КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ В ФИЗИКЕ

ФИЛЬТРАЦИЯ ТРЕНДОВ С ФОРБУШ-ЭФФЕКТАМИ ВРЕМЕННЫХ РЯДОВ НАБЛЮДЕНИЙ СИСТЕМ МОНИТОРИНГА КОСМИЧЕСКИХ ЛУЧЕЙ

В. Г. Гетманов^{*a*}, А. В. Крянев^{*б*}, В. В. Борог^{*б*}, Р. В. Сидоров^{*a*, 1}, М. С. Улизко^{*б*}, Е. Ю. Бутырский^{*в*}

^а Геофизический центр РАН, Москва

^б Национальный исследовательский ядерный университет «МИФИ», Москва

^{*в*} Военно-морской политехнический институт ВУНЦ ВМФ «Военно-морская академия им. Н. Г. Кузнецова», Санкт-Петербург, Россия

Предложен метод фильтрации трендов с форбуш-эффектами временных рядов наблюдений систем мониторинга космических лучей. Разработан алгоритм фильтрации на основе скользящих локальных моделей и взвешенного усреднения. Реализована математическая технология оптимизации параметров разработанного алгоритма. Представлен пример фильтрации наблюдений от нейтронного монитора; произведена оценка эффективности разработанного алгоритма фильтрации.

A method for filtering trends with Forbush effects of time series of observations of cosmic ray monitoring systems is proposed. A filtering algorithm based on sliding local models and weighted averaging has been developed. The mathematical technology for optimization of the filter paramaters was realized. An example of filtering observations from a neutron monitor is presented; the efficiency of the developed filter was estimated.

PACS: 01.60.-x

введение

Временные ряды наблюдений от систем мониторинга космических лучей (КЛ) состоят из сумм низкочастотных трендовых функций с возможными форбуш-эффектами и случайных высокочастотных составляющих. Рассматриваемые здесь форбуш-эффекты представляют собой процессы понижения и последующего восстановления среднего уровня для трендовых функций [1]. Эти процессы являются разномасштабными во времени: в основном, длительность времени понижения существенно меньше длительности времени восстановления. Наблюдения форбуш-эффектов имеют целый ряд особенностей: они происходят на ограниченных временных интервалах; величины понижений составляют единицы процентов от среднего уровня и могут быть соизмеримыми со значениями случайных составляющих.

¹E-mail: r.sidorov@gcras.ru

164 Гетманов В. Г. и др.

Форбуш-эффекты образуются вследствие взаимодействия солнечных корональных выбросов массы (КВМ) и КЛ [2]. Возникновение плазменных образований КВМ, движущихся по направлению к Земле, приводит к понижению среднего уровня в трендовых функциях; по мере движения к Земле плотность плазменных образований КВМ уменьшается, что обуславливает повышение среднего уровня. В трендовых функциях с форбушэффектами содержится информация о надвигающихся геомагнитных бурях, а также о кинематических и геометрических параметрах КВМ. Фильтрация трендовых функций с форбуш-эффектами для наблюдений временных рядов от систем мониторинга КЛ представляет собой актуальную задачу.

Традиционная цифровая фильтрация, реализованная на основе разностных уравнений, не в полной мере применима для наблюдений с указанными особенностями. Так, указанная фильтрация плохо работает на ограниченных временных интервалах и обуславливает значительные динамические погрешности фильтрации из-за возможных быстрых понижений и медленных восстановлений среднего уровня в трендовых составляющих.

В данной статье предлагаются метод и алгоритм фильтрации трендов с форбуш-эффектами временных рядов наблюдений систем мониторинга КЛ. Благодаря использованию введенных скользящих локальных моделей обеспечивается удовлетворительное качество фильтрации на ограниченных временных интервалах и уменьшение динамических погрешностей. Реализуется математическая технология оптимизации параметров разработанного алгоритма.

Данная статья, посвященная фильтрации наблюдений с форбуш-эффектами, является развитием работы [3].

1. МЕТОД ФИЛЬТРАЦИИ ТРЕНДОВЫХ ФУНКЦИЙ С ФОРБУШ-ЭФФЕКТАМИ НА ОСНОВЕ СКОЛЬЗЯЩИХ ЛОКАЛЬНЫХ МОДЕЛЕЙ

Пусть временной ряд наблюдений y(Ti) систем мониторинга КЛ, дискретная низкочастотная трендовая функция $y_0(Ti)$ с возможными форбуш-эффектами и дискретная случайная последовательность w(Ti), $i = 0, 1, ..., N_f - 1$, T — шаг дискретности, связаны зависимостью

$$y(Ti) = y_0(Ti) + w(Ti).$$
 (1)

Будем считать, что случайная последовательность w(Ti) представляет собой сумму составляющих случайных последовательностей флуктуаций фона и погрешностей наблюдений, которая представляется в виде случайных независимых нормально распределенных чисел с нулевым ожиданием и заданной дисперсией.

Цель предлагаемой фильтрации — устранение случайной последовательности в наблюдениях временного ряда. Результат фильтрации будем обозначать в виде временного ряда $y^{\circ}(Ti)$ и принимать в качестве оценки трендовой функции.

Предлагаемый здесь метод фильтрации реализуем в два этапа [4].

На первом этапе для исходного интервала $i = 0, 1, \ldots, N_f - 1$ введем скользящие локальные интервалы с граничными точками N_{1j}, N_{2j}, N — число точек на локальном интервале, N_d — шаг скольжения, который определяет степень перекрытия скользящих интервалов:

$$N_{1j} = N_d(j-1), \quad N_{2j} = N_{1j} + N - 1, \quad j = 1, \dots, m_0.$$

Число скользящих локальных интервалов m_0 определим из решения задачи нахождения максимального положительного значения m, при котором выполняется неравенство $(N_f - N_d(m-1) - N + 1) \ge 0$. При этом размер модифицированного исходного интервала с целым числом скользящих интервалов и в ряде случаев с меньшим числом точек вычислим по формуле $N_{f0} = N_d(m_0 - 1) + N - 1$, $N_{f0} \le N_f$.

Каждому скользящему локальному интервалу с номером j поставим в соответствие локальную модельную функцию известного вида $y_M(c_j, Ti)$, где c_j — вектор параметров, $j = 1, \ldots, m_0$. Локальная модельная функция в общем случае может быть произвольной и нелинейной по вектору параметров c_j ; в частном случае — кусочно-полиномиальной. Для вектора параметров исходя из особенностей задачи может быть введено ограничивающее множество $\bar{C}_j, c_j \in \bar{C}_j$.

Принимая во внимание предположение о нормальности w(Ti) и учитывая (1), сформируем локальные функционалы $S(c_j, y_j)$, по которым вычислим меру близости локальных наблюдений $y_j = (y(T \cdot N_{1j}), y(y \cdot (N_{1j} + 1)), \dots, y(T(N_{2j}))^T)$, приходящихся на *j*-й скользящий локальный интервал, и локальных модельных функций

$$S(c_j, y_j) = \sum_{i=N_{1j}}^{N_{2j}} (y(Ti) - y_M(c_j, Ti))^2.$$
 (2)

Нахождение оценок c_j° [4] произведем с помощью решений задач условной минимизации локальных функционалов (2)

$$c_j^{\circ} = \arg \left\{ \min_{c_j \in \bar{C}_j} S(c_j, y_j) \right\}, \quad j = 1, \dots, m_0.$$
 (3)

Оценки c_j° из (3) связаны с наблюдениями y_j нелинейными соотношениями. Сформируем определенную на модифицированном исходном интервале последовательность скользящих локальных модельных функций $y_{M0j}^{\circ}(N, N_d, Ti), j = 1, \ldots, m_0$, зависящих от параметров c_j° и значений N, N_d :

$$y^{\circ}_{M0j}(N, N_d, Ti) = y_M(c^{\circ}_j, N, N_d, Ti), \quad N_{1j} \le i \le N_{2j},$$

$$y^{\circ}_{M0j}(N, N_d, Ti) = 0, \quad 0 \le i < N_{1j}, \quad N_{2j} < i \le N_{f0} - 1.$$

Вне локальных интервалов $N_{1j} \leq i \leq N_{2j}$ локальные модельные функции $y^{\circ}_{M0i}(N, N_d, Ti)$ примем равными нулю.

На втором этапе вычислим сумму последовательности скользящих локальных модельных функций:

$$y_{M0}^{\circ}(N, N_d, Ti) = \sum_{j=1}^{m_0} y_{M0j}^{\circ}(N, N_d, Ti), \quad i = 0, 1, \dots, N_{f0} - 1.$$
(4)

Для того, чтобы в функции суммы (4) учесть перекрытия скользящих локальных модельных функций, сформируем последовательность весовых коэффициентов $R(N, N_d, Ti)$ [5]. С этой целью вычислим число перекрытий моделей для каждой точки с номером $i, i = 0, 1, ..., N_{f0} - 1$; введем единичные функции $E_j(N, N_d, Ti)$, для которых выполняются соотношения на скользящих интервалах $E_j(N, N_d, Ti) = 1, N_{1j} \leq i \leq N_{2j}$,

166 Гетманов В.Г. и др.

 $E_j(N, N_d, Ti) = 0, \ 0 \le i < N_{1j}, N_{2j} < i \le N_{f0} - 1.$ Просуммируем единичные функции, найдем значения целых чисел перекрытий и вычислим последовательность весовых коэффициентов $R(N, N_d, Ti)$:

$$E(N, N_d, Ti) = \sum_{j=1}^{m_0} E_j(N, N_d, Ti),$$

$$R(N, N_d, Ti) = \frac{1}{E(N, N_d, Ti)}, \quad i = 0, 1, \dots, N_{f0} - 1.$$
(5)

Произведем взвешенное усреднение суммы последовательности скользящих локальных модельных функций (4) с использованием коэффициентов (5):

$$y_0^{\circ}(N, N_d, T_i) = R(N, N_d, T_i) y_{M0}^{\circ}(N, N_d, T_i), \quad i = 0, 1, \dots, N_{f0} - 1.$$

Выражение $y_0^{\circ}(N, N_d, Ti)$ примем в качестве результата фильтрации трендовой функции на основе локальных моделей.

Для конкретной реализации описанного выше метода сформируем скользящие локальные кусочно-линейные аппроксимационные модельные функции. Для скользящего локального интервала с номером j определим локальные модельные функции в виде $y_M(c_j, Ti) = c_{1j} + c_{2j}Ti$, где $c_j^T = (c_{1j}, c_{2j})$ — векторы параметров. Отыскание оптимальных параметров модельных функций осуществим на основе решений задач минимизации локальных функционалов, сводящихся к системам линейных уравнений

$$S(c_j, y_j) = \sum_{i=N_{1j}}^{N_{2j}} (y(Ti) - c_{1j} + c_{2j}Ti)^2,$$
$$(c_{1j}^{\circ}, c_{2j}^{\circ}) = \arg\{\min_{c_j} S(c_j, y_j)\}, \quad j = 1, \dots, m_0.$$

Построим последовательность сформированных скользящих локальных кусочно-линейных модельных функций с перекрытием ($j = 1, ..., m_0$):

$$y^{\circ}_{M1j}(N, N_d, Ti) = c^{\circ}_{1j} + c^{\circ}_{2j}Ti, \quad N_{1j} \leq i \leq N_{2j},$$

$$y^{\circ}_{M1j}(N, N_d, Ti) = 0, \quad 0 \leq i < N_{1j}, \quad N_{2j} < i \leq N_f - 1.$$

Просуммируем последовательности локальных скользящих модельных функций с перекрытием по аналогии с (4):

$$y_{M1}^{\circ}(N, N_d, Ti) = \sum_{j=1}^{m_0} y_{M1j}^{\circ}(N, N_d, Ti).$$

С использованием последовательности весовых коэффициентов (5) запишем выражение для результата фильтрации трендовых функций на основе кусочно-линейных моделей:

$$y_1^{\circ}(N, N_d, T_i) = R(N, N_d, T_i) y_{M1}^{\circ}(N, N_d, T_i), \quad i = 0, 1, \dots, N_{f0} - 1.$$
(6)

2. МАТЕМАТИЧЕСКАЯ ТЕХНОЛОГИЯ ОПТИМИЗАЦИИ ПАРАМЕТРОВ АЛГОРИТМА ФИЛЬТРАЦИИ

Рассмотрим математическую технологию оптимизации параметров N, N_d алгоритма фильтрации трендовых функций. Введем разность между (6) и (1), сформируем временной ряд остатков: $\Delta y_1(N, N_d, Ti) = y_1^{\circ}(N, N_d, Ti) - y(Ti)$, $i = 0, 1, \ldots, N_{f0} - 1$. Осуществим центрирование этого временного ряда — обеспечим равенство нулю его среднего значения:

$$\bar{\Delta}y_1(N, N_d, Ti) = \Delta y_1(N, N_d, Ti) - \left(\frac{1}{N_{f0}}\right) \sum_{s=0}^{N_{f0}-1} \Delta y_1(N, N_d, Ts)$$

Результат фильтрации $y_1^{\circ}(N, N_d, Ti)$, зависящий от параметров — числа точек на локальном интервале и шага скольжения, должен быть сформирован путем выбора N, N_d таким образом, чтобы центрированный временной ряд остатков $\bar{\Delta}y_1(N, N_d, Ti)$ в максимальной степени был подобен дискретному белому шуму.

Вычислим оценку автокорреляционной функции для центрированного временного ряда остатков:

$$C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(Tn, N, N_d) = \frac{1}{N_{f0} - n} \sum_{i=0}^{N_{f0} - n-1} \Delta \bar{y}_1(N, N_d, Ti) \Delta \bar{y}_1(N, N_d, T(i+n)),$$
$$n = 0, 1, \dots, N_{f0} - 1.$$

На основе оценки $C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(Tn, N, N_d)$ сформируем критерий выбора параметров N, N_d . Очевидно, что при выполнении неравенств $C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(0, N, N_d) \gg C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(Tn, N, N_d)$ для любых $n = 1, \ldots, N_{r0} - 1$, где N_{r0} — некоторое заданное число точек, временной ряд остатков может считаться подобным дискретному белому шуму.

Запишем выражение для критерия $\rho(N, N_d, N_{r0})$, физический смысл которого очевиден:

$$\rho(N, N_d, N_{r0}) = \frac{C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(0, N, N_d)}{\frac{1}{N_{r0}} \sum_{n=1}^{N_{r0}} \left| C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(Tn, N, N_d) \right|}.$$
(7)

Рассмотрим конечные наборы параметров $N(s_1), N_d(s_2)$, зависящих от целочисленных переменных $s_1 = 1, ..., \bar{s}_1, s_2 = 1, ..., \bar{s}_2$. Оптимальные параметры N°, N_d° алгоритма фильтрации трендовой функции найдем с помощью решения задачи условной максимизации критерия (7) на основе использования поискового метода простого перебора:

$$(s_{1}^{\circ}(N_{r0}), s_{2}^{\circ}(N_{r0})) = \arg\left\{\min_{\substack{s_{1}=1,...,\bar{s}_{1}\\s_{2}=1,...,\bar{s}_{2}}}\rho(N(s_{1}), N_{d}(s_{2}), N_{r0}\right\},$$

$$N^{\circ} = N(s_{1}^{\circ}(N_{r0}), N_{d}^{\circ} = N_{d}(s_{2}^{\circ}(N_{r0})).$$
(8)

3. ПРИМЕР ФИЛЬТРАЦИИ ТРЕНДОВОЙ ФУНКЦИИ С ФОРБУШ-ЭФФЕКТАМИ ДЛЯ ВРЕМЕННОГО РЯДА НАБЛЮДЕНИЙ ОТ НЕЙТРОННОГО МОНИТОРА

Был рассмотрен пример фильтрации трендовой функции с форбуш-эффектом для временного ряда наблюдений, полученного из базы данных сети нейтронного мониторинга космических лучей (http://cro.izmiran.ru) [6].

На рис. 1 цифрой *I* отмечен временной ряд зашумленных наблюдений y(Ti) (размерность — имп./мин). Наблюдения были произведены 02–03.06.2006 г., $i = 0, 1, ..., N_f - 1$, T = 60 с, $N_f = 2880$. Видно, что для точек $1100 \le i \le 1300$ имеет место форбушэффект, характеризующийся в данном случае понижением среднего уровня примерно на 4–5% с последующим его восстановлением в интервале с точками $1300 \le i \le 2000$. Была поставлена задача фильтрации трендовой составляющей для данных наблюдений.

Для максимизации (8) были сформированы последовательности числа точек на локальных интервалах $N(s_1) = N_0 s_1$, $N_0 = 5$, $s_1 = 1, \ldots, \bar{s}_1$, $\bar{s}_1 = 30$ и шагов скольжения $N_d(s_2) = N_{d0}s_2$, $N_{d0} = 1$, $s_2 = 1, \ldots, \bar{s}_2$, $\bar{s}_2 = 25$. Перебором по $N(s_1)$, $N_d(s_2)$ были получены временные ряды результатов фильтрации. Каждому полученному временному ряду было поставлено в соответствие значение критерия (7) для $N_{r0} = 19$, и найдено решение задачи максимизации (8). В результате были найдены оптимальные размеры локальных интервалов и шагов скольжения: $N^\circ = 55$, $N_d^\circ = 9$.

На рис. 1 цифрой 2 отмечен результат фильтрации $y_1^{\circ}(Ti) = y_1^{\circ}(N^{\circ}, N_d^{\circ}, Ti)$, $i = 0, 1, \ldots, N_{f0} - 1$, $N_{f0} = 2860$, соответствующий оптимальным параметрам фильтрации. Полученный результат фильтрации трендовой функции является наилучшим по принятому критерию. Можно сделать вывод, что в трендовой составляющей происходит быстрое снижение и медленное восстановление среднего уровня и колебаний с частотой $\approx 0, 2 \cdot 10^{-3}$ Гц.

На рис. 2 представлен пример оценки автоковариационной функции $C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(Tn, N^\circ, N_d^\circ)$ временного ряда остатков для $n = 0, 1, \ldots, 18$. Из графика следует, что максимальное значение автоковариационная функция принимает при n = 0; при $n = 1, \ldots, 18$ значения автоковариационной функции являются существенно малыми, что дает осно-

Рис. 1. Зашумленные (1) и отфильтрованные (2) наблюдения с форбуш-эффектом от нейтронного монитора; трендовая составляющая показана сплошной линией

Рис. 2. Оценка оптимальной автоковариационной функции временного ряда остатков

вание для вывода: временной ряд остатков наилучшим образом подобен дискретному белому шуму. Принятый критерий для оптимальных параметров предложенного алгоритма фильтрации составил значение $\rho(N^{\circ}, N_d^{\circ}, N_{r0}) = 12,058$.

Произведена оценка эффективности разработанной фильтрации. Для сравнения рассмотрено применение традиционного цифрового низкочастотного фильтра Баттерворта для решения задачи фильтрации трендовой функции. В качестве параметров в данном случае выбраны порядок фильтра $N_B(r_1) = N_{B0}r_1$, $N_{B0} = 2$, $r_1 = 1, ..., \bar{r}_1$, $\bar{r}_1 = 10$ и его частота среза $w_c(r_2) = w_{c0}r_2$, $w_{c0} = 0.05$, $r_2 = 1, ..., \bar{r}_2$, $\bar{r}_2 = 19$. Были произведены вычисления выходных временных рядов, полученных в результате применения фильтра Баттерворта $y_2^{\circ}(N_B, w_c, Ti)$, остатков $\Delta y_2(N_B, w_c, Ti) = y_2^{\circ}(N_B, w_c, Ti) - y(Ti)$, автоковариационных функций $C_{\Delta \bar{y}_2, \Delta \bar{y}_2}(Tn, N_B^{\circ}, w_c^{\circ})$ и критерия $\rho(N_B, w_c, N_{r0})$, аналогичного (7):

$$\rho(N_B, w_c, N_{r0}) = \frac{C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(0, N_B, w_c)}{\frac{1}{N_{r0}} \sum_{n=1}^{N_{r0}} |C_{\Delta \bar{y}_1, \Delta \bar{y}_1}(Tn, N_B, w_c)|}.$$
(9)

Для $N_{r0} = 19$ получено решение задачи условной максимизации критерия (9) с помощью поисковой процедуры, аналогичной (8). Были найдены оптимальные значения N_B°, w_c° и соответствующее значение критерия $\rho(N_B^{\circ}, w_c^{\circ}, N_{r0}) = 7,257$. Видно, что значение критерия для фильтра Баттерворта значительно меньше, чем значение того же критерия для предложенного алгоритма фильтрации на основе кусочно-линейных моделей.

ЗАКЛЮЧЕНИЕ

Предложенные метод и алгоритм фильтрации трендов с форбуш-эффектами временных рядов наблюдений систем мониторинга космических лучей, основанные на применении скользящих локальных моделей и взвешенного усреднения, оказались работоспособными.

Предложенная математическая технология оптимизации параметров алгоритма фильтрации с использованием оценок автоковариационных функций временных рядов остатков позволила расширить возможности существующих подходов к фильтрации.

170 Гетманов В. Г. и др.

Разработанный алгоритм фильтрации на основе кусочно-линейных моделей по сравнению с алгоритмом традиционного фильтра Баттерворта оказался более эффективным по предложенному критерию.

Результаты данной работы применимы ко многим задачам фильтрации, которые связаны с цифровой обработкой экспериментальных зашумленных временных рядов с трендовыми функциями. Возможно обобщение предложенного подхода на двумерный случай, например, для задачи исследования анизотропии космических лучей.

Работа выполнена при поддержке Российского научного фонда (грант № 17-17-01215).

СПИСОК ЛИТЕРАТУРЫ

- 1. Belov A. V. Forbush Effects and Their Connection with Solar, Interplanetary and Geomagnetics Phenomena // Univ. IAU Symp. 2008. No. 257.
- 2. Dorman L. I. Cosmic Rays in Magnetospheres of the Earth and Other Planets. Dordrecht: Springer, 2010. 770 p.
- Ivanov I. O., Borog V. V., Kryanev A. V., Getmanov V. G., Sidorov R. V. Comparison of Abilities of Two Trend Definition Techniques for Experimental Data Time Series Processing // J. Phys. Conf. Ser. 2017. V. 788. P.012017.
- 4. Гетманов В. Г. Цифровая обработка нестационарных колебательных сигналов на основе локальных и сплайновых моделей. М.: Изд-во НИЯУ МИФИ, 2010. 292 с.
- 5. Гетманов В. Г., Сидоров Р. В., Дабагян Р. А. Метод фильтрации сигналов с использованием локальных моделей и функций взвешенного усреднения // Измерительная техника. 2015. № 9. С. 52–57.
- 6. *Белов А. В.* Российская сеть нейтронных мониторов: история создания, современное состояние, перспективы // Академик С. Н. Вернов: к 100-летию со дня рождения. М.: Изд-во Моск. ун-та, 2010. С. 93–114.

Получено 19 июля 2017 г.