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HIGH DIMENSIONAL INTEGRATION:
NEW WEAPONS FIGHTING THE CURSE

OF DIMENSIONALITY

P. Zinterhof

Department of Computer Sciences, University of Salzburg, Austria

The approximate computation of the deˇnite integral of a function of several variables is one
of the basic problems of numerical analysis. The problem is hard because of the so-called curse
of dimensionality. This curse consists in the following: applying an integration rule with N nodes
to a univariate function, we will get an integration error, say, ε > 0. Applying the corresponding
Cartesian product rule to an s-variate function, we will need N∗∗s nodes for the same integration error
ε > 0. In mechanics we deal with at least six-dimensional functions, but in contemporary ˇnancial
mathematics there occur 300-variate functions. The probabilistic Monte-Carlo methods provide error
estimates independent of the dimensionality of the problem. Unfortunately, these methods are both slow
in convergence and suffer from a lack of effectiveness as well. The quasi-Monte-Carlo methods, based
on the number theory, work fast and effectively, at least in the case of ˇnite and smooth integrands.
Unfortunately, in reality multivariate functions with singularities do occur. The scope of the present
paper is numerical integration of multivariate functions with singularities. In many cases the proposed
methods are best possible with respect to the order of convergence. Best possible means an exact order
of the error term, essentially not worse than in the univariate case.

�·¨¡²¨¦¥´´μ¥ ¢ÒÎ¨¸²¥´¨¥ μ¶·¥¤¥²¥´´μ£μ ¨´É¥£· ²  ËÊ´±Í¨¨ ´¥¸±μ²Ó±¨Ì ¶¥·¥³¥´´ÒÌ Ö¢²Ö-
¥É¸Ö μ¤´μ° ¨§ μ¸´μ¢´ÒÌ ¶·μ¡²¥³ Î¨¸²¥´´μ£μ  ´ ²¨§ . �·μ¡²¥³  ¸ É·Ê¤μ³ ¶μ¤¤ ¥É¸Ö ·¥Ï¥´¨Õ ¨§-§ 
É ± ´ §Ò¢ ¥³μ£μ ®¶·μ±²ÖÉ¨Ö · §³¥·´μ¸É¥°¯. �´  § ±²ÕÎ ¥É¸Ö ¢ ¸²¥¤ÊÕÐ¥³: ¨´É¥£·¨·μ¢ ´¨¥ ¶μ
N Ê§² ³ μ¤´μ³¥·´μ° ËÊ´±Í¨¨ ¶·¨¢μ¤¨É ± μÏ¨¡±¥ ¨´É¥£·¨·μ¢ ´¨Ö ε > 0. �·¨ ¸μμÉ¢¥É¸É¢ÊÕÐ¥³
¨´É¥£·¨·μ¢ ´¨¨ ËÊ´±Í¨¨ s-¶¥·¥³¥´´ÒÌ ´¥μ¡Ìμ¤¨³Ò N∗∗s Ê§²μ¢ ¸ Éμ° ¦¥ ¸ ³μ° μÏ¨¡±μ° ¨´É¥£·¨-
·μ¢ ´¨Ö ε > 0. ‚ ³¥Ì ´¨±¥ ³Ò ¨³¥¥³ ¤¥²μ ¶μ ³¥´ÓÏ¥° ³¥·¥ ¸ 6-³¥·´Ò³¨ ËÊ´±Í¨Ö³¨, ´μ ¢ ¸μ¢·¥-
³¥´´μ° ¶·¨±² ¤´μ° ³ É¥³ É¨±¥ ¨¸¶μ²Ó§ÊÕÉ¸Ö ËÊ´±Í¨¨ 300 ¶¥·¥³¥´´ÒÌ. ‚¥·μÖÉ´μ¸É´Ò¥ ³¥Éμ¤Ò
Œμ´É¥-Š ·²μ ¶μ§¢μ²ÖÕÉ μÍ¥´¨¢ ÉÓ μÏ¨¡±Ê ´¥§ ¢¨¸¨³μ μÉ ¶·μ¡²¥³Ò · §³¥·´μ¸É¥°. Š ¸μ¦ ²¥´¨Õ,
ÔÉ¨ ³¥Éμ¤Ò Ì · ±É¥·¨§ÊÕÉ¸Ö ³¥¤²¥´´μ° ¸Ìμ¤¨³μ¸ÉÓÕ ¨ ´¨§±μ° ÔËË¥±É¨¢´μ¸ÉÓÕ. Š¢ §¨-Œμ´É¥-
Š ·²μ-³¥Éμ¤Ò, μ¸´μ¢ ´´Ò¥ ´  É¥μ·¨¨ Î¨¸¥², · ¡μÉ ÕÉ ¡Ò¸É·μ ¨ ÔËË¥±É¨¢´μ, ¶μ ±· °´¥° ³¥·¥
¤²Ö μ£· ´¨Î¥´´ÒÌ ¨ £² ¤±¨Ì ¶μ¤Ò´É¥£· ²Ó´ÒÌ ¢Ò· ¦¥´¨°. Š ¸μ¦ ²¥´¨Õ, ¢ ·¥ ²Ó´ÒÌ ¢ÒÎ¨¸²¥´¨ÖÌ
¶·¨Ìμ¤¨É¸Ö ¨³¥ÉÓ ¤¥²μ ¸ ËÊ´±Í¨Ö³¨ ³´μ£¨Ì ¶¥·¥³¥´´ÒÌ ¸ ¸¨´£Ê²Ö·´μ¸ÉÖ³¨. –¥²ÓÕ ¤ ´´μ° ¸É ÉÓ¨
Ö¢²Ö¥É¸Ö μ¶¨¸ ´¨¥ Î¨¸²¥´´μ£μ ¨´É¥£·¨·μ¢ ´¨Ö ËÊ´±Í¨° ³´μ£¨Ì ¶¥·¥³¥´´ÒÌ ¸ ¸¨´£Ê²Ö·´μ¸ÉÖ³¨.
‚μ ³´μ£¨Ì ¸²ÊÎ ÖÌ ¶·¥¤¸É ¢²¥´´Ò¥ ³¥Éμ¤Ò Ö¢²ÖÕÉ¸Ö ´ ¨²ÊÎÏ¨³¨ ¨§ ¢μ§³μ¦´ÒÌ μÉ´μ¸¨É¥²Ó´μ ¶μ-
·Ö¤±  ¸Ìμ¤¨³μ¸É¨, ±μ£¤  ¨§¢¥¸É¥´ ÉμÎ´Ò° ¶μ·Ö¤μ± ¸² £ ¥³μ£μ μÏ¨¡±¨, ±μÉμ·Ò° ¸ÊÐ¥¸É¢¥´´μ ´¥
ÌÊ¦¥, Î¥³ ¢ μ¤´μ³¥·´μ³ ¸²ÊÎ ¥.
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Dedicated to the memory of N. M. Korobov

1. THE PROBLEM SETTING

Consider functions f(x1, x2, . . . , xs) = y, 0 � xρ � 1, ρ = 1, . . . , s. Let Is = (0, 1)s

the open unit cube, and Īs = [0, 1]s the closed s-dimensional unit cube. We are concerned
with the numerical approximation of the integral of the function f by means of ˇnite sums.

Given a ˇnite set of points in Is or Īs, (x(1)
1 , x

(2)
1 , . . . , x

(s)
1 ), . . . , (x(1)

n , x
(2)
n , . . . , x

(s)
n ), . . .,

(x(1)
N , . . . , x

(s)
N ), we consider the integration method

RN =
1
N

N∑
n=1

f(x(1)
n , . . . , x(s)

n ) −
1∫

0

. . .

1∫
0

f(x1, · · · , xs)dx1 · · · dxs. (1)

One is interested in small values of RN , of course. Some known results: If the pointed

(x(1)
n , . . . , x

(s)
n ), n = 1, . . . , N , is a set of uniform distributed and independent random

variables, one obtains the domical estimation of Monte-Carlo integration:

RN = O
(

1√
N

)
. (2)

This convergence rate is rather poor, but independent of the dimensionality of the problem
and independent of the smoothness of the function f(x1, . . . , xs). Nothing is said about the
constants involved.

On the other hand, we consider the Cartesian product rules: Let x1, x2, . . . , xN ∈ Īs and
y = f(x) be a continuous function on Ī = [0, 1]. So we have a one-dimensional integration
rule

R
(1)
N =

1
N

N∑
n=1

f(xn) −
1∫

0

f(x)dx. (3)

The principle of the Cartesian product rules consists in a repeated application of the
one-dimensional rule to an s-variate function:

R
(s)
Ns =

1
Ns

N∑
n1=1

· · ·
N∑

ns=1

f(xn1 , . . . , xns) −
1∫

0

· · ·
1∫

0

f(x1, . . . , xs)dx1 · · · dxs. (4)

The error term R
(s)
Ns will not be better than R

(1)
N , in general. But the computational

complexity is Ns. This fact is the well-known curse of dimensionality. There are two
remedies: the HlawkaÄKoksma inequality and Korobov's method:

Let x1,x2, . . . ,xN ∈ Īs. Let I(a) = x : 0 � xρ � aρ, ρ = 1, . . . , s,a ∈ Īs.
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Deˇnition.

D∗
N := sup

a

∣∣∣∣#{xn ∈ I(a)}
N

− a1a2 · · ·as

∣∣∣∣ (5)

is called the *-discrepancy (star discrepancy) of the ˇnite point set x1, . . . ,xN .
The following theorem is essentially due to H.Weyl: Weyl's criterion: The inˇnite

sequence (xn)∞n=1, xn ∈ Īs, is uniform distributed if one of the following conditions holds:
(a) for all continuous functions f : Īs → C holds

lim
N→∞

1
N

N∑
n=1

f(xn) =
∫
Īs

f(x)dx; (6)

(b) for all m ∈ Zs holds

lim
N→∞

1
N

N∑
n=1

e2πimxn =
{

0, m �= 0,
1, m = 0; (7)

(c)

lim
N→∞

D∗
N = 0.

Weyl's criterion is the guideline for numerical application of number theoretical methods.
At ˇrst we cite the HlawkaÄKoksma inequality:

Theorem. (Hlawka): Let f(x) be a function with bounded variation in the sense of
HardyÄKrause, V (f(x)) < ∞. Then holds the inequality

|RN (f)| =

∣∣∣∣∣∣
1
N

N∑
n=1

f(x) −
∫
Īs

f(x)dx

∣∣∣∣∣∣ � D∗
NV (f). (8)

There is a huge number of estimations of the discrepancy of special sequences. We give
only two examples.

Example 1. Let xn1,...,ns =
(n1

N
,
n2

N
, . . . ,

ns

N

)
, n1, . . . , ns = 1, . . . , N . Then D∗

Ns � 2s

N
.

This also means the curse of dimensionality.
Example 2. Let (a1, . . . , as) ∈ Zs be optimal coefˇcients modulo N in the sense of

Korobov. Let xn =
(na1

N
, . . . ,

nas

N

)
mod n, n = 1, . . . , N . Then

D∗
N = O

(
(ln N)β

N

)
, β � s (9)

holds. Apart from the logarithmic factor this estimation is independent of the dimensionality
of the problem. Unfortunately, the HlawkaÄKoksma inequality does not take into account
additional smoothness conditions of the function f(x).
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Korobov's method overcomes this 
aw:

Let m̄ = max (1, |m|), m ∈ Z. Consider the Korobov classes

Eα
s (C) =

{
f(x) : |C(m)| � C

(m̄1, . . . , m̄s)α
,m ∈ Zs

}
, (10)

where C(m) means the Fourier coefˇcients of f(x):

C(m) =
∫
Īs

f(x) e−2πimxdx. (11)

Remark. If f(x) is 1-periodic in each variable x1, . . . , xs, and if
∂αsf

∂α
x1

, . . . , ∂α
x1

is continu-

ous and bounded by C, then f ∈ Eα
s (C). This can be shown by αs-fold partial integrations

of formula (11).
Theorem. (Korobov): If f(x) ∈ Eα

s (C)and if a = (a1, . . . , as) consists of optimal
coefˇcients in the sense of Korobov, then the estimation holds:

|RN (f)| =

∣∣∣∣∣∣
1
N

N∑
n=1

f
(na

N

)
−

∫
Īs

f(x)dx

∣∣∣∣∣∣ � C1C(lnαβ N)
Nα

, (12)

with an explicit constant C1 and some β � s. This estimation is best possible apart from
logarithmic factors: There is always a function f(x) ∈ Eα

s (C), such that∣∣∣∣∣∣
1
N

∑
n=1

Nf
(na

N

)
−

∫
Īs

f(x)dx

∣∣∣∣∣∣ � C(s) lns−1(N)
Nα

. (13)

More generally, there is no integration rule with RN = o
(

1
Nα

)
, if f ∈ Eα

s .

All these methods are classical and can be found in Korobov [3], DrmotaÄTichy [1] or
Niederreiter [2].

The methods described are concerned only with proper integrals of bounded functions.
Singularities are not allowed. From the theoretical and also from the practical point of view
it is important to develop integration rules for unbounded functions as well:

Problem. Let f(x): Īs → C or Is → C. Find classes of unbounded functions f and

integration rules
N∑

n=1

gn,Nf(xn), such that

lim
N→∞

N∑
n=1

gn,Nf(xn) =
∫
Is

f(x)dx. (14)

Furthermore, give estimations for the error term

RN =
N∑

n=1

gn,Nf(xn) −
∫
Is

f(x)dx. (15)
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2. SOLUTIONS OF THE PROBLEM

We distinguish between the two cases:
First case: The location of the singularities of f(x) in Īs is unknown.
Second case: The location of the singularities is known. We assume that f(x) is un-

bounded at most on the bonudary of Is = (0, 1)s.
For the sake of completeness we refer to some of our own former results [4].
Given a function f : Īs → C, so we deˇne functions fB, f̂B , B > 0 such that

fB(x) = f(x), if |f(x)| � B,
= 0, if |f(x)| > B,

(16)

f̂B(x) = 0, if |f(x)| � B,
= f(x), if |f(x)| > B.

(17)

So we have f(x) = fB(x)+ f̂B(x). We gave a suitable class of functions in the following
manner:

Deˇnition. The class C(β, γ) of s-variate functions f(x), 0 � x � 1, consists of all
functions which fulˇll ∀B > 0:

(a)
I(|f̂B|) = O(B−β) for some β > 0, (18)

(b)
V (fB) = O(Bγ) for some γ � 1. (19)

Here V (.) means again the variation of a function in the sense of Hardy and Krause. For
dimension s = 1 the deˇnition coincides with the usual total variation of a univariate function.
The use of V (.) is natural because of the functional analytic connection between the spaces
of continuous functions and the spaces of Radon measures, i.e., point measures and Lebesgue
measure.

We proved the following theorem:
Theorem. If f(x) ∈ C(β, γ) and if the discrepancy of the set of nodes x1,x2, . . . ,xN is

D∗
N , then for B = (D∗

N )
−1

(β+γ) the estimation holds:

I(f) =
1
N

N∑
n=1

fB(xn) + O
(
(D∗

N )
β

(β+γ)

)
. (20)

Remark. We also proved that the order of convergence stated in (20) is best possible
even in the case s = 1, provided f(x) ∈ C(β, γ). Now we come to case two, the new
and much more efˇcient results concerning the case that the singularities of the integrand are
concentrated on the boundary ∂Is of the unit cube.

The idea of the method: Consider a univariate function f(x), f : (0, 1) → C, which has
singularities at x = 0 or x = 1, and which fulˇlls some smoothness conditions in (0, 1). We
ask for an integral-preserving transformation of f(x) which also continues the differentiability
conditions of f(x) to I = [0, 1].
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Let p(t) = x be a function, which is strictly increasing in [0, 1] and which fulˇlls dif-
ferentiability conditions of sufˇcient high order. Then we have for functions p(t) with
p(0) = 0, p(1) = 1:

1∫
0

f(x)dx =

1∫
0

f(p(t))p′(t)dt =

1∫
0

g(t) dt. (21)

If p(t) does not tend too fast to p(0) = 0 and p(1) = 1, then one will be able to remove
singularities at x = 0, 1 by means of (21). We propose the function

p(t) = pγ(t) = p0

t∫
0

(τ(1 − τ))γdτ, p0 =

⎛
⎝ 1∫

0

(τ(1 − τ))γdτ

⎞
⎠ . (22)

The connection of p(t) with the incomplete beta integral is clear. We state some important
properties of p(t):

Lemma.

(a) p(0) = 0, p(1) = 1,

(b) p′(0) = p′(1) = 0, p(t) > 0 for t ∈ (0, 1),

(c) p(n)(0) = p(n)(1) = 0 for n = 1, 2, . . . , n0 < γ,

(d) |p(n)(t)| � pγ(t(1 − t))γ+1−n for 1 � n < γ + 1 and 0 � t � 1,

(e) pγ � p0

∑
i+2j=n

n!
i!j!

,

(f)
1

p(t)(1 − p(t))
� 4 + 2γ+1(γ + 1)

p0

1
(t(1 − t))γ+1

,

(g) p(t) � p0

γ + 1
tγ+1, 1 − p(t) � p0

γ + 1
(1 − t)γ+1 for 0 � t � 1.

Some proofs of the parts of the Lemma are straightforward, some are not. We now
introduce a suitable class of functions, having singularities on ∂Is:

Deˇnition. Hβ,α
s (C) consists of all functions f(x1, . . . , xs), 0 < xρ < 1, ρ = 1, . . . , s,

such that for all n1, . . . , ns, 0 � nρ � α, ρ = 1, . . . , s, holds:

∣∣∣∣∂n1+...+nsf(x1, . . . , xs)
∂xn1

1 ∂xn2
2 · · · ∂xns

s

∣∣∣∣ � C(
s∏

ρ=1

(xρ(1 − xρ))β+nρ

) , (23)

whereas all the derivatives are continuous, and 0 < β < 1.
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The introduction of the class Hβ,α
s (C) was motivated by the univariate extreme function

f(x) = (x(1 − x))−β , 0 < β < 1. We remind (21) for general s = 1, 2, . . .:

1∫
0

· · ·
1∫

0

f(x1, x2, . . . , xs) dx1dx2 · · · dxs =

1∫
0

· · ·
1∫

0

g(t1, . . . , ts) dt1dts (24)

with
g(t1, . . . , ts) = f(p(t1), p(t2), . . . , p(ts))p′(t1)p′(t2) · · · p′(ts). (25)

We consider now the reactors of nodes

Tn =
(

1
2N

+
na1

N
,

1
2N

+
na2

N
, . . . ,

1
2N

+
nas

N

)
, mod N , where a = (a1, . . . , as) are

optimal coefˇcients, a = a(N), and n = 1, . . . , N . We get the integration rule

IN (f) :=
1
N

N∑
n=1

f(p(t1,n), p(t2,n), . . . , p(ts,n))p′(t1,n), p′(t2,n), . . . , p′(ts,n), (26)

with tρ,n =
1

2N
+

naρ

N
, ρ = 1, . . . , s.

Now we are able to state the

Theorem. If f ∈ Hβ,α
s (C) and if γ >

α + β

1 − β
, then

∣∣∣∣∣∣
1∫

0

. . .

1∫
0

f(x1, . . . , xs)dx1 · · · dxs − IN (f)

∣∣∣∣∣∣ � C1(α, β, γ, s)C
(ln N)α,β

Nα
, (27)

where the constant C1(α, β, γ, s) is explicit. The proof makes heavy use of the lemma and
makes use of an explicit and complicated estimation of all of the derivatives of g(t1, . . . , ts).

Remark 1. According to (13), our theorem cannot be improved signiˇcantly, even in the
case of boundedness of f(x).

Remark 2. The use of the classical optimal coefˇcients is only one example of the
application of number-theoretical methods to improper integrals.

We have further methods, using, e.g., the Weyl sequences, (nΘ), especially the sequences

n(er1 , er2 , . . . , ers), n = 1, 2, . . . , ri �= rk ∈ Q, i �= k. Estimations of RN =
∫

fdx − IN (f)

via the Diaphony are available as well.

LITERATURE

Korobov's book is a classical reference, whereas Niederreiter's book contains most of
the recent developments in number-theoretical numerics. The book by Drmota and Tichy is
perhaps a comprehensive book on uniform distribution of sequences, containing two thousand
references.
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