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A symbolic algorithm to generate the multilayer operator-difference schemes for solving the evolu-
tion problem of time dependent Schréodinger equation is elaborated. An additional gauge transformation
of operator-difference schemes to make a good use of the ˇnite-element discretization is applied. The
efˇciency of the generated numerical schemes till the sixth order with respect to the time step and till the
seventh order with respect to the spatial step is demonstrated by calculations of some ˇnite-dimensional
quantum systems in external ˇelds.
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INTRODUCTION

The modern laser physics experiments have stimulated computer simulations announced
in [1] for the time-dependent dynamics of few-body Coulomb systems in a train of laser
pulses and the time-dependent Schréodinger equation (TSDE) for the control problems of
quantum systems [2]. For any numerical method, a pair of requirements is always made: one
is stability, and the other is accuracy. From the viewpoint of these requirements, the unitary
splitting methods have a big advantage: the unitarity of the evolution operators applied in
the methods preserves the norm of the wave functions, so that the conservation of probability
density and robustness of methods are guaranteed.

In this paper, a new computational method is proposed to solve the TDSE, in which the
unitary splitting algorithm with uniform time grids [3] is combined with an application of the
ˇnite-element method (FEM) and an interpolation method in nonuniform spatial grids [4]. The
efˇciency and the accuracy of the developed numerical algorithms are conˇrmed in certain
integrable atomic models in external ˇelds.

1E-mail: vinitsky@thsun1.jinr.ru
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1. GENERAL FORMULATION AND CALCULATION SCHEMES

Let us consider the Cauchy problem of the TDSE on the time interval t ∈ [t0, T ]

i∂tψ(x, t) = H(x, t)ψ(x, t), ||ψ||2 =
∫
|ψ(x, t)|2dx = 1,

ψ(x, t0) = ψ0(x), ψ(x, t) ∈ H1(Rn ⊗ [t0, T ]), ψ0(x) ∈ H1(Rn),
(1)

with initial state ψ0(x), which describes an atomic model in an external (electromagnetic)
ˇeld1. We rewrite (1) for an unitary operator U(t, t0, λ) with a complementary parameter2

carrying the initial state ψ(x, t0) to the solution ψ(x, t) in the form

i∂tU(t, t0, λ) = λH(x, t)U(t, t0, λ), U(t0, t0, λ) = 1,

which we consider in the uniform grid, with time step τ , in the time interval [0, T ]: Ωτ [t0, T ] =
{t0, tk+1 = tk+τ, (k = 0, 1, . . . , K), tK = T }. We express the unitary operator U(tk+1, tk, λ)
carrying the solution ψ(tk) ≡ ψ(x, tk) at t = tk to the one ψ(tk+1) at t = tk+1 in the form [3]

ψ(tk+1) = U(tk+1, tk, λ)ψ(tk),

U(tk+1, tk, λ) = exp
{
−ıτA

(M)
k (t, λ)

}
+ O(τ2M+1).

(2)

We start with the power-series expansion of A
(M)
k (t, λ) in terms of the formal parameter λ,

A
(M)
k (t, λ) =

1
τ

2M∑
j=1

λjA(j)k(t), where the coefˇcients A(j)(t) ≡ A(j)k(t) are evaluated from

the operator-identity [5]

−ıλH(t) =
n+Σq

i=1li�2M∑
n=1;q=0;l1,...,lq=1

λn+Σq
i=1li

(q + 1)!
(
adA(l1)(t)

)
· · ·

(
adA(lq)(t)

) .
A(n) (t). (3)

Here linear operator (adA): L(X) → L(X) is deˇned for operators A, B ∈ L(X) in the
form (adA)B = [A, B] ≡ AB − BA and has the following properties: (adA)0B = B,
(adA)jB = (adA)j−1(adA)B. Note that the dot over the operator A(n)(t) means the partial

derivation,
.
A(n) (t) = ∂tA(n)(t), in t. Equating the coefˇcients at the same powers of λ

in both sides of (3), we obtain a set of the ˇrst-order differential equations [1]. Solving
sequentially the set of equations obtained, we are led to the effective Hamiltonians A(k)(t)
connected with the original one H(t) via the Magnus expansion written in terms of repeated

integrals [5]. We wish to express the truncation A
(M)
k given in terms of H(t), its partial

derivative in time and the higher ones. Putting the Taylor expansion of H(t) in a vicinity of

t = tk + τ/2 as H(t) =
2M∑
j=0

(t − tc)j

j!
∂j

t H(tc) into the integrals, one can ˇnd an analytical

1The atomic units are applied throughout this paper.
2The complementary formal parameter λ will be replaced to be λ = 1 later.
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(meaning non-numerical) expression of operators, A
(1)
k , A

(2)
k , . . . , A

(M)
k , in principle: for A

(1)
k ,

we have only to calculate the coefˇcient of λ0, and then obtain A
(1)
k =

1∫
0

dξ0H(tk + ξ0τ) =

H(tk + τ/2) + O(τ2), without any difˇculties. However, in the case of A
(M)
k with large

M , rather cumbersome calculations are required to ˇx all the coefˇcients of the power of

λ in A
(M)
k ®by hand¯. Our algorithm GATEO (Generation of Approximations of the Time-

Evolution Operator) is thereby motivated by the difˇculty of calculation pointed out above,

that provides the set of generators A
(M)
k (tk+1) required in the operator-difference scheme

derived in (7).
In the case of the expansion of the Hamiltonian H(t) in a vicinity of t = tc ≡ tk+τ/2, we

will also ˇnd operators A
(M)
k (tk+1) in the form of the series, A

(M)
k (tk+1) =

2M∑
j=0

τ j

2jj!
A(j)k,

with unknown coefˇcients A(j)k . Recalling that the evolution operator U(tk, tk+1, λ) is
inverse to operator U(tk+1, tk, λ), we have Ak+1(tk) = Ak(tk+1). It means that the above

series of A
(M)
k (tk+1) contains only even degrees of τ because expression of A

(M)
k+1(tk) will be

obtained from A
(M)
k (tk+1), by formal substitution τ → −τ . Then the unknown coefˇcients

A(j)k are calculated explicitly from a set of recurrence equations [6]

(j + 1)A(j+1)(tc) = −ı
1 + (−1)j

2j+1j!
∂j

t H(tc) +
j∑

n=0

j−n∑
q=0

n+Σq
i=1li=j∑

l1,...,lq�1

Bn
l1,...,lq

n!
,

Bn
l1,...,lq

=
(
adA(l1)(tc)

)
· · ·

(
adA(lq)(tc)

)
Qqn;

Qqn = −ı
(−1)n

2n+1n!
∂n

t H(tc) −
q + 1
n + 1

A(n+1)(tc).

To show the complexity of calculations, we present the ˇrst three approximations of the

exponential (2) for the ˇnal effective Hamiltonians A
(M)
k in the form A

(M)
k = Â

(M)
k + ıĂ

(M)
k :

Â
(1)
k = H, Ă

(1)
k = 0,

Â
(2)
k = Â

(1)
k +

τ2

24

..
H, Ă

(2)
k = Ă

(1)
k +

τ2

12
(adH)

.
H,

Â
(3)
k = Â

(2)
k +

τ4

1920

....
H − τ4

720
(adH)2

..
H − τ4

240
(ad

.
H)2H,

Ă
(3)
k = Ă

(2)
k − τ4

480
(ad

...
H )H +

τ4

480
(ad

..
H)

.
H +

τ4

720
(adH)3

.
H.

(4)

where H ≡ H(tk+1/2),
.
H≡ ∂tH(x, t)|t=tk+1/2

,
..
H≡ ∂2

t H(x, t)
∣∣
t=tk+1/2

, . . . We wish to

make further approximation of the unitary scheme of Eq. (2).
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Application to the exponential operator (2) of the generalized [M/M ] Pad
e approximation
yields

exp
(
−iτA

(M)
k

)
=

M∏
ζ=1

Tζk + O(τ2M+1),

Tζk =

(
I +

τα
(M)
ζ A

(M)
k

2M

)−1 (
I +

τα
(M)
ζ A

(M)
k

2M

)
,

(5)

where the overline indicates the complex conjugate operation. The coefˇcients, α
(M)
ζ (ζ =

1, . . . , M , M � 1), stand for the roots of the polynomial equation, 1F1(−M,−2M, 2Mı/α) =
0, where 1F1 is the con�uent hypergeometric function. The coefˇcients α

(M)
ζ have the

following properties: �α
(M)
ζ < 0 and 0.6 < |α(M)

ζ | < μ−1, where μ ≈ 0.28 is the root of

equation μ exp (μ + 1) = 1. Note that the condition τ < 2Mμ
∣∣∣∣∣∣A(M)

k

∣∣∣∣∣∣−1

guarantees the

validity of the approximation (5) for any bounded operator A
(M)
k .

We are now in a position to obtain the transition from ψ(tk) to ψ(tk+1), by using the
approximation (5) of the evolution operator in (2). To make it, we rewrite the transition

in terms of the auxiliary functions deˇned by ψ
ζ/M
k = Tζkψ

(ζ−1)/M
k , ζ = 1, . . . , M. The

fact that �α
(M)
ζ < 0 yields the operators, Tζk, to be isometric, so that all the

∥∥∥ψ
ζ/M
k

∥∥∥ have

an equal norm, ‖ψ0
k‖ =

∥∥∥ψ
1/M
k

∥∥∥ = . . . = ‖ψ1
k‖. To generate the schemes with extraction

symmetric part Ã
(M)
tc

of the operator A
(M)
tc

= Â
(M)
tc

+ıĂ
(M)
tc

, we apply a gauge transformation

ψ̃ = exp
(
ıS

(M)
tc

)
ψ, that leads to a new operator Ã

(M)
tc

= exp
(
ıS

(M)
tc

)
A

(M)
tc

exp
(
−ıS

(M)
tc

)
.

We will ˇnd S
(M)
tc

in the form of a series by powers of τ : S
(M)
tc

=
2M∑
j=0

τ jSj , where un-

known coefˇcients S(M) are calculated from an additional condition:
�
A

(M)

tc
ψ̃ = O(τ2M ).

Here
�
A

(M)

tc
= exp

(
ıS

(M)
tc

)
Ă

(M)
tc

exp
(
−ıS

(M)
tc

)
are evaluated in accordance with Hausdorff's

formulae, exp (A)B exp (−A) =
∑
j=0

1
j!

(adA)jB. Substituting the expansion of S
(M)
tc

to the

condition and equating at the same powers of τ , we obtain a set of algebraic (or opera-
tor) recurrence relations for evaluating unknown coefˇcients Sj with the initial condition
S0 = 0. Taking into account the above procedures at each kth time step of the grid Ωτ

(k = 0, 1, . . . , K − 1), we are led to the operator-difference scheme with a partial splitting of
the evolution operator,

ψ̃0
k = exp (iS(M))ψ(tk),(

I +
τ

2M
α

(M)
ζ Ã

(M)
k

)
ψ̃

ζ/M
k =

(
I +

τ

2M
α

(M)
ζ Ã

(M)
k

)
ψ̃

(ζ−1)/M
k , ζ = 1, 2, . . . , M, (6)

ψ(tk+1) = exp (−iS(M))ψ̃1
k.

Hence, the auxiliary functions ψ̃
ζ/M
k (ζ = 1, . . . , M − 1) in Eq. (6) can be treated as a kind

of approximate solutions on a set of the fractional time steps tk+ζ/M = tk + τζ/M, ζ =
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1, . . . , M − 1 in the time interval [tk, tk+1]. The scheme (6) is an implicit one of order 2M
preserving the norm of the difference solution, so that this scheme is stable. Further, the
scheme (6) provides an approximation of the order O(τ2M ) in the sense of [7], while any
individual equation in (6) provides only an approximation of degree not higher than O(τ2).
Note that in the case M = 1, i.e. [1/1] Pad
e approximation of exponential operator (5), the
scheme (6) reduces to the well-known CrankÄNicholson scheme [7].

2. APPLICATION OF THE FEM PARTIAL SPLITTING SCHEMES

The Cauchy problem of the TDSE in the interval for an atom in an external ˇeld reads as

ı
∂

∂t
ψ(x, t) = H(x, t)ψ(x, t), H(x, t) = H(x) + q(x, t), H(x) = −1

2
∂2

∂x2
+ V (x),

ψ(−∞, t) = ψ(∞, t) = 0, ψ(x, t0) = ψ0(x) (x, t) ∈ R × [t0, T ],
(7)

and the normalization condition is claimed at any t � t0: ||ψ||2 =

∞∫
−∞

|ψ(x, t)|2dx = 1.

For the operators q(x, t) and H(x) and the wave function ψ(x), we make the following
assumptions: the q(x, t) describes the dipole-approximation of the interaction between the
atom and the external ˇeld f(t), which is written in the form q(x, t) = f(t)x.

To illustrate how the above approach allows an efˇcient solution of the TDSE problem (7),
we consider a PéoschlÄTeller atom (PTA) in a laser pulse electric ˇeld. For the PT model the
potential function V (x) = − cosh−2 x supports only one bound state ψ0(x) = 1/

√
2 coshx,

with the eigenvalue E0 = −0.5 a.u., and a continuum of the known scattering states with

E > 0. The laser pulse f(t) is given by f(t) =
{
f0 sin2

(
πt

2t0

)
, 0 < t < 2t0; 0, |t − t0| � t0,

}
where f0 = t0 = 1. We choose the corresponding ground state ψ0(x) as an initial
state. To approximate the solution ψi(x, t), i = 1, 2, 3, 4 we use 1600 ˇnite elements

a) Real and imaginary parts of solution φ(x, t) (solid and dashed curves) for PTA atom at t = T = 10
and b) logarithm of discrepancy Er(t; i), i = 1, 2, 3 (dash-dotted, dashed and solid curves) for schemes
with M = 1, 2, 3 calculated in Fortran by quadruple precision (33 signiˇcant digits)
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of the sixth order and the ˇnite element grid Ω = {−1500(200) − 300(200) − 20(200) −
1(400)1(200)20(200)300(200)1500}, where the numbers in brackets denote the number of
ˇnite elements in the intervals. We calculated the above solution over the enclosed time grids
Ωτ [t0 = 0, T = 10] with four different time steps τ = 0.01, 0.005, 0.0025, 0.00125. The
ˇgure displays the wave function calculated at time T = 10 and examines the behavior of

discrepancy functions Er(t; i), i = 1, 2, 3, evaluated by formulae Er2(t; i) =

xmax∫
xmin

[ψ4(x, t) −

ψi(x, t)]∗[ψ4(x, t)− ψi(x, t)]dx, where the index i = 1, 2, 3, 4 labels the numerical solutions,
obtained for different values of the time step τ . Having these three values of Er(t; i), we can
calculate the Runge ratio αM (t) = ln (|Er(t; 1) − Er(t, 2)|/|Er(t; 2) − Er(t, 3)|)/ ln 2. The
ˇgure shows the plots of Er(t; i), i = 1, 2, 3 for these schemes (upper three curves correspond
to the second-order scheme, middle three curves to the fourth-order scheme and lower three
ones to the sixth-order scheme) and the mean value of αM over all values αM (tk) of the grid
Ωτ [0, 10]. Hence, we obtain the numerical estimates of αM (t) and their mean value, αM ,
that strongly corresponds to the theoretical ones αM (t) ≈ 2M .

CONCLUSIONS

We have presented a new computational approach to solve the TDSE, in which partial
(unitary) splitting of evolution operator and the FEM are combined together effectively.
Especially to realize our approach in an explicit form, we have derived the second-, fourth-,
and sixth-order approximations with respect to time step. Several numerical results have been
also given which turn out to agree with the theoretical ones to a good extent.

As our future program, we wish to mention an extension of our proposed approach to the
nonlinear TDSE with the use of the Lie symmetry formalism [8], which some of the authors
have a plausible reason to think of. If it is possible, ®Lie-admissible¯ TDSEs could be thought
of, from which we could ˇnd exact solutions [9]. Our approach would be worth being applied
to the quantum control problem, some pre-experimental calculations in the atomic dynamics
in traps and/or external-pulse ˇelds, and other quantum calculations [2].
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