd from Eqs. (22) and (23) that the non-Abelian phase or the gauge
link in QCD without path ordering is given by

P exp

⎡
⎣−ig

∞∫
0

dλl · Aa(x + lλ)T a

⎤
⎦ = exp

{
igT a

[
1

2l · D[A(x)]
l · d[gA(x)]

dg

]a}
, (25)

which reproduces Eq. (6) used to study factorization of the soft and collinear divergences in
QCD, where the right-hand side of the above equation does not contain path ordering P .

2. NON-ABELIAN GAUGE TRANSFORMATION
OF THE LIGHT-LIKE WILSON LINE IN QCD WITHOUT PATH ORDERING

In order to study the gauge transformation of the light-like Wilson line in QCD without
path ordering, we proceed as follows. The non-Abelian gauge transformation is given by

T aA′a
μ (x) = U(x)T aAa

μ(x)U−1(x) +
1
ig

[∂μU(x)]U−1(x), (26)

where

U(x) = eigT aωa(x). (27)

Since the matrices T a are noncommuting, we ˇnd from Eq. (27)

T aU−1(x) = T ae−igT bωb(x) = T a

[
1 + (−ig)T bωb(x)+

+
(−ig)2

2!
T bT cωb(x)ωc(x) +

(−ig)3

3!
T bT cT dωb(x)ωc(x)ωd(x)+

+
(−ig)4

4!
T bT cT dT eωb(x)ωc(x)ωd(x)ωe(x) + . . .

]
. (28)

By repeated use of the commutation relation

[T a, T b] = ifabcT c (29)

we ˇnd from Eq. (28)

T aU−1(x) =
[
T a + (−ig)T bωb(x)T a +

(−ig)2

2!
T bT cωb(x)ωc(x)T a+

+
(−ig)3

3!
T bT cT dωb(x)ωc(x)ωd(x)T a+

+
(−ig)4

4!
T bωb(x)T cωc(x)T dωd(x)T eωe(x)T a + . . . +

+ (−ig)ifabcωb(x)T c + (−ig)2T bωb(x)ifacdωc(x)T d+

+
(−ig)2

2!
ifabdωb(x)ifdceωc(x)T e+
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+
(−ig)3

2!
T bωb(x)T cωc(x)ifadeωd(x)T e +

(−ig)3

2!
T bωb(x)ifaceωc(x)ifedgωd(x)T g+

+
(−ig)3

3!
ifabeωb(x)ifecgωc(x)ifgdhωd(x)T h+

+
(−ig)4

3!
T bωb(x)T cωc(x)T dωd(x)ifaegωe(x)T g+

+
(−ig)4

2!2!
T bωb(x)T cωc(x)ifadgωd(x)ifgehωe(x)T h+

+
(−ig)4

3!
T bωb(x)ifacgωc(x)ifgdhωd(x)ifheiωe(x)T i+

+
(−ig)4

4!
ifabgωb(x)ifgchωc(x)ifhdiωd(x)if iejωe(x)T j + . . .

]
, (30)

which gives after simpliˇcation

T aU−1(x) =

[
T a + (−ig)T bωb(x)T a +

(−ig)2

2!
T bT cωb(x)ωc(x)T a+

+
(−ig)3

3!
T bT cT dωb(x)ωc(x)ωd(x)T a+

+
(−ig)4

4!
T bωb(x)T cωc(x)T dωd(x)T eωe(x)T a + . . . +

+
[
1 + (−ig)T bωb(x) +

(−ig)2

2!
T bωb(x)T cωc(x) + . . .

]
(−ig)ifadeωd(x)T e+

+
[
1 + (−ig)T bωb(x) +

(−ig)2

2!
T bωb(x)T cωc(x) + . . .

]
(−ig)2

2!
ifapdωp(x)ifdheωh(x)T e+

+ [1 + (−ig)T qωq(x) + . . .]
(−ig)3

3!
ifabeωb(x)ifecgωc(x)ifgdhωd(x)T h+

+ [1 + . . .]
(−ig)4

4!
ifabpωb(x)ifpchωc(x)ifhdqωd(x)if qesωe(x)T s + . . .

]
. (31)

From Eq. (31) we ˇnd

T aU−1(x) = U−1(x)
[
T a + (−ig)ifadeωd(x)T e +

(−ig)2

2!
ifagdωg(x)ifdheωh(x)T e+

+
(−ig)3

3!
ifabeωb(x)ifecgωc(x)ifgdhωd(x)T h+

+
(−ig)4

4!
ifabgωb(x)ifgchωc(x)ifhdiωd(x)if iejωe(x)T j + . . .

]
, (32)

which gives

U(x)T aU−1(x) = [e−gM(x)]abT
b, (33)

where Mab(x) is given by Eq. (8). From Eq. (33) we ˇnd

U(x)T aAa
μ(x)U−1(x) = [egM(x)]abT

aAb
μ(x). (34)
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Similarly, by simplifying inˇnite number of noncommuting terms in [∂μU(x)]U−1(x) we
ˇnd [6]:

1
ig

[∂μU(x)]U−1(x) =
[
egM(x) − 1

gM(x)

]
ab

[∂μωb(x)]T a, (35)

where Mab(x) is given by Eq. (8).
Hence, by using Eqs. (34) and (35) in Eq. (26) we ˇnd

A′a
μ(x) = [egM(x)]abA

b
μ(x) +

[
egM(x) − 1

gM(x)

]
ab

[∂μωb(x)], (36)

which is the ˇnite gauge transformation in QCD, where Mab(x) is given by Eq. (8). Under
inˇnitesimal gauge transformation we ˇnd from Eq. (36)

A′μa(x) = Aμa(x) + gfabcωc(x)Aμb(x) + ∂μωa(x), (37)

which is the inˇnitesimal gauge transformation in QCD familiar in the literature [16].
When Aμa(x) is the SU(3) pure gauge, we ˇnd by using Eq. (7) in (36) that

A′μa(x) =
[
e2gM(x) − 1

gM(x)

]
ab

[∂μωb(x)]. (38)

By using Eq. (11) in (38) we ˇnd

A′μa(x) =
[
e2g2N(x) − 1

gN(x)

]
ab

[∂μβb(x)], (39)

where Nab(x) is given by Eq. (13), which is independent of g, because βa(x) is independent
of g, see Eq. (11). Multiplying the matrix gN(x) in Eq. (39), we obtain

Dμ[A′(x)]βa(x) = [e2g2N(x)]ab [∂μβb(x)], (40)

where

Dab
μ [A′(x)] = δab∂μ + gfacbA′c

μ(x). (41)

By multiplying g in Eq. (39) and then taking the derivative with respect to g, we ˇnd

d[gA′μa(x)]
dg

= 4g [e2g2N(x)]ab [∂μβb(x)]. (42)

Using Eq. (40) in (42), we obtain

d[gA′μa(x)]
dg

= 4gDμ[A′(x)]βa(x). (43)

By using Eq. (11) in (43) we ˇnd

d[gA′μa(x)]
dg

= 4Dμ[A′(x)]ωa(x). (44)



668 Nayak G.C.

By multiplying the same xμ independent four-vector lμ in Eq. (44) we obtain

l · d[gA′a(x)]
dg

= 4l · D[A′(x)]ωa(x). (45)

By dividing l · D[A′(x)] from left in Eq. (45) we ˇnd[
1

2l · D[A′(x)]
l · d[gA′(x)]

dg

]a

= 2ωa(x). (46)

Under the non-Abelian gauge transformation as given by Eq. (26) we ˇnd from Eq. (22)

Φ′(x) = exp
{

igT a

[
1

2l · D[A′(x)]
l · d[gA′(x)]

dg

]a}
. (47)

Hence, from Eqs. (46), (47), (22), and (27) we ˇnd

Φ′(x) = U(x) Φ(x), Φ′†(x) = Φ†(x) U−1(x), (48)

which is the gauge transformation of the non-Abelian phase in QCD under the non-Abelian
gauge transformation as given by Eq. (26).

From Eqs. (22), (23), and (48) we ˇnd

P exp

⎡
⎣−ig

∞∫
0

dλl · A′a(x + lλ)T a

⎤
⎦ = U(x)P exp

⎡
⎣−ig

∞∫
0

dλl · Aa(x + lλ)T a

⎤
⎦ ,

U(x) = eigT aωa(x),

(49)

which is the gauge transformation of the non-Abelian gauge link in QCD under the
non-Abelian gauge transformation as given by Eq. (26).

From Eqs. (23) and (49) we ˇnd that, under the non-Abelian gauge transformation as
given by Eq. (26), the light-like Wilson line in QCD transforms as

P exp

⎡
⎣ig

xf∫
xi

dxμA′a
μ (x)T a

⎤
⎦ = U(xf )

⎧⎨
⎩P exp

⎡
⎣ig

xf∫
xi

dxμAa
μ(x)T a

⎤
⎦

⎫⎬
⎭U−1(xi),

U(x) = eigT aωa(x).

(50)

3. EMERGENCE OF THE LIGHT-LIKE WILSON LINE
IN QCD IN THE PROOF OF FACTORIZATION THEOREM

AT HIGH-ENERGY COLLIDERS

Note that in [4] we have shown that the light-like Wilson line in QCD naturally emerges
when path integral formulation is used to prove NRQCD factorization at all orders in coupling
constant in heavy quarkonium production. Similarly, in [5], we have shown that the light-
like Wilson line in QCD naturally emerges when path integral formulation is used to prove
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factorization of the soft and collinear divergences of the gluon distribution function at high-
energy colliders at all orders in coupling constant. In this section, we will prove that the
light-like Wilson line in QCD naturally emerges when path integral formulation is used to
prove factorization of the soft and collinear divergences of the quark distribution function at
high-energy colliders at all orders in coupling constant.

The generating functional in the path integral method of QCD is given by [16,17]:

Z[J, η, η̄] =
∫

[dQ][dψ̄][dψ] det
(

δ∂μQμa

δωb

)
×

× exp

{
i

∫
d4x

[
− 1

4
F a2

μν [Q] − 1
2α

(∂μQμa)2+

+ ψ̄[iγμ∂μ − m + gT aγμQa
μ]ψ + J · Q + η̄ψ + ψ̄η

]}
, (51)

where Jμa(x) is the external source for the quantum gluon ˇeld Qμa(x) and η̄i(x) is the
external source for the Dirac ˇeld ψi(x) of the quark, and

F a
μν [Q] = ∂μQa

ν(x) − ∂νQa
μ(x) + gfabcQb

μ(x)Qc
ν(x), F a2

μν [Q] = Fμνa[Q]F a
μν [Q]. (52)

The light-like quark traveling with light-like four-velocity lμ produces the SU(3) pure gauge
potential Aμa(x) at all the time-space positions xμ, except at the position x perpendicular to
the direction of motion of the quark (l · x = 0) at the time of the closest approach [2, 6, 7].
Hence, the soft and collinear behavior of the nonperturbative correlation function in QCD due
to the presence of the light-like Wilson line in QCD can be studied by using path integral
formulation of the background ˇeld method of QCD in the presence of the SU(3) pure gauge
background ˇeld [4,5].

The background ˇeld method of QCD was originally formulated by 't Hooft [18] and
later extended by Klueberg-Stern and Zuber [19, 20] and by Abbott [17]. This is an elegant
formalism which can be useful to construct gauge-invariant nonperturbative Green's functions
in QCD. This formalism is also useful to study quark and gluon production from classical
chromoˇeld [21] via the Schwinger mechanism [22], to compute β function in QCD [23], to
perform calculations in lattice gauge theories [24], and to study evolution of QCD coupling
constant in the presence of chromoˇeld [25].

It can be mentioned here that in soft collinear effective theory (SCET) [26] it is also
necessary to use the idea of background ˇelds [17] to give well-deˇned meaning to several
distinct gluon ˇelds [9].

Note that a massive color source traveling at speed much less than speed of light cannot
produce the SU(3) pure gauge ˇeld [2,6,7]. Hence, when one replaces the light-like Wilson
line with the massive Wilson line, one expects the factorization of soft/infrared divergences
to break down. This is in conformation with the ˇnding in [27], which used the diagrammatic
method of QCD. In case of massive Wilson line in QCD, the color transfer occurs and the
factorization breaks down. Note that, in case of the massive Wilson line, there are no collinear
divergences.
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The generating functional in the path integral formulation of the background ˇeld method
of QCD is given by [17Ä19]:

Z[A, J, η, η̄] =
∫

[dQ][dψ̄][dψ] det
(

δGa(Q)
δωb

)
×

× exp

{
i

∫
d4x

[
− 1

4
F a2

μν [A + Q] − 1
2α

(Ga(Q))2+

+ ψ̄[iγμ∂μ − m + gT aγμ(A + Q)a
μ]ψ + J · Q + η̄ψ + ψ̄η

]}
, (53)

where the gauge ˇxing term is given by

Ga(Q) = ∂μQμa + gfabcAb
μQμc = Dμ[A]Qμa, (54)

which depends on the background ˇeld Aμa(x) and

F a
μν [A + Q] = ∂μ[Aa

ν + Qa
ν ] − ∂ν [Aa

μ + Qa
μ] + gfabc[Ab

μ + Qb
μ][Ac

ν + Qc
ν ]. (55)

We have followed the notations of [17Ä19], and accordingly denoted the quantum gluon ˇeld
by Qμa and the background ˇeld by Aμa.

Note that the gauge ˇxing term
1
2α

(Ga(Q))2 in Eq. (53) (where Ga(Q) is given by

Eq. (54)) is invariant for gauge transformation of Aa
μ:

δAa
μ = gfabcAb

μωc + ∂μωa (type I transformation), (56)

provided one also performs a homogeneous transformation of Qa
μ [17,19]:

δQa
μ = gfabcQb

μωc. (57)

The gauge transformation of background ˇeld Aa
μ as given by Eq. (56) along with the homo-

geneous transformation of Qa
μ in Eq. (57) gives

δ(Aa
μ + Qa

μ) = gfabc(Ab
μ + Qb

μ)ωc + ∂μωa, (58)

which leaves (−1/4)F a2
μν [A + Q] invariant in Eq. (53).

For ˇxed Aa
μ, i.e., for

δAa
μ = 0 (type II transformation), (59)

the gauge transformation of Qa
μ [17,19]:

δQa
μ = gfabc(Ab

μ + Qb
μ)ωc + ∂μωa, (60)

gives Eq. (58), which leaves (−1/4)F a2
μν [A + Q] invariant in Eq. (53).

It is useful to remember that, unlike QED [8], ˇnding an exact relation between the
generating functional Z[J, η, η̄] in QCD in Eq. (51) and the generating functional Z[A, J, η, η̄]
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in the background ˇeld method of QCD in Eq. (53) in the presence of the SU(3) pure gauge
background ˇeld is not easy. The main difˇculty is due to the gauge ˇxing terms which are

different in both cases. While the Lorentz (covariant) gauge ˇxing term − 1
2α

(∂μQμa)2 in

Eq. (51) in QCD is independent of the background ˇeld Aμa(x), the background ˇeld gauge

ˇxing term − 1
2α

(Ga(Q))2 in Eq. (53) in the background ˇeld method of QCD depends on

the background ˇeld Aμa(x), where Ga(Q) is given by Eq. (54) [17Ä19]. Hence, in order
to study nonperturbative correlation function in the background ˇeld method of QCD in the
presence of the SU(3) pure gauge background ˇeld, we proceed as follows.

By changing Q → Q − A in Eq. (53) we ˇnd

Z[A, J, η, η̄] = exp
(
−i

∫
d4xJ · A

) ∫
[dQ][dψ̄][dψ] det

(
δGa

f (Q)
δωb

)
×

× exp

{
i

∫
d4x

[
− 1

4
F a2

μν [Q] − 1
2α

(Ga
f (Q))2 + J · Q+

+ ψ̄[iγμ∂μ − m + gT aγμQa
μ]ψ + η̄ψ + ψ̄η

]}
, (61)

where the gauge ˇxing term from Eq. (54) becomes

Ga
f (Q) = ∂μQμa + gfabcAb

μQμc − ∂μAμa = Dμ[A]Qμa − ∂μAμa, (62)

and Eq. (57) (by using Eq. (56), type I transformation [17,19]) becomes

δQa
μ = gfabcQb

μωc + ∂μωa. (63)

Equations (62) and (63) can also be derived by using type II transformation, which can be seen
as follows. By changing Q → Q−A in Eq. (53) we ˇnd Eq. (61), where the gauge ˇxing term
from Eq. (54) becomes Eq. (62), and Eq. (60) (by using Eq. (59)) becomes Eq. (63). Hence,
we obtain Eqs. (61), (62), and (63), whether we use the type I or type II transformation.
Hence, we ˇnd that we will obtain the same Eq. (84), whether we use the type I or type II
transformation.

The equation

Q′a
μ (x) = Qa

μ(x) + gfabcωc(x)Qb
μ(x) + ∂μωa(x) (64)

in Eq. (63) is valid for inˇnitesimal transformation (ω � 1), which is obtained from the ˇnite
equation

T aQ′a
μ (x) = U(x)T aQa

μ(x)U−1(x) +
1
ig

[∂μU(x)]U−1(x), U(x) = eigT aωa(x). (65)

Simplifying inˇnite numbers of noncommuting terms in Eq. (65) (by using Eq. (33)
and [6]), we ˇnd that

Q′a
μ(x) = [egM(x)]abQ

b
μ(x) +

[
egM(x) − 1

gM(x)

]
ab

[∂μωb(x)], Mab(x) = fabcωc(x). (66)
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Changing the variables of integration from unprimed to the primed ones in Eq. (61), we
ˇnd

Z[A, J, η, η̄] = exp
(
−i

∫
d4xJ · A

) ∫
[dQ′][dψ̄′][dψ′] det

(
δGa

f (Q′)
δωb

)
×

× exp

{
i

∫
d4x

[
− 1

4
F a2

μν [Q′] − 1
2α

(Ga
f (Q′))2 + J · Q′+

+ ψ̄′[iγμ∂μ − m + gT aγμQ′a
μ ]ψ′ + η̄ψ′ + ψ̄′η

]}
. (67)

This is because of a change of variables from unprimed to the primed ones, the value of
integration does not change.

Under the ˇnite transformation, using Eq. (66), we ˇnd

[dQ′] = [dQ] det
[
∂Q′a

∂Qb

]
= [dQ] det [[egM(x)]] = [dQ] exp

[
Tr (ln [egM(x)])

]
= [dQ], (68)

where we have used (for any matrix H)

det H = exp [Tr (ln H)]. (69)

The fermion ˇeld transforms as

ψ′(x) = eigT aωa(x)ψ(x). (70)

Using Eqs. (66) and (70), we ˇnd

[dψ̄′][dψ′] = [dψ̄][dψ],

ψ̄′[iγμ∂μ − m + gT aγμQ′a
μ ]ψ′ = ψ̄[iγμ∂μ − m + gT aγμQa

μ]ψ,

F a2
μν [Q′] = F a2

μν [Q].

(71)

Using Eqs. (68) and (71) in Eq. (67), we ˇnd

Z[A, J, η, η̄] = exp
(
−i

∫
d4xJ · A

) ∫
[dQ][dψ̄][dψ] det

(
δGa

f (Q′)
δωb

)
×

× exp

{
i

∫
d4x

[
− 1

4
F a2

μν [Q] − 1
2α

(Ga
f (Q′))2 + J · Q′+

+ ψ̄[iγμ∂μ − m + gT aγμQa
μ]ψ + η̄ψ′ + ψ̄′η

]}
. (72)

From Eq. (62) we ˇnd

Ga
f (Q′) = ∂μQ

′μa + gfabcAb
μQ

′μc − ∂μAμa. (73)
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By using Eqs. (7) and (66) in Eq. (73) we ˇnd

Ga
f (Q′) = ∂μ

[
[egM(x)]abQ

b
μ(x) +

[
egM(x) − 1

gM(x)

]
ab

[∂μωb(x)]
]

+

+ gfabc

[
∂μωe(x)

[
egM(x) − 1

gM(x)

]
be

] [
[egM(x)]cdQ

d
μ(x) +

[
egM(x) − 1

gM(x)

]
cd

[∂μωd(x)]
]
−

− ∂μ

[
∂μωb(x)

[
egM(x) − 1

gM(x)

]
ab

]
, (74)

which gives

Ga
f (Q′) = ∂μ[[egM(x)]abQ

b
μ(x)]+

+ gfabc

[
∂μωe(x)

[
egM(x) − 1

gM(x)

]
be

] [
[egM(x)]cdQ

d
μ(x) +

[
egM(x) − 1

gM(x)

]
cd

[∂μωd(x)]
]

.

(75)

From Eq. (75) we ˇnd

Ga
f (Q′) = ∂μ[[egM(x)]abQ

b
μ(x)]+gfabc

[
∂μωe(x)

[
egM(x) − 1

gM(x)

]
be

]
[[egM(x)]cdQ

d
μ(x)], (76)

which gives

Ga
f (Q′) = [egM(x)]ab∂

μQb
μ(x)+

+ Qb
μ(x)∂μ[[egM(x)]ab] +

[
∂μωe(x)

[
egM(x) − 1

gM(x)

]
be

]
gfabc[[egM(x)]cdQ

d
μ(x)]. (77)

From [6] we ˇnd

∂μ[eigT aωa(x)]ij = ig[∂μωb(x)]
[
egM(x) − 1

gM(x)

]
ab

T a
ik[eigT cωc(x)]kj ,

Mab(x) = fabcωc(x),
(78)

which in the adjoint representation of SU(3) gives (by using T a
bc = −ifabc)

[∂μegM(x)]ad = [∂μωe(x)]
[
egM(x) − 1

gM(x)

]
be

gf bac[eM(x)]cd, Mab(x) = fabcωc(x). (79)

Using Eq. (79) in (77), we ˇnd

Ga
f (Q′) = [egM(x)]ab∂

μQb
μ(x), (80)

which gives

(Ga
f (Q′))2 = (∂μQμa(x))2. (81)
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Since for n × n matrices A and B we have

det (AB) = (detA) (det B), (82)

we ˇnd by using Eq. (80) that

det
[
δGa

f (Q′)
δωb

]
= det

[
δ[[egM(x)]ac∂

μQc
μ(x)]

δωb

]
= det

[
[egM(x)]ac

δ(∂μQc
μ(x))

δωb

]
=

=
[
det[[egM(x)]ac]

] [
det

[
δ(∂μQc

μ(x))
δωb

]]
= exp

[
Tr (ln [egM(x)])

]
det

[
δ(∂μQμa(x))

δωb

]
=

= det
[
δ(∂μQμa(x))

δωb

]
. (83)

Using Eqs. (81) and (83) in Eq. (72), we ˇnd

Z[A, J, η, η̄] = exp
(
−i

∫
d4xJ · A

) ∫
[dQ][dψ̄][dψ] det

[
δ(∂μQμa(x))

δωb

]
×

× exp

{
i

∫
d4x

[
− 1

4
F a2

μν [Q] − 1
2α

(∂μQμa)2 + J · Q′+

+ ψ̄[iγμ∂μ − m + gT aγμQa
μ]ψ + η̄ψ′ + ψ̄′η

]}
. (84)

From Eqs. (7) and (66) we ˇnd

Q′a
μ(x) − Aa

μ(x) = [egM(x)]abQ
b
μ(x), Mab(x) = fabcωc(x). (85)

Note that Eqs. (84) and (85) are valid, whether we use type I transformation (Eqs. (56)
and (57)) or type II transformation (Eqs. (59) and (60)).

Since we have used Eq. (26) to study the gauge transformation of the Wilson line in QCD,
we will use type I transformation, see Eqs. (56) and (57), in the rest of the paper, which gives
for ˇnite transformation [17,19]:

J ′a
μ (x) = [egM(x)]abJ

b
μ(x), Mab(x) = fabcωc(x). (86)

From Eqs. (84), (85), and (86) we ˇnd

Z[A, J ′, η, η̄] =
∫

[dQ][dψ̄][dψ] det
[
δ(∂μQμa(x))

δωb

]
×

× exp

{
i

∫
d4x

[
− 1

4
F a2

μν [Q] − 1
2α

(∂μQμa)2 + J · Q+

+ ψ̄[iγμ∂μ − m + gT aγμQa
μ]ψ + η̄ψ′ + ψ̄′η

]}
. (87)
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Under the non-Abelian gauge transformation the fermion source transforms as [17,19]:

η′(x) = eigT aωa(x) η(x). (88)

From Eqs. (70) and (88) we ˇnd

η̄′ψ′ = η̄ψ, ψ̄′η′ = ψ̄η, (89)

which gives from Eq. (87)

Z[A, J ′, η′, η̄′] =
∫

[dQ][dψ̄][dψ] det
[
δ(∂μQμa(x))

δωb

]
×

× exp

{
i

∫
d4x

[
− 1

4
F a2

μν [Q] − 1
2α

(∂μQμa)2 + J · Q+

+ ψ̄[iγμ∂μ − m + gT aγμQa
μ]ψ + η̄ψ + ψ̄η

]}
. (90)

Hence, from Eqs. (90) and (51) we ˇnd that in QCD

Z[J, η, η̄] = Z[A, J ′, η′, η̄′], (91)

when the background ˇeld Aμa(x) is the SU(3) pure gauge as given by Eq. (3). The
corresponding relation in QED is given by

Z[J, η, η̄] = Z[A, J, η′, η̄′], (92)

when the background ˇeld Aμ(x) is the U(1) pure gauge as given by Eq. (1). Note that,
unlike Eq. (91) in QCD, there is no J ′ in Eq. (92) in QED, because while the (quantum) gluon
directly interacts with classical chromo-electromagnetic ˇeld, the (quantum) photon does not
directly interact with classical electromagnetic ˇeld.

The nonperturbative correlation function of the type 〈0|ψ̄(x)ψ(x′)|0〉 in QCD is given
by [8]:

〈0|ψ̄(x)ψ(x′)|0〉 =
δ

δη(x)
δ

δη̄(x′)
Z[J, η, η̄]|J=η=η̄=0. (93)

Similarly, the nonperturbative correlation function of the type 〈0|ψ̄(x)ψ(x′)|0〉A in the back-
ground ˇeld method of QCD is given by [8]:

〈0|ψ̄(x)ψ(x′)|0〉A =
δ

δη(x)
δ

δη̄(x′)
Z[A, J, η, η̄|J=η=η̄=0. (94)

When background ˇeld Aμa(x) is the SU(3) pure gauge as given by Eq. (3), we ˇnd from
Eqs. (91), (93), (94), (86), and (88) that

〈0|ψ̄(x)ψ(x′)|0〉 = 〈0|ψ̄(x)Φ(x)Φ†(x′)ψ(x′)|0〉A, (95)
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which proves factorization of the soft and collinear divergences at all orders in coupling
constant in QCD, where (see Eq. (23) and [4,5])

Φ(x) = P exp

⎡
⎣−igT a

∞∫
0

dλ l · Aa(x + lλ)

⎤
⎦ = eigT aωa(x) (96)

is the non-Abelian phase or the gauge link in QCD.
From Eq. (95) we ˇnd that the correct deˇnition of the quark distribution function at high-

energy colliders, which is consistent with the number operator interpretation of the quark and
is gauge-invariant and is consistent with the factorization theorem in QCD, is given by

fq/P (x) =
1
4π

∫
dy−e−ixP+y−×

× 〈P |ψ̄(0, y−, 0T )γ+

[
P exp

[
igT a

y−∫
0

dz−A+a(0, z−, 0T )

]]
ψ(0)|P 〉, (97)

which is valid in covariant gauge, in light-cone gauge, in general axial gauges, in general
noncovariant gauges, and in the general Coulomb gauge, etc., respectively [5]. In Eq. (97),
ψ(x) is the Dirac ˇeld of the quark and Aμa(x) is the SU(3) pure gauge background ˇeld as
given by Eq. (3).

Hence, we ˇnd from Eq. (97) and from [4, 5] that the light-like Wilson line in QCD
naturally emerges when path integral formulation of QCD is used to prove factorization of
the soft and collinear divergences at all orders in coupling constant in QCD processes at
high-energy colliders.

CONCLUSIONS

Unlike the Wilson line in QED, the Wilson line in QCD contains path ordering. In this
paper, we have got rid of the path ordering in the light-like Wilson line in QCD by simplifying
all the inˇnite number of noncommuting terms in the SU(3) pure gauge. We have proved that
the light-like Wilson line in QCD naturally emerges when path integral formulation of QCD
is used to prove factorization of the soft and collinear divergences at all orders in coupling
constant in QCD processes at high-energy colliders.
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