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QUANTUM DECOHERENCE
IN THE THEORY OF OPEN SYSTEMS
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Within the framework of the Lindblad theory for open quantum systems, we determine the degree of
quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system
manifests a quantum decoherence which is more and more signiˇcant in time. We also calculate the
decoherence time scale and analyze the transition from quantum to classical behaviour of the considered
system.
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INTRODUCTION

The quantum-to-classical transition and classicality of quantum systems continue to be
among the most interesting problems in many ˇelds of physics, for both conceptual and
experimental reasons [1, 2]. Two conditions are essential for the classicality of a quantum
system [3]: a) quantum decoherence (QD), that means the irreversible, uncontrollable and
persistent formation of a quantum correlation (entanglement) of the system with its environ-
ment [4], expressed by the damping of the coherences present in the quantum state of the
system, when the off-diagonal elements of the density matrix decay below a certain level,
so that this density matrix becomes approximately diagonal, and b) classical correlations,
expressed by the fact that the quantum state becomes peaked along a classical trajectory.
Classicality is an emergent property of open quantum systems, since both main features of
this process Å QD and classical correlations Å strongly depend on the interaction between
the system and its external environment [1, 2]. In this work, we study QD and analyze
quantum-classical transition of a harmonic oscillator interacting with an environment, in par-
ticular with a thermal bath, within the framework of the Lindblad theory for open quantum
systems.
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1. MASTER EQUATION AND DENSITY MATRIX

In the Lindblad axiomatic formalism based on quantum dynamical semigroups, the ir-
reversible time evolution of open system is described by the following general quantum
Markovian master equation for the density operator ρ(t) [5]:

dρ(t)
dt

= − i

�
[H, ρ(t)] +

1
2�

∑
j

([Vjρ(t), V †
j ] + [Vj , ρ(t)V †

j ]). (1)

The harmonic oscillator Hamiltonian H is chosen of the general quadratic form

H = H0 +
μ

2
(qp + pq), H0 =

1
2m

p2 +
mω2

2
q2 (2)

and the operators Vj , V †
j , which model the environment, are taken as linear polynomials in

coordinate q and momentum p. Then the master equation (1) takes the following form [6]:

dρ

dt
= − i

�
[H0, ρ] − i

2�
(λ + μ)[q, ρp + pρ] +

i

2�
(λ − μ)[p, ρq + qρ]−

− Dpp

�2
[q, [q, ρ]] − Dqq

�2
[p, [p, ρ]] +

Dpq

�2
([q, [p, ρ]] + [p, [q, ρ]]). (3)

The diffusion coefˇcients Dpp, Dqq, Dpq and the dissipation constant λ satisfy the fundamental
constraints: Dpp > 0, Dqq > 0 and DppDqq −D2

pq � λ2
�

2/4. In the particular case when the

asymptotic state is a Gibbs state ρG(∞) = exp
(
−H0

kT

)
/Tr exp

(
−H0

kT

)
, these coefˇcients

become

Dpp =
λ + μ

2
�mω coth

�ω

2kT
, Dqq =

λ − μ

2
�

mω
coth

�ω

2kT
, Dpq = 0, (4)

where T is the temperature of the thermal bath. In this case, the fundamental constraints are
satisˇed only if λ > μ and

(λ2 − μ2) coth2 �ω

2kT
� λ2 (5)

and the asymptotic values σqq(∞), σpp(∞), σpq(∞) of the dispersion (variance), and respec-
tively correlation (covariance) of the coordinate and momentum, reduce to [6]

σqq(∞) =
�

2mω
coth

�ω

2kT
, σpp(∞) =

�mω

2
coth

�ω

2kT
, σpq(∞) = 0. (6)

We consider a harmonic oscillator with an initial Gaussian wave function (σq(0) and σp(0)
are the initial averaged positions and momentum of the wave packet)

Ψ(q) =
(

1
2πσqq(0)

)1/4

exp
[
− 1

4σqq(0)

(
1 − 2i

�
σpq(0)

)
(q − σq(0))2 +

i

�
σp(0)q

]
, (7)

representing a correlated coherent state (squeezed coherent states) with the variances and
covariances of coordinate and momentum

σqq(0) =
�δ

2mω
, σpp(0) =

�mω

2δ(1 − r2)
, σpq(0) =

�r

2
√

1 − r2
. (8)
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Here δ is the squeezing parameter which measures the spread in the initial Gaussian packet and
r, with |r| < 1, is the correlation coefˇcient. The initial values (8) correspond to a minimum
uncertainty state, since they fulˇl the generalized uncertainty relation σqq(0)σpp(0)−σ2

pq(0) =
�

2/4. For δ = 1 and r = 0 the correlated coherent state becomes a Glauber coherent state.
From Eq. (3) we derive the evolution equation in coordinate representation:

∂ρ

∂t
=

i�

2m

(
∂2

∂q2
− ∂2

∂q′2

)
ρ − imω2

2�
(q2 − q′2)ρ−

− 1
2
(λ + μ)(q − q′)

(
∂

∂q
− ∂

∂q′

)
ρ +

1
2
(λ − μ)

[
(q + q′)

(
∂

∂q
+

∂

∂q′

)
+ 2

]
ρ−

− Dpp

�2
(q − q′)2ρ + Dqq

(
∂

∂q
+

∂

∂q′

)2

ρ − 2iDpq�(q − q′)
(

∂

∂q
+

∂

∂q′

)
ρ. (9)

The ˇrst two terms on the right-hand side of this equation generate the usual Liouvillian
unitary evolution. The third and the forth terms are the dissipative terms and have a damping
effect (exchange of energy with the environment). The last three terms are noise (diffusive)
terms and produce 
uctuation effects in the evolution of the system. Dpp promotes diffusion
in momentum and generates decoherence in coordinate q Å it reduces the off-diagonal terms,
responsible for correlations between spatially separated pieces of the wave packet. Similarly,
Dqq promotes diffusion in coordinate and generates decoherence in momentum p. The Dpq

term is the so-called ®anomalous diffusion¯ term and it does not generate decoherence.
The density matrix solution of Eq. (9) has the general Gaussian form

〈q|ρ(t)|q′〉 =
(

1
2πσqq(t)

)1/2

exp

[
− 1

2σqq(t)

(
q + q′

2
− σq(t)

)2

−

− σ(t)
2�2σqq(t)

(q − q′)2 +
iσpq(t)
�σqq(t)

(
q + q′

2
− σq(t)

)
(q − q′) +

i

�
σp(t)(q − q′)

]
, (10)

where σ(t) ≡ σqq(t)σpp(t)−σ2
pq(t) is the Schréodinger generalized uncertainty function. In the

case of a thermal bath we obtain the following steady state solution for t → ∞
(

ε ≡ �ω

2kT

)
:

〈q|ρ(∞)|q′〉 =
( mω

π� coth ε

)1/2

exp
{
−mω

4�

[
(q + q′)2

coth ε
+ (q − q′)2 coth ε

]}
. (11)

2. DECOHERENCE AND QUANTUM-CLASSICAL TRANSITION

An isolated system has a unitary evolution and the coherence of the state is not lost Å pure
states evolve in time only into pure states. The QD phenomenon, that is, the loss of coherence
or the destruction of off-diagonal elements representing coherences between quantum states in
the density matrix, can be achieved by introducing an interaction between the system and the
environment: an initial pure state with a density matrix which contains nonzero off-diagonal
terms can non-unitarily evolve into a ˇnal mixed state with a diagonal density matrix.
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Using new variables Σ = (q + q′)/2 and Δ = q − q′, the density matrix (10) becomes

ρ(Σ, Δ, t) =
√

α

π
exp

[
− αΣ2 − γΔ2 + iβΣΔ + 2ασq(t)Σ+

+ i

(
σp(t)

�
− βσq(t)

)
Δ − ασ2

q (t)

]
, (12)

with the abbreviations

α =
1

2σqq(t)
, γ =

σ(t)
2�2σqq(t)

, β =
σpq(t)
�σqq(t)

. (13)

The representation-independent measure of the degree of QD [3] is given by the ratio of
dispersion 1/

√
2γ of the off-diagonal element ρ(0, Δ, t) to dispersion

√
2/α of the diagonal

element ρ(Σ, 0, t) :

δQD(t) =
1
2

√
α

γ
=

�

2
√

σ(t)
. (14)

The ˇnite temperature Schréodinger generalized uncertainty function has the expression [7]
(with the notation Ω2 ≡ ω2 − μ2, ω > μ)

σ(t) =
�

2

4

{
e−4λt

[
1 −

(
δ +

1
δ(1 − r2)

)
coth ε + coth2 ε

]
+

+ e−2λt coth ε

[(
δ +

1
δ(1 − r2)

− 2 coth ε

)
ω2 − μ2 cos (2Ωt)

Ω2
+

+
(

δ − 1
δ(1 − r2)

)
μ sin (2Ωt)

Ω
+

2rμω(1 − cos (2Ωt))
Ω2

√
1 − r2

]
+ coth2 ε

}
. (15)

In the limit of long times Eq. (15) yields σ(∞) = (�2 coth2 ε)/4, so that we obtain

δQD(∞) = tanh
�ω

2kT
, (16)

which for high T becomes δQD(∞) = �ω/(2kT ). We can see that δQD decreases, and
therefore, QD increases with time and temperature, i.e. the density matrix becomes more
and more diagonal at higher T and the contributions of the off-diagonal elements get smaller
and smaller. At the same time, the degree of purity decreases and the degree of mixedness
increases with T . For T = 0 the asymptotic (ˇnal) state is pure and δQD reaches its initial
maximum value 1. δQD = 0 when the quantum coherence is completely lost, and if δQD = 1
there is no QD. For quite a long time the magnitude of the elements of the density matrix
in the position basis are peaked preferentially along the diagonal q = q′. Then δQD < 1
and we can say that the considered system interacting with the thermal bath manifests QD.
Dissipation promotes quantum coherences, whereas 
uctuation (diffusion) reduces coherences
and promotes QD. The balance of dissipation and 
uctuation determines the ˇnal equilibrium
value of δQD. The initial pure state evolves approximately (following the classical trajectory)
into phase space and becomes a quantum mixed state during the irreversible process of QD.
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In the macroscopic limit, when � is small, compared to other quantities with dimensions of
action, the term in Eq. (9) containing Dpp/�

2 dominates and induces the following evolution:

∂ρ

∂t
= −Dpp

�2
(q − q′)2ρ. (17)

Thus, the density matrix loses off-diagonal terms in position representation, while the di-
agonal (q = q′) ones remain untouched. Quantum coherences decay exponentially and the
decoherence time scale is of the order of

tdeco =
�

2

Dpp(q − q′)2
. (18)

In the case of a thermal bath, we obtain (see Eq. (4))

tdeco =
2�

(λ + μ)mωσqq(0) coth ε
, (19)

where we have taken (q − q′)2 of the order of the initial dispersion in coordinate σqq(0).
As expected, the decoherence time tdeco has the same scale as the time after which thermal

uctuations become comparable with quantum 
uctuations. In the macroscopic domain QD
occurs very much faster than relaxation. When t � trel, where trel ≈ λ−1 is the relaxation
time, which governs the rate of dissipation, the particle reaches equilibrium with the envi-
ronment. Indeed, the uncertainty function σ(t) (15) approaches σBE = (�2 coth2 ε)/4, which
is the BoseÄEinstein relation for a system of bosons in equilibrium at temperature T . In the
case of T = 0 we approach the limit of pure quantum 
uctuations, σ0 = �

2/4, which is the
quantum Heisenberg relation. At high temperatures T we obtain the limit of pure thermal

uctuations, σMB = (kT/ω)2, which is a MaxwellÄBoltzmann distribution for a system ap-
proaching a classical limit. The regime where thermal 
uctuations begin to surpass quantum

uctuations is regarded as the transition point from quantum to classical statistical mechanics
and the high temperature regime of a system is considered as the classical regime. We
have shown that these two criteria of classicality are equivalent: the time when the quantum
system decoheres is comparable with the time when thermal 
uctuations overtake quantum

uctuations. After the decoherence time, the system has to be described by non-equilibrium
quantum statistical mechanics. After the relaxation time the system is treated by equilibrium
quantum statistical mechanics, and only at a sufˇciently high temperature, when the spin
statistics is represented by the MaxwellÄBoltzmann distribution function, it can be considered
in a classical regime [7,8].

3. SUMMARY AND CONCLUDING REMARKS

We have studied QD within the framework of the theory of open quantum systems in
order to understand the quantum-classical transition for a harmonic oscillator in interaction
with a thermal bath. The classicality is conditioned by QD, expressed by the loss of quantum
coherence in the case of a thermal bath at ˇnite temperature.

The role of QD became relevant to many interesting physical problems. In many cases, one
is interested in understanding QD because one wants to prevent decoherence from damaging
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quantum states and to protect the information stored in quantum states from the degrading
effect of the interaction with the environment. Decoherence is also responsible for washing
out the quantum interference effects which are desirable to be seen as signals in experiments.
QD has a negative in
uence on many areas relying upon quantum coherence effects, in
particular it is a major problem in the physics of quantum information and computation.
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