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Approximate analytical solutions of the DufˇnÄKemmerÄPetiau (DKP) equation are obtained for the
truncated Coulomb and the generalized Cornell, Richardson and SongÄLin potentials via the quasi-exact
analytical ansatz approach.
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INTRODUCTION

We recognize the DufˇnÄKemmerÄPetiau (DKP) equation as the counterpart of the KleinÄ
Gordon and Proca equations. In other words, this relativistic equation provides us with a
basis to consider both spin-zero and spin-one bosons in a uniˇed basis [1Ä4]. The equation,
under the vector potential, resembles the KleinÄGordon (KG) equation, and consequently
many people strictly believed the equations are completely equivalent. Now, however, there
are serious doubts about the equivalence [5Ä10]. Fabulous discussions on the equivalence
challenge can be also found in the interesting papers of Pimentel and Fainberg [11Ä14]. Some
physicists state that the DKP equation provides us with a more elaborate basis to analyze
physical interaction in comparison with its counterparts [15Ä19]. From another point of view,
the DKP equation becomes a quite appealing research topic for the theoretical community as
the Proca equation is not sufˇciently analyzed when compared with other wave equations of
quantum mechanics. This point becomes more important when we recall the high number of
spin-one systems. As another merit of the equation we can mention its successful predictions
in various ˇelds of physics from subatomic to large-scale physics [20Ä26]. On the other
hand, to our best knowledge, despite the large number of interactions studied within the
framework of relativistic wave equations, the so-called truncated Coulomb potential has not
been investigated in the case of relativistic bosonic systems. The truncated Coulomb potential
has yielded successful outcomes in atomic, molecular and particle physics [27Ä37]. This
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is also true for the interesting phenomenological Richardson [38Ä40], Cornell-like [41, 42]
and SongÄLin [43, 44] interactions which yield acceptable physical predictions due to their
structure which include both conˇning and nonconˇning terms.

As the ˇnal point in the introduction, it should be mentioned that there are other parallel
approaches to consider two relativistic spin-1/2 fermions including the BetheÄSalpeter equa-
tion [45] and the two-body Dirac equation [46, 47]. Each of these approaches does have its
own merits and disadvantages. In particular, the BetheÄSalpeter equation is a quite powerful
technique to investigate the bound states when the interaction and the masses are known [47].
The equation, however, possesses such a complicated mathematical structure that it is not
often considered in its full four-dimensional form and we have to consider some approximate
schemes. The approach, even in the case of simple interactions such as the Coulomb term,
leads to cumbersome problems. For example, the so-called ladder approximation does not
lead to the correct one-body limit and does not respect gauge invariance [47].

Here, we are going to combine these two concepts of potential model, i.e., the spin-zero
DKP equation and the introduced interaction. Our work, which considers the spin-zero version
of the DKP equation, is organized as follows. We ˇrst review the DKP equation as compact
as possible. Next, introducing the modiˇed Coulomb potential which includes the ordinary
Coulomb potential plus the so-called truncated Coulomb potential, as well as the generalized
Cornell, Richardson and SongÄLin potentials, we work on the equation for vanishing scalar
term. To solve our equations, as common techniques of quantum mechanics do not work, we
propose an ansatz solution [48Ä50] to the problem and thereby report the eigenfunctions and
the energy spectrum.

1. DKP EQUATION

The DKP Hamiltonian for scalar and vector interactions is [1Ä4]:

(β · pc + mc2 + Us + β0U0
v )ψ(r) = β0Eψ(r), (1)

where

ψ(r) =
(

ψupper

iψlower

)
, (2)

the upper and lower components, respectively, are

ψupper ≡
(

φ
ϕ

)
, ψlower ≡

⎛
⎝ A1

A2

A3

⎞
⎠ . (3)

β0 is the usual 5 × 5 matrix and Us, U0
v , respectively, represent the scalar and vector

interactions. The equation, in (3 + 0)-dimensions, is written as [1Ä4]:

(mc2 + Us)φ = (E − U0
v )ϕ + �c∇ · A,

∇φ = (mc2 + Us)A, (4)

(mc2 + Us)ϕ = (E − U0
v )φ,
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where A = (A1, A2, A3). In Eq. (3), ψ is a simultaneous eigenfunction of J2 and J3, i.e.,

J2

(
ψupper

ψlower

)
=
(

L2ψupper

(L + S)2ψlower

)
= J(J + 1)

(
ψupper

ψlower

)
,

(5)

J3

(
ψupper

ψlower

)
=
(

L3ψupper

(L3 + S3)ψlower

)
= M

(
ψupper

ψlower

)
,

and the general solution is considered as

ψJM (r) =

⎛
⎜⎜⎝

fnJ(r)YJM (Ω)
gnJ(r)YJM (Ω)
i
∑
L

hnJL(r)Y M
JL1(Ω)

⎞
⎟⎟⎠ , (6)

where spherical harmonics YJM (Ω) are of order J ; Y M
JL1(Ω) stands for the normalized vector

spherical harmonics, and fnJ , gnJ and hnJL represent the radial wave functions. The above
equations yield the coupled differential equations [1Ä10]:

(En,J − U0
v )Fn,J (r) = (mc2 + Us)Gn,J (r),(

dFn,J (r)
dr

− J + 1
r

Fn,J(r)
)

= − 1
αJ

(mc2 + Us)H1,n,J (r),(
dFn,J(r)

dr
+

J

r
Fn,J(r)

)
=

1
ζJ

(mc2 + Us)H−1,n,J(r), (7)

− αJ

(
dH1,n,J (r)

dr
+

J + 1
r

H1,n,J(r)
)

+ ζ

(
dH−1,n,J(r)

dr
− J

r
H−1,n,J(r)

)
=

=
1
�c

(
(mc2 + Us)Fn,J (r) − (En,J − U0

v )Gn,J(r)
)
,

which give [1Ä10]:

d2Fn,J (r)
dr2

[
1 +

ζ2
J

α2
J

]
− dFn,J (r)

dr

[
U ′

s

(m + Us)

(
1 +

ζ2
J

α2
J

)]
+

+ Fn,J (r)
[
−J(J + 1)

r2

(
1 +

ζ2
J

α2
J

)
+

U ′
s

(m + Us)

(
J + 1

r
− ζ2

J

α2
J

J

r

)
−

− 1
α2

J

(
(m + Us)2 − (En,J − U0

v )2
)]

= 0, (8)

where αJ =
√

(J + 1)/(2J + 1), fnJ(r) = F (r)/r, gnJ(r) = G(r)/r, hnJJ±1 = H±1/r

and ζJ =
√

J/(2J + 1). When Us = 0, we recover the well-known formula [1Ä10]:

(
d2

dr2
− J(J + 1)

r2
+ (En,J − U0

v )2 − m2

)
Fn,J (r) = 0. (9)
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2. THE GENERALIZED TRUNCATED COULOMB INTERACTION

2.1. The Ground-State Solution. Here, we study the generalization of the truncated
Coulomb potential [27]:

U0
v (r) =

g

r
− f

r + β
. (10)

From Eqs. (9) and (10), we obtain⎡
⎢⎢⎣ d2

dr2
−

2Eg +
2fg

β

r
+

g2 − J(J + 1)
r2

+

+
2Ef +

2fg

β

r + β
+

f2

(r + β)2
+ (E2 − m2)

⎤
⎥⎥⎦Fn,J (r) = 0. (11)

For the wave function, we propose an ansatz of the form [48Ä50]:

Fn,J = hn(r) exp (sJ (r)), (12)

where

hn(r) =

⎧⎪⎨
⎪⎩

1, if n = 0,
n∏

i=1

(r − αn
i ), if n � 1,

(13)

and
s(r) = δ ln (r) + η ln (r + β) + ξr. (14)

For the ground state, h0(r) = 1 and we ˇnd

F ′′
0,J(r) =

[(
2δη

β
+ 2δξ

)
1
r

+ (δ2 − δ)
1
r2

+

+
(
−2δη

β
+ 2ηξ

)
1

r + β
+ (η2 − η)

1
(r + β)2

+ ξ2

]
F0,J(r). (15)

By comparing Eq. (11) with Eq. (15), we have

2δη

β
+ 2δξ = 2Eg +

2fg

β
, (16 )

δ2 − δ = J(J + 1) − g2, (16b)

−2δη

β
+ 2ηξ = −

(
2Ef +

2fg

β

)
, (16c)

η2 − η = −f2, (16d)

ξ2 = −(E2 − m2). (16e)

For ˇxed values of μ, m̃, β, g, the above system of ˇve equations determines the sets of
variables E0,J , δ, η, ξ, f .
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2.2. The Case of n = 1. For n = 1, we consider hn(r) as h1(r) = r − a1
1 and from

Eqs. (11) and (14) we arrive at

F ′′
1,J(r) =

[(
2δη

β
+ 2δξ

)
1
r

+ (δ2 − δ)
1
r2

+
(
−2δη

β
+ 2ηξ

)
1

r + β
+

+(η2 − η)
1

(r + β)2
+ ξ2 +

2δ

r(r − a1
1)

+
2η

(r + β)(r − a1
1)

+
2ξ

r − a1
1

]
F1,J(r), (17)

or

(r − a1
1)F

′′
1,J (r) =

[(
−2a1

1δη

β
− 2a1

1δξ + δ2 + δ

)
1
r
− a1

1(δ
2 − δ)

1
r2

+

+
(

η2 + η + (−a1
1 − β)

(
−2δη

β
+ 2ηξ

))
1

r + β
− (a1

1 + β)(η2 − η)
1

(r + β)2
+

+ (−a1
1ξ

2 + 2ξ + 2ηξ + 2ξδ) + ξ2r

]
F1,J(r). (18)

On the other hand, Eq. (11) gives

(r − a1
1)F

′′
1,J (r) =

[
−
(

a1
1

(
2Eg +

2fg

β

)
− J(J + 1) + g2

)
1
r

+ a1
1(g

2 − J(J + 1))
1
r2

−

−
(
−(β + a1

1)
(

2fg

β
+ 2Eg

)
+ f2

)
1

r + β
+ (a1

1 + β)f2 1
(r + β)2

−

− ((−2Eg + 2Ef) + a1
1(E

2 − m2)) − (E2 − m2)r

]
F1,J(r). (19)

By comparing Eqs. (18) and (19), we have

−2a1
1δη

β
− 2a1

1δξ + δ2 + δ = −
(

a1
1

(
2Eg +

2fg

β

)
− J(J + 1) + g2

)
, (20 )

−(δ2 − δ) = g2 − J(J + 1), (20b)(
η2 + η + (−a1

1 − β)
(
−2δη

β
+ 2ηξ

))
= −
(
−(β + a1

1)
(

2fg

β
+ 2Eg

)
+ f2

)
, (20c)

−(η2 − η) = f2, (20d)

−a1
1ξ

2 + 2ξ + 2ηξ + 2ξδ = −((−2Eg + 2Ef) + a1
1(E

2 − m2)), (20e)

ξ2 = −(E2 − m2). (20f)

By solving the above equations for the ˇxed values of β, g, we can ˇnd E1,J , δ, η, ξ, f , a1
1.
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2.3. The Special Case of the Coulomb Potential. Considering f = 0 or V (r) = g/r, the
equation changes into [

d2

dr2
− J ′(J ′ + 1)

r2
+

g′

r
+ E′

n,J′

]
Fn,J′(r) = 0, (21)

where

J ′ =
1
2

[
−1 ±

√
1 + 4(−g2 + J(J + 1))

]
,

(22)
g′ = −2En,Jg, E′

n,J′ = E2
n,J − m2.

Equation (21) has the form of hydrogen atom whose solutions are well known:

Fn,J′(r) = r
1
2+

√
1
4+J′(J′+1) exp

(
−
√
−E′

n,J′r
)

L
1+2

√
1
4+J′(J′+1)

n

(
2
√
−E′

n,J′ r
)

(23)

and

En,J′ =

m

[
(2n + 1) + 2

√
1
4

+ J ′(J ′ + 1)

]
√√√√4g2 +

[
(2n + 1) + 2

√
1
4

+ J ′(J ′ + 1)

]2 . (24)

For n = 0, Eqs. (23) and (24) reduce to

F0,J′(r) = r
1
2+

√
1
4+J′(J′+1) exp

(
−
√
−E′

n,J′ r
)

(25)

and

E0,J′ =

m

[
1 + 2

√
1
4

+ J ′(J ′ + 1)

]
√√√√4g2 +

[
1 + 2

√
1
4

+ J ′(J ′ + 1)

]2 . (26)

Let us now compare the latter with our result. If we put f = 0 in Eq. (16), we have

2δξ = −2E2
0,J′g, (27 )

δ2 − δ = J ′(J ′ + 1), (27b)

ξ2 = −(E2
0,J′ − m2), (27c)

which determine δ and ξ as

ξ = −
√
−(E2

0,J′ − m2), (28 )

δ =
1
2

(
1 ±
√

1 + 4J ′(J ′ + 1)
)

, (28b)
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and the eigenvalues for the case of n = 0 can be obtained as

2
1
2

[
1 ±
√

1 + 4J ′(J ′ + 1)
] (

−
√
−(E2

0,J′ − m2)
)

= −2E0,J′g, (29 )

or

E0,J′ =

m

[
1 + 2

√
1
4

+ J ′(J ′ + 1)

]
√√√√4g2 +

[
1 + 2

√
1
4

+ J ′(J ′ + 1)

]2 , (29b)

which is exactly the same as Eq. (26). For the wave function, we have

F0,J′(r) = rδ+η exp (ξr). (30)

From (14) and (16), by setting η = 0, we have

F0,J′(r) = r
1
2+

√
1
4+J′(J′+1) exp

(
−
√
−(E2

0,J′ − m2)
)

r, (31)

which is the result of Eq. (25).

3. THE RICHARDSON POTENTIAL

The Richardson potential includes cubic and inverse terms and, by keeping the notation
of [38Ä40], possesses the form

U0
v (r) = Λ

(
(Λr)3 − 12

Λr

)
, (32)

in which Λ is a constant parameter. Substituting the potential into Eq. (9) yields the linear
second-order differential equation[

d2

dr2
− 24Λ4r2 − 2EΛ4r3 + Λ8r6 +

24E

r
+ (−J(J + 1) + 144)

1
r2

+ E2 − m2

]
Fn,J = 0,

(33)
which is not a well-known differential equation. Let us now consider the ground-state case.
In this case, we propose

s(r) = ar4 + br + c ln (r) (34)

and substitute the solution in Eq. (13). Now, equating the corresponding powers on both sides
gives the set of equations

3a + 2ac = 6 Λ4, 4ab = EΛ4, 16a2 = −Λ8, bc = −12E,
(35)

c2 − c = J(J + 1) − 144, b2 = −(E2 − m2),

which determines the spectrum.
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4. THE GENERALIZED CORNELL POTENTIAL

In this section, we consider a generalization of the Cornell potential [41, 42]:

U0
v (r) = v0 + kr − e

r
+

f

r2
, (36)

in which v0, k, e and f are constant potential parameters. The corresponding equation then
reads[

d2

dr2
+(−2Ek+2kv0)r+k2r2+(2Ee−2ev0+2kf)

1
r
+(−J(J+1)−2Ef+2fv0+e2)

1
r2

−

− 2ef

r3
+

f2

r4
+ (E2 − 2Ev0 + v2

0 − 2ke − m2)

]
Fn,J = 0. (37)

Solution of the corresponding Riccati equation in this case determines the term in the expo-
nent as

s(r) = ar2 + br +
c

r
+ d ln (r), (38)

and therefore the corresponding set of equations is obtained as

4ab = 2Ek − 2kv0, 4a2 = −k2, −4ac + 2bd = −2Ee + 2ev0 − 2kf,

−d − 2cb + d2 = J(J + 1) + 2Ef − 2fv0 − e2, c − cd = ef, (39)

c2 = −f2, 2a + 4ad + b2 = −E2 + 2Ev0 − v2
0 + 2ke + m2.

5. THE SONGÄLIN POTENTIAL

In this section, we consider the term proposed by Song and Lin to analyze the quark
systems [43, 44]. Although this is not a generalization of the Coulomb interaction, we include
that to show the power of apparently simple ansatz approach. The potential considers the
square root and its inverse

U0
v (r) = Ar1/2 + Br−1/2, (40)

with A and B being constant parameters. In this case, we have to deal with the differential
equation[

d2

dr2
+ A2r − 2EAr1/2 − 2EBr−1/2 +

B2

r
− J(J + 1)

r2
+ (E2 + 2AB − m2)

]
Fn,J = 0,

(41)
which can be solved via the term

s(r) = ar3/2 + br + c ln (r), (42)

and the corresponding energy relation is

9
4
a2 = −A2, 3ab = 2EA,

3
4
a + 3ac = 2EB,

(43)
2bc = −B2, c2 − c = J(J + 1), b2 = −E2 − 2AB + m2,

which can be solved numerically to report the energy for given potential parameters.
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CONCLUSIONS

The truncated Coulomb potential can be considered as the generalization of the Coulomb
potential and has provided motivating results in various ˇelds of physics. On the other
hand, the generalized Cornell, Richardson and SongÄLin potentials have had successful pre-
dictions in particle physics. Bearing in mind the physical signiˇcance of these interactions,
we considered this potential within the framework of the DKP equation. To our best knowl-
edge, neither of our common tools of mathematical physics such as supersymmetry quantum
mechanics, factorization and NikiforovÄUvarov techniques can solve these problems in the
analytical manner. Here, we applied the simple but powerful ansatz technique which is based
on solving a related Riccati equation and thereby reported the solutions. With the aid of
this approach, we avoided using cumbersome numerical methodologies and provided a more
touchable solution to the problem. Although we only derived the ˇrst two states, the higher
states can be similarly obtained by choosing h2(r) = (r − α2

1)(r − α2
2) for the second node,

h3(r) = (r − α3
1)(r − α3

2)(r − α3
3) for the third node, etc.
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