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A time-dependent periodic Hamiltonian admitting exact solutions is applied to construct a set of
universal gates for quantum computer. The time evolution matrices are obtained in an explicit form and
used to construct logic gates for computation. A way of obtaining entanglement operator is discussed,
too. The method is based on transformation of soluble time-independent equations into time-dependent
ones by employing a set of special time-dependent transformation operators.
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INTRODUCTION

Recent studies of quantum computation have attracted considerable interest in both theo-
retical and experimental physics. The physical realization of the qubit register and a universal
set of one-qubit and two-qubit logic gates is an important problem of quantum computa-
tion [1Ä3]. In this paper we shall construct one-qubit and two-qubit gates with desired
properties controlled by time-dependent Hamiltonian.

A quantum computer is composed of a set of qubits which can be manipulated in a
controlled way. Any quantum two-level systems can be taken to create qubits. A computation
process corresponds to the evolution of the set of the qubits according to a speciˇc unitary
operator, for example, evolution operator U(t). A general operation is decomposed into a
discrete sequence in time of operations Å quantum gates. The simplest unit of quantum
information is a quantum bit, or qubit. The qubit is a vector in a two-dimensional Hilbert
space, which can be presented as |ψ〉 = α|0〉+ β|1〉. The basis vectors |0〉 and |1〉 are chosen

as |0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, |ψ〉 = a

(
1
0

)
+ b

(
0
1

)
=

(
a
b

)
. Here α and β are complex
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coefˇcients, which satisfy the condition |α|2 + |β|2 = 1. Then |ψ〉 is the normalized vector,
and α2 and β2 characterize the probabilities of the results |0〉 and |1〉, correspondingly. The
2nd order matrices U(2 × 2) transform one-qubit states and describe their evolution in time:

|ψf 〉 = U(2 × 2)|ψ0〉, U(t) =
(

u11 u12

u21 u22

)
.

Such transformations in quantum computation determine one-qubit quantum operations Å
quantum gates.

The formalism of quantum mechanics is usually applied not to individual systems but to
ensembles of systems. In quantum computation, the state of the computer of n qubits can be
expressed as a vector |Ψ〉 in a space of dimension 2n. Vector |Ψ〉 of the quantum register
from n qubits is expressed as a complex linear superposition of 2n basis states:

|Ψ〉 =
2n−1∑
k=0

ak|jk〉. (1)

Here ak are projections of the vector |Ψ〉 on the directions of basis states |j0〉, |j1〉, . . . , |j2n−1〉,∑
k

a2
k = 1. Basis states |j〉 = |i1, i2, . . . , in〉 = |i1〉 ⊗ |i2〉 ⊗ . . . |in〉, i1, i2, . . . , in = {0, 1}

are presented as

|j0〉 = |0〉 ⊗ |0〉 . . . ⊗ |0〉
|j1〉 = |0〉 ⊗ |0〉 . . . ⊗ |1〉

........................................
|j2n−1〉 = |1〉 ⊗ |1〉 . . . ⊗ |1〉

. (2)

The transformation of an initial state vector |Ψ0〉 into the ˇnal vector |Ψf 〉 models the process
of calculation on quantum computer

|Ψf 〉 = U(2n × 2n)|Ψ0〉.

Vectors |Ψ0〉 and |Ψf〉 are vectors in the 2n Hilbert space. The transformation matrices
U(2n × 2n; t) deˇne the dynamic evolution of the quantum system from n qubits. At the
same time, the matrices U(2n×2n; t) provide the process of quantum computing at each ˇxed
moment.

Clearly, the realization of the transformation U(2n × 2n) with n > 3 is a very difˇcult
problem. As usual, one considers the presentation of U(2n × 2n) as a production of second
U(2 × 2) order and forth U(4 × 4) order matrices:

U(2n × 2n) =
∏
i,j

Ui(2 × 2) ⊗ Uj(22 × 22). (3)

As is known [1], a universal set of gates is given by 2 × 2 unitary operators and a unitary
entangled operator 4×4 which acts on C2⊗C2. We shall show how it is possible to generate
explicitly one-qubit logic gates from the time evolution matrices and give a way of obtaining
entanglement operators.
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1. A UNIVERSAL GATE SET

The universal one-qubit logic gates can be constructed from the time evolution matrices
which we obtain in a closed analytic form. In our approach, the time-dependent periodic
Hamiltonians admitting exact solutions are applied to control the time evolution of the one-
qubit gates. The time-dependent Hamiltonians are obtained from time-independent soluble
Hamiltonians and a set of unitary time-dependent transformations [4].

Suppose that the time evolution of the quantum system is governed by the Schréodinger
equation

i
∂|Ψ(r, t)〉

∂t
= H(r, t)|Ψ(r, t)〉 (4)

with � = 1 and T periodic time-dependent Hamiltonian, H(t) = H(t + T ).
Assume that the initial state of the qubit can be written in one of the states of the

time-independent Hamiltonian H̃ :

H̃ = σ · B̃ = λ

(
cos θ̃ sin θ̃

sin θ̃ − cos θ̃

)
, (5)

φ1 = cos θ̃/2|0〉 + sin θ/2|1〉 or φ2 = − sin θ/2|0〉 + cos θ̃/2|1〉. Taking the gauge transfor-
mation as

|Ψ(r, t)〉 = S(t)|Φ(r, t)〉, S(t) = exp (−iσxω1t/2), (6)

the time-independent Hamiltonian (5) is changed to the time-dependent one:

H(t) = S(t)H̃S†(t) + iṠ(t)S†(t). (7)

The evolution operator U(t) = exp (−iσxω1t/2) exp (−iH̃t), corresponding to the time-
dependent Hamiltonian

H(t) = λ

(
cos θ̃ cos (ω1t) sin θ̃ − ω1/2λ + i cos θ̃ sin (ω1t)

sin θ̃ − ω1/2λ− i cos θ̃ sin (ω1t) − cos θ̃ cos (ω1t)

)
,

is written as

U1(t) =
(

cos (ω1t/2) −i sin (ω1t/2)
−i sin (ω1t/2) cos (ω1t/2)

) (
exp (−iλt) 0

0 exp (iλt)

)
. (8)

The time evolution matrix U(t) is the universal one-qubit gate, which is controlled by the
time-dependent magnetic ˇeld parameters ω1 and λ.

An important one-bit transformation is the operation of negation or inversion operation
NOT = σx. The gate NOT can be obtained from (8) at ω1t = π and λt = 2nπ and then after
multiplication of the result by i:

NOT = iU1(ω1t = π, λt = 2nπ) =
(

0 1
1 0

)
. (9)
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The transformation NOT exchanges |0〉 and |1〉, e.g., NOT(a|0〉 + b|1〉) = a|1〉 + b|0〉.
Another special one-qubit gate can be obtained from (8) at ω1t = π and λt = π/2 and after
multiplication of the result by i:

Y = iU1(ω1t = π, λt = π/2) =
(

0 −i
i 0

)
= σy. (10)

The special gate Z is obtained from (8) at ω1t = 4π and λt = π/2 and after multiplication
by i:

Y = iU1(ω1t = 4π, λt = π/2) =
(

1 0
0 −1

)
= σz . (11)

Now let us obtain another important single-bit transformation. It is the Hadamard transfor-
mation deˇned by

H =
1√
2

(
1 1
1 −1

)
=

1√
2
(σx + σz). (12)

When applied to |0〉 and to |1〉, H creates the superposition of states with the equal probability

H|0〉 = H

(
1
0

)
=

1√
2
(|0〉 + |1〉), H |1〉 = H

(
0
1

)
=

1√
2
(|0〉 − |1〉).

If the initial state of the qubit is |0〉, then the evolution matrix U(t) corresponding to the
time-dependent Hamiltonian (8) is written as

U(t) = exp (−iσxω1t/2) exp (−iσzλt) exp (−iσy θ̃/2) =

=
(

cos (ω1t/2) −i sin (ω1t/2)
−i sin (ω1t/2) cos (ω1t/2)

) (
exp (−iλt) 0

0 exp (iλt)

)
×

×
(

cos (θ̃/2) − sin (θ̃/2)
sin (θ̃/2) cos (θ̃/2)

)
. (13)

At t = 0, θ̃ = π/2 and any ω1, λ, from (13) we obtain the gate

U(ω1, λ; t = 0, θ̃ = π/2) =
1√
2

(
1 −1
1 1

)
. (14)

To obtain the Hadamard gate, we multiply NOT by the gate U(ω1, λ; t = 0, θ̃ = π/2).
Therefore, the Hadamard gate H is a result of the sequence of two transformations:

H = iU1(π, 2πn, θ̃ = 0)U(ω1, λ, θ̃ = π/2; t = 0). (15)

Here U1(t) = U(t; θ̃ = 0) was used. Applied to n bits, H generates superposition of all 2n

possible states, which can be considered as a binary representation of the numbers from 0 to
2n − 1:

(H ⊗ H ⊗ . . . ⊗ H)|00 . . .0〉 =

= 1√
2n

((|0〉 + |1〉) ⊗ (|0〉 + |1〉) ⊗ . . . ⊗ (|0〉 + |1〉)) = 1√
2n

∑2n−1
k=0 |jk〉. (16)
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1.1. Construction of Two-Qubit Gates. The 2nd order matrices Ui(2 × 2) transform
one-qubit states. The 4th order matrices Uj(22 × 22) transform couples of one-qubit states.
There are four basis states in 4th dimension Hilbert space for two-qubit systems building on
one-qubit states |0〉, |1〉:

{|00〉 = |0〉 ⊗ |0〉, |01〉 = |0〉 ⊗ |1〉, |10〉 = |1〉 ⊗ |0〉, |11〉 = |1〉 ⊗ |1〉},

|00〉 =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ , |01〉 =

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ , |10〉 =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ , |11〉 =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ .

Any two-qubit state can be expressed as a superposition of these basis states:

|Ψ〉 = c00|00〉 + c10|10〉 + c01|01〉 + c11|11〉, (17)

where |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1.
Entanglement. A gate G is said to be entangling, if |Ψ〉 = G|ψ1〉 ⊗ |ψ2〉 is not decom-

posable as a tensor product of two one-qubit states. If in (17) c00c11 − c01c10 �= 0, then |Ψ〉
is an entangled state. The property |Ψ12〉 �= |ψ1〉 ⊗ |ψ2〉 is called entanglement. In our case
the entanglement operator is obtained from two independent systems with the use of unitary
gauge time-dependent transformations, which lead to time-dependent periodic operators and
entanglement of states.

One of the important two-qubit gates is the Controlled NOT=CNOT gate, which can be
deˇned by

CNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ . (18)

1.2. Construction of the Hamiltonian with the Desired Entangled Operator. Let

H = h ⊗ 1 + 1 ⊗ h + εA, (19)

where ε ∈ {0, 1} and h is a two-dimensional diagonal time-independent Hamiltonian in the

form h =
(

a 0
0 b

)
. The evolution operator of the matrix Schréodinger equation (4) with

the Hamiltonian (19) is expressed as follows:

U(t) = (e−iht ⊗ e−iht)e−iAt,

if the operator A commutes with the Hamiltonian h ⊗ 1 + 1 ⊗ h. We would like to get the
entanglement operator U(t) and to construct a corresponding Hamiltonian in the form (19).
To this end, let us select the operator R(t) = e−iAt in the form

R(t) =

⎛⎜⎜⎝
1 0 0 0
0 cos (t) −i sin (t) 0
0 −i sin (t) cos (t) 0
0 0 0 1

⎞⎟⎟⎠ . (20)
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Find A(t) from

A = i
dR(t)

dt
R−1(t) =

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ . (21)

The matrix h = σ3/2 =
1
2

(
1 0
0 −1

)
satisˇes the condition of commutation [A, (h⊗ 1 + 1

⊗h)]. At last, substitution of e−iAt and h into the evolution matrix U(t) gives the entangle-
ment operator

U(t) =

⎛⎜⎜⎝
eit 0 0 0
0 cos (t) −i sin (t) 0
0 −i sin (t) cos (t) 0
0 0 0 e−it

⎞⎟⎟⎠ .

So, the entanglement operator has been obtained with the use of the unitary time-dependent
transformation (20), which leads to the time-dependent periodic operator U(t) and entangle-
ment of states. We obtain the corresponding Hamiltonian (19) with A as given in (21).
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