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QUANTUM SYSTEMS
IN REGULAR AND STOCHASTIC FIELDS.

CREATION AND DESTRUCTION OF THE COHERENCE

A. V. Gorokhov1

Department of General and Theoretical Physics, Samara State University, Samara, Russia

The problem of the coherent state generation with deˇnite parameters for multilevel quantum systems
is investigated. The interaction with external environment and stochastic ˇelds can destroy the coherence.
The competition of these processes is considered on the basis of FokkerÄPlanck equations approach,
derived from master equation for the density matrix of the system. Examples of the coherent states
dynamics for two-level atoms in an external stochastic ˇeld in a nonideal resonator are considered.
Average over the realizations of stochastic ˇelds is performed for the case of white Gaussian noise and
KuboÄAnderson process. Explicit formulas for probability and shape of radiation line are obtained.

ˆ¸¸²¥¤μ¢ ´  ¶·μ¡²¥³  £¥´¥· Í¨¨ ±μ£¥·¥´É´ÒÌ ¸μ¸ÉμÖ´¨° ¤²Ö ³´μ£μÊ·μ¢´¥¢ÒÌ ±¢ ´Éμ¢ÒÌ ¸¨-
¸É¥³. ‚§ ¨³μ¤¥°¸É¢¨¥ ¸ ¢´¥Ï´¨³ μ±·Ê¦¥´¨¥³ ¨ ¸ÉμÌ ¸É¨Î¥¸±¨³¨ ¢´¥Ï´¨³¨ ¶μ²Ö³¨ · §·ÊÏ ¥É ±μ-
£¥·¥´É´μ¸ÉÓ. Šμ´±Ê·¥´Í¨Ö ÔÉ¨Ì ¶·μÍ¥¸¸μ¢ ¨§ÊÎ¥´  ´  μ¸´μ¢¥ ¶μ¤Ìμ¤  Ê· ¢´¥´¨° ”μ±±¥· Ä�² ´± ,
¢Ò¢¥¤¥´´ÒÌ ¨§ ±¨´¥É¨Î¥¸±μ£μ Ê· ¢´¥´¨Ö ¤²Ö ³ É·¨ÍÒ ¶²μÉ´μ¸É¨ ¸¨¸É¥³Ò. � ¸¸³μÉ·¥´ ¶·¨³¥·
¤¨´ ³¨±¨ ±μ£¥·¥´É´ÒÌ ¸μ¸ÉμÖ´¨° ¤²Ö ¤¢ÊÌÊ·μ¢´¥¢ÒÌ  Éμ³μ¢ ¢μ ¢´¥Ï´¥³ ¸ÉμÌ ¸É¨Î¥¸±μ³ ¶μ²¥ ¢
´¥¨¤¥ ²Ó´μ³ ·¥§μ´ Éμ·¥. ‚Ò¶μ²´¥´μ Ê¸·¥¤´¥´¨¥ ¶μ ·¥ ²¨§ Í¨Ö³ ¸ÉμÌ ¸É¨Î¥¸±μ£μ ¶μ²Ö ¢ ¸²ÊÎ ÖÌ
¡¥²μ£μ £ Ê¸¸μ¢  ÏÊ³  ¨ ¶·μÍ¥¸¸  ŠÊ¡μÄ�´¤¥·¸μ´ . ‚Ò¢¥¤¥´Ò Ö¢´Ò¥ Ëμ·³Ê²Ò ¤²Ö ¢¥·μÖÉ´μ¸É¥°
´ °É¨  Éμ³ ´  ¢¥·Ì´¥³ ¨ ´¨¦´¥³ Ê·μ¢´¥ ¨ ±μ´ÉÊ·  ²¨´¨¨ ¨§²ÊÎ¥´¨Ö.

INTRODUCTION

Coherent states (CS) approach is a very important and powerful tool in modern theoret-
ical physics [1Ä3]. CS found many interesting applications in quantum optics, atomic and
molecular physics, condensed matter physics, quantum ˇeld theory and quantum calculations
and cryptography.

The purpose of this paper consists in considering the coherent state generation problem for
atomic systems and destroying their coherency by in
uence of large dissipative environment
and interaction with external stochastic ˇelds.

1E-mail: gorokhov@ssu.samara.ru
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1. GENERATION OF ATOMIC COHERENT STATES

It is well known that single n-level atom (or cooperative system of such atoms) in external
homogeneous classical electromagnetic ˇeld has a dynamical symmetry of the group SU(n),
see, for example, the book [2]. For the case of full symmetric irreducible representation
T (g) ≡ D(p, 0, . . . , 0) of SU(n) CS is given by the formula

|z〉 =

(
1 +

n−1∑
α=1

zαz̄α

)−p n−1∏
β=1

exp
(
zβÊ+

β

)
|0〉, (1)

where z = (z1, . . . , zn−1) ∈ SU(n)/U(n − 1) ≈ CPn−1 and |0〉 Å the vector of domi-
nant weight of the representation and operators Ê+

1 , . . . , Ê+
n−1 are the raising CartanÄWeyl

operators that do not belong to the family of U(n − 1) subgroup generators.
System of equations for the CS parameters has a form of generalized Rikkati equations [4]

iżα = Hαn(t) +
n−1∑
β=0

[Hαβ(t) − Hnn(t)δαβ ] zβ −
n−1∑
β=0

Hnβ(t)zαzβ, (2)

where
(
Hnl(t)

)
= H(t) is n × n Hermitian matrix of the Hamiltonian with zero trace.

These equations follow from the time-dependent Schréodinger equation, if one presents the
state vector |Ψ(t)〉 in the form |Ψ(t)〉 = eiφ(t)|z(t)〉, where |z(t)〉 is CS of group SU(n)
which is the dynamical group of the system. The special feature of Eqs. (2) lies in the fact
that they have the same form for all full symmetric irreducible representations of SU(n).

A solution of the Cauchy problem for Eqs. (2) takes a form of the multilinear-fractional
function mapping of initial point z(t0) = (z1(t0), . . . , zn−1(t0)) ∈ SU(n)/U(n − 1) with
SU(n) group action. Substituting zα = ηα/ηn, α = 1, . . . , n − 1 into Eqs. (2), we get the
system of linear differential equations

i�η̇k =
∑
l=1

Hkl(t)ηl, k = 1, . . . , n. (3)

The solution of Eqs. (3) is determined by the action of the unitary matrix θ(t, t0) ∈ SU(n)
on initial n-dimensional vector (η1(t0), . . . , ηn(t0)), and takes the form

ηk(t) =
n∑

l=1

(θ(t, t0))klη
l(t0).

As a result, we get

zα(t) =

n−1∑
β=1

θαβ(t, t0)zβ(t0) + θnα(t, t0)

n−1∑
β=1

θnβ(t, t0)zβ(t0) + θnn(t, t0)

.

The CS dynamics for two-level atoms, as well as in the case of atoms with 2j + 1
equidistant levels, is governed by the Rikkati equation

iż = A(t) + ω0 z − Ā(t) z2. (4)
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For the case of linear polarized monochromatic electromagnetic ˇeld A(t) = A exp (−iω t),
ω is the ˇeld frequency, the constant A is proportional to product of electric ˇeld strength
and atomic dipole momentum transition; ω0 is atomic transition frequency.

Fig. 1. Coherent state dynamics for two-level atom: a, b) trajectories on the complex plane z = x + iy

and probability P (t) to ˇnd atom on upper level for the case z(0) = 1 + i, ω0 = 1, ω = 2/3, A = 2;

c, d) trajectories in the the bounded complex plane region: −2 < Re z, Im z < 2 and Bloch sphere
map of the entire trajectory for the case z(0) = 1 + i, ω0 = 1, ω = 1.333, A = 10, respectively. The

calculation time is limited by the interval t ∈ [0, 200]

The CS dynamics may be visualized by the motion of the point on the complex plane
or on the Bloch sphere S2. This is shown in Fig. 1. We have used in our calculations
dimensionless units (frequency ω0 = 1). It is evident that trajectories of CS have some
remarkable ®symmetry¯, but the atom excitation probability, determined by the simple Rabi
formula

P (t) =
A2 sin2 Ω t

(ω − ω0)2 + A2
(5)

(and valid, of course, if z(0) = 0), does not depend on ˇne details of internal CS dynamics.
Here Ω = (1/2)

√
(ω − ω0)2 + A2 is the well-known Rabi frequency.
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Figure 2 shows an example of CS generation for the two-level atom by in
uence of the
Gaussian pulse A(t) = A exp

[
−iω t − (t − t0)2/τ2

]
, here τ is the duration time of the pulse.

Fig. 2. Coherent state generation for the two-level atom: a) the trajectory on the complex plane

z = x + iy, |z0| ≈ 0.358; b) the probability P (t) to detect atom on the upper level (z(0) = 0, ω0 = 1,
ω = 2, A = 1.5, τ =

√
3/5, t0 = 5)

In particular, the initially nonexcited atom after short pulse in
uence goes to any CS
|z0 e−i ω0 t〉 and the point z(t) should break into rotation with frequency ω0 in a circle of
radius |z0|. In contrast with the previous case, the time dependence of the probability P (t)
does not follow the simple formula (5). When t − t0 ∼ τ, the probability P (t) ≈ 1, and if
the pulse action is ˇnished, the probability tends to any constant determined by the formula

P (t) → |z0|2
1 + |z0|2

, t � τ.

Changing the pulse parameters, we may get, in principle, different atomic CS with wanted
characteristics.

Similar results are also true for atom (atoms) with n levels of energy. For example, for
the three-level atom we need CS

|z1, z2〉 = (1 + z1z̄1 + z2z̄2)
−μ1+3/2μ2 ez1L̂+ ez2Ĵ+ |0〉, (6)

where (z1, z2) ∈ SU(3)/U(2) ≈ CP2, the numbers μ1 and μ2 are eigenvalues of two
diagonal operators in CartanÄWeyl basis of SU(3) Lie algebra, and L̂+ and Ĵ+ are raising
operators not belonging to the stationary subalgebra U(2) of the atomic ®vacuum¯ state |0〉.

2. QUANTUM SYSTEM IN STOCHASTIC FIELD AND NONIDEAL CAVITY

In this section we brie
y consider two-level atom in nonideal cavity (heat bath) and with
external ˇelds Ω(t) and ξ(t). The interaction with stochastic ˇeld may be described with the
Hamiltonian [5]

Ĥst = �

(
Ω(t) Ĵ3 + ξ(t) Ĵ+ + ξ̄(t) Ĵ−

)
, (7)
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where Ω(t) determines a random shift of the atomic levels, ξ(t), ξ̄(t) are random functions
which are proportional to the strength of stochastic ˇeld and should produce transitions
between atomic levels:

∂ρ̂

∂t
=

γ

2

[
(〈ν〉+1)

(
2Ĵ−ρ̂Ĵ+ − Ĵ+Ĵ−ρ̂ − ρ̂Ĵ+Ĵ−

)
+〈ν〉

(
2Ĵ+ρ̂Ĵ− − Ĵ−Ĵ+ρ̂ − ρ̂Ĵ−Ĵ+

)]
+

+ KΩ(t)
(
2Ĵ3ρ̂Ĵ3 − Ĵ2

3 ρ̂ − ρ̂Ĵ2
3

)
+ Kξ(t)

(
2Ĵ+ρ̂Ĵ− + Ĵ−ρ̂Ĵ+ − ρ̂Ĵ−Ĵ+ − Ĵ+Ĵ−ρ̂

)
+

+ K̄ξ(t)
(
2Ĵ+ρ̂Ĵ− + Ĵ−ρ̂Ĵ+ − ρ̂Ĵ+Ĵ− − Ĵ−Ĵ+ρ̂

)
, (8)

where γ is the damping constant; 〈ν〉 is heat bath mean number of quanta,

KΩ(t) =

t∫
0

〈Ω(t)Ω(t1)〉dt1, Kξ(t) =

t∫
0

〈ξ(t)ξ̄(t1)〉 e−ω0(t1−t)dt1.

This master equation is exact, if we restrict our consideration to the information included in
two-time stochastic ˇelds correlators 〈Ω(t)Ω(t1)〉 and 〈ξ(t)ξ̄(t1)〉. We suppose that stochastic
ˇelds are the stationary processes with known type of statistics [7].

Presenting the density matrix in diagonal form ρ̂(t) =
∫
X

dμ(z, z̄)P(z, z̄, t)|z〉〈z|, where

|z〉 Å SU(2) CS, one may reduce the operator master equation to the FokkerÄPlanck equation
for density matrix symbol P . Omitting some details, we present here the expression of the
radiation line contour, calculated for the case of KuboÄAnderson random processes:

g(ω) =

t∫
0

dt e−iω0t〈Ĵ+(t)Ĵ−(0)〉 =

=
1
π

η + δ +
σ2

Ω

νΩ
+ 2σ2

ξ

νξ

ν2
ξ + ω2

0(
ω − ω0 − 2σ2

ξ

ω0

ν2
ξ + ω2

0

)2

+

(
η + δ +

σ2
Ω

νΩ
+ 2σ2

ξ

νξ

ν2
ξ + ω2

0

)2 , (9)

where δ = (γ/2)〈ν〉, η = γ/2)(〈ν〉 + 1); σ2
Ω, σ2

ξ and νΩ, νξ are dispersions and frequencies
of random processes Ω and ξ, respectively.

The calculated time dependences of the probabilities W2, W1 to ˇnd atom in the upper
and lower states, respectively, are the following:

W2(t) =
1
2
− 1

2
η − δ

η + δ

(
1 − e−2(η−δ)t

)
− 1

2
1 − z0z̄0

1 + z0z̄0
exp

[
−2

(
η + δ + 2

σ2
ξ

νξ + ω2
0/νξ

)
t

]
,

W1(t) =
1
2

+
1
2

η − δ

η + δ

(
1 − e−2(η−δ)t

)
+

1
2

1 − z0z̄0

1 + z0z̄0
exp

[
−2

(
η + δ + 2

σ2
ξ

νξ + ω2
0/νξ

)
t

]
.
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As a result, we get formulas for longitudinal T1 and transversal T2 relaxation times:

T1 =
1

2

(
η + δ + 2

σ2
ξ

νξ + ω2
0/νξ

) , T2 =
1

η + δ +
σ2

Ω

νΩ
+ 2

σ2
ξ

νξ + ω2
0/νξ

,

which are connected as follows:
1

2T1
+

σ2
Ω

νΩ
=

1
T2

. (10)

In the absence of random ˇelds we get the well-known relation T2 = 2T1.

CONCLUSION

In this paper we have considered brie
y the problem of generation and destruction of
atomic coherent states, which is very important for quantum calculations. Details of cal-
culations and comparisons with different approaches (see, for example, paper [9]) will be
published elsewhere.
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