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U(5) − SU(3) NUCLEAR SHAPE TRANSITION
WITHIN THE INTERACTING BOSON MODEL

APPLIED TO DYSPROSIUM ISOTOPES

M.Kotb 1

Physics Department, Faculty of Science, Al-Azhar University, Cairo

In the framework of the Interacting Boson Model (IBM) with intrinsic coherent state, the shape
Hamiltonian from spherical vibrator U(5) to axially symmetric prolate deformed rotator SU(3) is
examined. The Hamiltonian used is composed of a single-boson energy term and a quadrupole term.
The potential energy surfaces (PES's) corresponding to the U(5)ÄSU(3) transition are calculated with
variation of scaling and control parameters. The model is applied to 150−162Dy chain of isotopes. In
this chain, a change from spherical to well-deformed nuclei is observed when moving from the lighter to
the heavier isotopes. 156Dy is a good candidate for the critical point symmetry X(5). The parameters
of the model are determined by using a computer simulated search program in order to minimize
the deviation between our calculated and some selected experimental energy levels, B(E2) transition
rates, and the two-neutron separation energies S2n. We have also studied the energy ratios and the
B(E2) values for the yrast state of the critical nucleus. The nucleon pair transfer intensities between
groundÄground and groundÄbeta states are examined within the IBM and boson intrinsic coherent
framework.

‚ · ¡μÉ¥ ¨¸¸²¥¤Ê¥É¸Ö ¨§³¥´¥´¨¥ Ëμ·³Ò £ ³¨²ÓÉμ´¨ ´  ¸Ë¥·¨Î¥¸±μ£μ ¢¨¡· Éμ·  U(5) ¶·¨ ¶¥-
·¥Ìμ¤¥ ±  ±¸¨ ²Ó´μ-¸¨³³¥É·¨Î´μ³Ê ¢ÒÉÖ´ÊÉμ³Ê ·μÉ Éμ·Ê SU(3) ¢ · ³± Ì ³μ¤¥²¨ ¢§ ¨³μ¤¥°¸É¢ÊÕ-
Ð¨Ì ¡μ§μ´μ¢ (Œ‚	) ¸ ¢´ÊÉ·¥´´¨³ ±μ£¥·¥´É´Ò³ ¸μ¸ÉμÖ´¨¥³. ˆ¸¶μ²Ó§Ê¥³Ò° £ ³¨²ÓÉμ´¨ ´ ¸μ¤¥·¦¨É
Î²¥´, μ¶¨¸Ò¢ ÕÐ¨° Ô´¥·£¨Õ μ¤´μ£μ ¡μ§μ´ , ¨ ±¢ ¤·Ê¶μ²Ó´Ò° Î²¥´. �μ¢¥·Ì´μ¸É¨ ¶μÉ¥´Í¨ ²Ó´μ°
Ô´¥·£¨¨, ¸μμÉ¢¥É¸É¢ÊÕÐ¨¥ ¶¥·¥Ìμ¤Ê U(5)−U(3), ¢ÒÎ¨¸²ÖÕÉ¸Ö ¢ ·¨ Í¨¥° ¶ · ³¥É·μ¢ ¸±¥°²¨´£  ¨
±μ´É·μ²Ö. Œμ¤¥²Ó ¨¸¶μ²Ó§Ê¥É¸Ö ¤²Ö μ¶¨¸ ´¨Ö ¨§μÉμ¶μ¢ Í¥¶μÎ±¨ 150−162Dy. ‚ · ¸¸³ É·¨¢ ¥³μ°
Í¥¶μÎ±¥ ´ ¡²Õ¤ ¥É¸Ö ¨§³¥´¥´¨¥ μÉ ¸Ë¥·¨Î¥¸±¨Ì ± ¸¨²Ó´μ ¤¥Ëμ·³¨·μ¢ ´´Ò³ Ö¤· ³ ¶·¨ ¶¥·¥Ìμ¤¥
μÉ ²¥£±¨Ì ± ¡μ²¥¥ ÉÖ¦¥²Ò³ ¨§μÉμ¶ ³. ˆ§μÉμ¶ 156Dy Ö¢²Ö¥É¸Ö Ìμ·μÏ¨³ ± ´¤¨¤ Éμ³ ¤²Ö ´ ¡²Õ¤¥´¨Ö
±·¨É¨Î¥¸±μ° ÉμÎ±¨ ¸¨³³¥É·¨¨ X(5). � · ³¥É·Ò ³μ¤¥²¨ ¢ÒÎ¨¸²ÖÕÉ¸Ö ¶·μ£· ³³μ° ¸¨³Ê²¨·μ¢ ´-
´μ£μ ¶μ¨¸±  ³¨´¨³Ê³  ËÊ´±Í¨¨ μÉ±²μ´¥´¨Ö ¢ÒÎ¨¸²¥´´ÒÌ §´ Î¥´¨° Ê·μ¢´Ö Ô´¥·£¨¨, ¸±μ·μ¸É¨ ¶¥-
·¥Ìμ¤  B(E2) ¨ Ô´¥·£¨¨ μÉ¤¥²¥´¨Ö ¤¢ÊÌ ´¥°É·μ´μ¢ S2n μÉ ¨Ì Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ §´ Î¥´¨°. ’ ±¦¥
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INTRODUCTION

The Interacting Boson Model (IBM) [1] provided us with an alternative description of
nuclear collective excitations, which in contrast to the geometrical models, is of an algebraic
nature. This realistic theoretical model was able to describe the low-energy collective states
and the electromagnetic transitions of a large number of evenÄeven nuclei successfully. In
the original version of the IBM (IBM1), nuclei are regarded as systems composed of bosons,
which carry either angular momentum L = 0 (s bosons) or angular momentum L = 2
(d bosons) [1]. The system of bosons, for which the number of bosons equals half the
number of valence fermions N = n/2 and interactions through a Hamiltonian that typically
includes up to two-body interactions, is number conserving and rotationally invariant. The
symmetry of the s and d bosons is the U(6) group structure; it has three solvable dynamical
symmetries U(5), SU(3), and O(6), geometrically corresponding to spherical vibration, axial
symmetric rotation, and γ-unstable rotation, respectively. These three dynamical symmetries
are the vertices of the Casten triangle [2] that represents the nuclear phase diagram [3].

In the last few years, three transitional regions in atomic nuclei were studied [4Ä22], in par-
ticular, phase transition between the three dynamical limits of the IBM, transition from spher-
ical U(5) to γ-unstable O(6), and transition from well-deformed SU(3) to γ-unstable O(6).
The connection between the BohrÄMottelson collective model [23] and the IBM comes from
considering the IBM as the second quantization of the shape variables β and γ (β denotes
the ellipsoidal deformation and γ is the measure of axial asymmetry). The intrinsic state
formalism [24] was used. Phase transitions in nuclear shapes were observed at the boundary
between regions characterized by different intrinsic shapes of quadrupole deformation.

Iachello [25Ä27] in his study of critical point behavior of nuclei introduced new dynamic
symmetries called E(5) [25], X(5) [26], and Y (5) [27] critical point symmetries. The E(5) is
designed to describe the critical point at the transition from spherical to deformed γ-unstable
shapes. The potential to be used in the differential Bohr equation is assumed to be γ-indepen-
dent, and for the β degree of freedom an inˇnite square well is taken. The X(5) and Y (5)
are designed to describe the critical points between spherical and axially deformed shapes
and between axial and triaxial deformed shapes, respectively. Bonatsos et al. [28] introduced
the Z(5) critical point symmetry for the prolate-to-oblate nuclear shape transition.

To understand the shape phase transition in isotopic chains of nuclei, authors usually used
the most general IBM Hamiltonian up to two-body terms using the creation-annihilation or
the multipole forms. These forms contain many parameters (at least seven). In the present
work, an alternative approach is used, a very simple Hamiltonian contains two terms and
two parameters restricted to only one control parameter adapted to study the behavior of
critical points in the U(5)ÄSU(3) transition. The corresponding PES will be given by the
expectation value of this Hamiltonian in the intrinsic coherent state. The predictions of
the X(5) critical point symmetry for different observables are consistent with the results
of the IBM Hamiltonian procedure. The paper is concentrated on the U(5)ÄSU(3) shape
transition by using the IBM with intrinsic coherent states. The paper is organized as follows.
In Sec. 1, the IBM Hamiltonian, the intrinsic coherent state, and PES's indentifying the shape
transition are described. The location of the critical points in the shape transition is identiˇed
in Sec. 2. In Sec. 3, the proposed model is applied to Dy isotopic chain and the numerical
results are discussed. Finally, a conclusion is given.



U(5)−SU(3) Nuclear Shape Transition within the Interacting Boson Model 717

1. INTERACTING BOSON MODEL DESCRIPTION AND POTENTIAL ENERGY
SURFACES (PES's) FOR THE U(5)ÄSU(3) SHAPE TRANSITION

We start with the simpliˇed transitional Hamiltonian that includes spherical and deformed
terms of the form

H = εdn̂d + kQ̂ · Q̂, (1)

with the usual d-boson number operator n̂d and the usual SU(3) generator quadrupole oper-
ator Q̂ deˇned by

n̂d =
∑

μ

d†μd̃μ, (2)

Q̂ = [s† × d̃ + d† × s̃](2) + χ[d† × d̃](2). (3)

For introducing geometry into the IBM, the following boson creation operator for axial
symmetry nuclei is usually used:

Γ†
c(β) =

1√
1 + β2

[s† + βd†0], (4)

where Γ† is the boson creation operator acting in the intrinsic system and β is the quadrupole
deformation parameter describing the geometrical shape.

We regard the normalized state [29]

|c〉 =
1√
N !

(Γ†(β))N |0〉 (5)

as an intrinsic coherent normalized state for the sd IBM for a nucleus with N valence bosons
outside a doubly closed shell state |0〉 (the boson vacuum).

We use |c〉 as a variational trial function in constructing the potential energy surface (PES)

E(N, β) = 〈c|H |c〉 = εd
Nβ2

1 + β2
+

+ k

{
N

1 + β2
[5 + (1 + χ2)β2] +

N(N − 1)
(1 + β2)2

[
4β2 − 4

√
2
7
χβ3 cos 3γ +

2
7
χ2β4

]}
. (6)

It has the following general form [4, 5] for γ = 0:

E(N, β) = N
A2β

2 + A3β
3 + A4β

4

(1 + β2)2
+ A0, (7)

where the coefˇcients A2, A3, A4, and A0 have the following linear combinations of the
Hamiltonian parameters εd and k:

A2 = ε + (4N + χ2 − 8)k, (8)

A3 = −4

√
2
7
χk(N − 1), (9)

A4 = ε +
(

2N + 5
7

χ2 − 4
)

k, (10)

A0 = 5k. (11)
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Introducing the control parameter y deˇned as

k

ε
= − y

1 − y
, (12)

we arrive at the standard two-dimensional parameterization of the Q-consistent IBM Hamil-
tonian (1) which depends on only one control parameter y:

H = (ε − k)[(1 − y)n̂d − yQ · Q]. (13)

For y = 0, we get the U(5) limit and for intermediate values of the control parameter y,
the energy surface function will describe a certain point on the IBM symmetry triangle. In
general, there is a spherical-deformed ˇrst-order phase transition as a function of y. The PES
takes the general form

E(N, β) = λ
aβ2 + bβ3 + cβ4

(1 + β2)2
+ d, (14)

where

a = (1 − y) − (4N + χ2 − 8)y, (15)

b = 4

√
2
7
χy(N − 1), (16)

c = (1 − y) −
(

2N + 5
7

χ2 − 4
)

y, (17)

d = −5y, (18)

λ = (ε − k)N. (19)

2. CRITICALITY CONDITIONS

Minimizing of the PES equation (14) with respect to β for the given values of the control
parameter y gives the equilibrium value β0 deˇning the phase of transition (b2 = 4ac).

The condition to ˇnd the antispinodal point is

(
d2E

dβ2

)
β=0

= 0 and gives the relation

a = 0. Thus,

yant =
1

4N − χ2 − 7
. (20)

For χ = −
√

7/2, y = 1/((4N − 21)/4).
If we eliminate the contribution of the one-body terms of the quadrupoleÄquadrupole

interaction N

(
5 +

11
4

β2

)/
(1 + β2), the coefˇcients in the PES for large-N limit of the

IBM read as

a = (1 − y) − 4Ny, b = 4

√
2
7
χNy, c = (1 − y) − 2

7
χ2Ny.
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The critical point (when b2 = 4ac) is located at yc extracted from the equation[(
4 +

2
7
χ2

)
N + 1

]
y2 −

[(
4 +

2
7
χ2

)
N + 2

]
y + 1 = 0. (21)

At yc the depth of the β = 0 and β �= 0 minima becomes equal. The antispinodal point,

where β �= 0 the minimum disappearance occurs, when a = 0
((

∂2E

∂β2

)
β=0

= 0
)

, that is at

ya =
1

4N + 1
.

This antispinodal point follows shortly before the critical point ya < yc.
Taking the ˇrst-order derivative of the PES with respect to β and equaling it to zero, we

get the shape equilibrium equation for χ = −
√

7/2:

2a + 3bβ + (4c − 2a)β2 − bβ3 = 0,

which leads to

[(1 − y) − 4Ny]− 3
√

2Nyβ + [(1 − y) + 3Ny]β2 +
√

2Nyβ3 = 0. (22)

For the U(5) limit, with y = 0, the equilibrium deformation parameter β0 = ±i, that is no
real β exists for the U(5) limit. This means that the U(5) limit corresponds to a spherical
vibrator shape.

For the SU(3) limit, with y = 1, the cubic equation becomes

4 + 3
√

2β − 3β2 −
√

2β3 = 0

and the allowed parameter is β =
√

2.
The variation of the order parameter β with respect to the control parameter y in Eq. (22)

is illustrated in Fig. 1. The characteristic cycle of the order parameter when the ˇrst-order
phase transition takes place is observed. Spherical hysteresis phase (β = 0) is up to y = 0.2
and then the system jumps to the deformed minimum.

�0.5

0

0.5

1

1.5

y
0 0.2 0.4 0.6 0.8 1 1.2

�

Fig. 1. Shape phase diagram for the U(5)ÄSU(3) transition. The behavior of deformation parameter β

with control parameter y
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For large-N limit, the parameters a, b, and c become

a =
[
1 − y

Ny
− 4

]
Ny, b = −2

√
2Ny, c =

[
1 − y

Ny
− 1

2

]
Ny.

Solving Eq. (21), b2 = 4ac for χ = −
√

7/2, yields the solutions y = 1, y = 2/(9N + 2), and
the equilibrium values β0 = 0 and β0 = 1/(2

√
2).

The PES takes the form

Ecrit = const
β2

0

(
β0 −

1
2
√

2

)2

(1 + β2)2
. (23)

The PES involves spherical minimum at β = 0 and a prolate deformed minimum at
β0 = 1/(2

√
2).

Figure 2, a shows the behavior of the scaled PES E(β) near the minimum at β = 0 and
β0 = 1/(2

√
2) for ((1 − y)/(Ny))c = 9/2, it approaches a constant for large β. The position

and height of the barrier separating the two minima are given by

β =
−1 +

√
1 + β2

0

β0
= 3 − 2

√
2, (24)

h =

(
−1 +

√
1 + β2

0

β0

)2

=
1
32

(17 − 12
√

2). (25)

The symmetric phase takes place at y = 0, because the PES has a unique minimum at
β = 0. When y increases, one reaches the spinodal point at (1 − y)/(Ny) = 5 (Fig. 2, b),
where the second local nonsymmetric minimum at β �= 0 arises, it pushes the symmetric one
till both attain the same depth at the critical point y = 2/(9N + 2) (Fig. 2, a). Beyond this
value, the symmetric minimum at β = 0 becomes the local minimum till (1 − y)/(Ny) = 4
(Fig. 2, c), where it becomes unstable antispinodal point.
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Fig. 2. A plot of the scaled PES in the large-N limit and χ = −
√

7/2 as a function of deformation
parameter β (phase diagram). The critical point ((1 − y)/(Ny))c = 4.5 is represented in plot a. Plots b
and c show the two cases (1 − y)/(Ny) = 5 and (1 − y)/(Ny) = 4
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3. NUMERICAL CALCULATIONS APPLIED TO EVENÄEVEN Dy ISOTOPES

In order to determine the best model parameters y, χ, and λ for each nucleus of Dy
isotopic chain 150−162Dy, some experimental values of energy levels and B(E2) transition
probabilities are selected and ˇtted with the IBM calculated ones by minimizing the mean
square deviation using a computer simulated search program. The entire procedure is repeated
for a new set of parameters, until a reasonable compromise is found between the theoretical
and experimental ones. The mean square deviation in the energy and B(E2) values are
quantiˇed with the common deˇnition of the chi squared

χ2
E =

1
NE

∑
i

(Eexp(Ii) − Ecal(Ii))2

(exp. errors)2
, (26)

χ2
B(E2) =

1
NB(E2)

∑
i

(B(E2)exp − B(E2)cal)2

(exp. errors)2
, (27)

where N is the number of experimental points entering into the ˇtting procedure. Only six
lowest levels Iπ

i = 0+, 2+, 4+, 6+, 8+, 10+ are used, because the model cannot be applied over
an energy range including the band crossing. The experimental data are taken from the national
nuclear data center [30]. Table 1 lists the adopted best set of parameters in the Hamiltonian
for 150−162Dy isotopic chain. The PES's calculated by using the Hamiltonian equation (14)
to describe the U(5)ÄSU(3) transition for isotopic chain 150−162Dy are illustrated in Fig. 3.
The potentials are shown as a function of deformation parameter β along the axial trajectory
γ = 0, 60◦. The corresponding model parameters are listed in Table 1. Here, we observe the
shape transition from spherical nucleus 150Dy to well-deformed prolate nuclei 158−162Dy. We
remark that the PES is not 
at, exhibiting a deeper minimum in the prolate (β > 0) region

and a shallower minimum in the oblate (β < 0) region. Relatively 
at PES occurs for 156Dy
nucleus (boson number N = 12), suggested as a good example of the X(5) critical point
symmetry. The isotopic chain passes from U(5) to SU(3) limit when the number of bosons
is increasing from N = 9 to N = 15.

Table 1. The adopted best model parameters y, χ, and λ as derived in ˇtting procedure used in the
calculations for the Dy isotopic chain for the U(5)ÄSU(3) shape transition

Parameter 150Dy 152Dy 154Dy 156Dy 158Dy 160Dy 162Dy

N 9 10 11 12 13 14 15
y 0.0333 0.041 0.0536 0.06 0.0576 0.06 0.0653
χ Ä1.32 Ä1.32 Ä1.1 Ä0.86 Ä0.8 Ä0.53 Ä0.3
λ 14.51 16.212 17.336 16.21 19.17 20.178 21.405

One of the best signatures of a shape transition is the behavior of the yrast excitation
energy ratios RI+2/2 = E(I + 2)/E(2+

1 ) along the isotopic chain. The ratios for U(5)
and SU(3) dynamical symmetry limits are given by

RI+2/2 =

⎧⎪⎨
⎪⎩

I + 2
2

for U(5),

(I + 2)(I + 3)
6

for SU(3),
(28)

with I = 0, 2, 4, 6, . . .
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Fig. 3. Sketches of the calculated PES's as a function of deformation parameter β for the U(5)ÄSU(3)

transition in 150−162Dy isotopic chain (with N = 9−15). The sketch at boson number N = 12

represents the critical nucleus 156Dy

Also, to indentify the shape phases and their transition, it is helpful to examine the ratios
of the E2 reduced transition probabilities between the levels of the ground-state band. These
ratios are known for U(5) and SU(3) of the IBM from the equation

BI+2/2 =
B(E2; I + 2 → I)
B(E2; 2+

1 → 0+
1 )

=

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
(I + 2)

(
1 − I

2N

)
for U(5),

15
2

(I + 2)(I + 1)
(2I + 3)(2I + 5)

(
1 − I

2N

) (
1 +

I

2N + 3

)
for SU(3).

(29)

The E2 operator in the IBM is given by T (E2) = eQ̂, where Q̂ is the quadrupole operator

deˇned in Eq. (3) and e is the effective charge. For 156Dy the value of χ is −0.86, which
matches the value of e = 0.2.

In Tables 2, 3 and Fig. 4, we give the comparison of the yrast excitation energy ratios R
and the yrast B(E2) ratios BI+2/2 in the ground-state band calculated by the present model
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Table 2. The energy ratios RI+2/2 =

E(I + 2)/E(2+
1 ) for 156Dy and comparison

with experimental and U(5), SU(3) dynam-
ical symmetries for low-lying states

I U(5) SU(3)
156Dy

Cal. Exp.

0 1 1 1 1
2 2 3.333 3.033 2.927
4 3 7 5.809 5.579
6 4 12 9.157 8.811
8 5 18.333 12.973 12.427

Table 3. The B(E) ratios BI+2/2 = B(E2;

I + 2 → I)/B(E2; 2+
1 → 0+

1 ) for 156Dy and
comparison with experimental and U(5), SU(3)

dynamical symmetries for low-lying states

I U(5) SU(3)
156Dy

Cal. Exp.

0 1 1 1 1
2 1.833 1.4065 1.4 1.7
4 2.5 1.5054 1.8 1.5
6 3 1.5097 2.1 1.9
8 3.333 1.4619 2.3 2.5
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Fig. 4. Energy and B(E2) ratios for 156Dy and comparison with the U(5) and SU(3) limits.

a) The energy ratios RI+2/2 = E(I + 2)/E(2+
1 ). b) The B(E2) ratios BI+2/2 = B(E2; I + 2 →

I)/B(E2; 2+
1 → 0+

1 ). The dots correspond to experimental values

for the critical nucleus 156Dy and the predictions of U(5) and SU(3) dynamical symmetry
limits; furthermore, the experimental values (dots) are also represented. We can see that our
calculations ˇt the X(5) critical point symmetry.

Besides the energy ratios and the E2 transition rates, the pair transfer intensity and the
two-neutron separation energies are important signatures for driven shape phase transition
in evenÄeven nuclei with respect to the total number of bosons. Calculations have been
deformed for the IBM pair transfer intensities IN→N+1 connecting the state in nucleus which
has N bosons with the state which has N + 1 bosons as a function of boson number for
the Dy isotopic chain (NB = 9−16). Tables 4a and 4b and Fig. 5 illustrate the intensities
between ground stateÄground state (gs 0+

1 → gs 0+
1 ) (Fig. 4) and between ground stateÄβ state

(gs 0+
1 → βs 0+

2 ) (Fig. 5). A comparison with the U(5) and SU(3) limits in the IBM and in
boson intrinsic coherent state (BICS) is also given. A sharp rise at 156Dy (NB = 12) is seen,
which is considered as a transitional nucleus in the calculations.
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Table 4a. Pair transfer intensities for Dy isotopic chain for (gs 0+
1 → gs 0+

1 )

Symmetry
limits

NB

9 10 11 12 13 14 15

U(5) (IBM) 10 11 12 13 14 15 16
U(5) (BICS) 10 11 12 13 14 15 16
SU(3) (IBM) 3.684 4.015 4.347 4.68 5.012 5.344 5.677
SU(3) (BICS) 3.33 3.66 4 4.33 4.66 5 5.33

Cal. 10 11 12 1.666 1.623 1.513 1.475

Table 4b. Pair transfer intensities for Dy isotopic chain for (gs 0+
1 → βs 0+

2 )

Symmetry
limits

NB

9 10 11 12 13 14 15

U(5) (IBM) 0 0 0 0 0 0 0
U(5) (BICS) 0 0 0 0 0 0 0
SU(3) (IBM) 0.6687 0.6683 0.6680 0.6678 0.6676 0.6675 0.6674
SU(3) (BICS) 0.666 0.666 0.666 0.666 0.666 0.666 0.666

Cal. 0 0.75 1.4 1.15 0.9 0.7 0.68
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Fig. 5. Pair transfer intensities IN→N+1 as a function of boson number NB for Dy isotopic chain:
a) between ground states (gs) of nuclei with N and N + 1 bosons; b) between ground state of nucleus

with N bosons and β state of nucleus with N + 1 bosons

The two-neutron separation energy is deˇned as the energy required to remove two
neutrons (one boson) from a given isotope, and for a constant proton number it is given by

S2n(N) = BE(N) − BE(N − 1) = A + B(N − 1) + Δ(BE), (30)

where N is the boson number and A, B are considered to be constants along the isotopic chain
and are determined by ˇtting procedure for Dy isotopic chain to be A = 17.842 MeV and
B = −0.156 MeV. In Table 5 and Fig. 6, the calculations of S2n match the experimentally
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Table 5. The values of the two-neutron separation energies S2n for Dy isotopic chain

Separation
energy

NB

9 10 11 12 13 14 15

S2n(exp.) 17.000 16.438 16.282 16.036 15.407 14.646 13.926
S2n(cal.) 16.910 16.331 16.110 15.921 15.106 14.302 13.510
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14

16

18

8 10 12 14 16
NB

S
2
n

, 
M

eV

Fig. 6. Comparison between the calculated and experimental two-neutron separation energies S2n for

Dy isotopic chain

observed behavior. The appearance of kink in S2n at NB = 12 (156Dy) indicates that the
shape phase transition occurs at this point.

CONCLUSIONS

In the present paper, we have studied the shape phase transition from a spherical vibra-
tor U(5) to axially symmetric deformed prolate rotor SU(3) with an alternative approach in
the framework of the IBM. The Hamiltonian used is composed of a single-boson energy term
and a quadrupole term and contains only two parameters. We have transformed the Hamil-
tonian into the consistent Q̂ formalism (CQF) of the IBM depending on control and scaling
parameters. By using the boson intrinsic coherent state, the PES's and the critical points are
analyzed by varying the control parameter. The large boson number limits of the IBM at the
critical points are also obtained. We have applied our results to 150−162Dy isotopic chain, that
is known to display the ˇrst-order U(5)ÄSU(3) shape phase transition. For each nucleus the
parameters of the model have been obtained by performing the standard χ2 ˇtting procedure
adopted to minimize the mean square deviation between the calculated and the experimental
selected low-lying excitation energies and B(E2) transition rates. The nucleus 156Dy has
been found to be close to the critical point symmetry X(5). The behavior of energy ratios
and B(E2) ratios in the ground-state band is examined and compared to the prediction of
vibrational U(5) and rotational SU(3) limits of the IBM.
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