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A Cauchy problem for Laplace equation with inaccurately given Cauchy conditions on an inac-
curately deˇned arbitrary surface is considered. Discretization was performed and proved to obtain
numerical solution. An economic algorithm is proposed.
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FORMULATION OF THE PROBLEM

A mixed version of Cauchy problem for Laplace equation in a rectangular cross section
cylinder bounded by an arbitrary surface and a plane is considered. Boundary conditions of
the ˇrst kind are given on lateral sides, Cauchy conditions are given on the arbitrary surface:

Δu(M) = 0, M ∈ D(F, H),

u|S = f,
∂u

∂n
|S = g, (1)

u|x=0 = 0, u|x=lx = 0, u|y=0 = 0, u|y=ly = 0,

where

D(F, H) = {(x, y, z) : 0 < x < lx, 0 < y < ly, F (x, y) < z < H},
S = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = F (x, y)}, (2)

F ∈ C2(Π), Π(z) = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = const}.

As we are given Cauchy conditions on the surface S, this mixed problem is close to
Cauchy problem and thus it is ill-posed [1]. Note that the surface S, where Cauchy conditions
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are given, is described by the equation z = F (x, y), where F is an arbitrary differentiable
function, which does not permit the use of Fourier method to solve the problem (1).

A method applicable to a wide range of problems described by elliptic equations is
proposed in [1]. The method is based on reducing the original problem to an integral
equation of the ˇrst kind with the right-hand side of the integral equation being an integral
of given functions over surface S. On the one hand, this makes it possible to get the exact
solution in explicit form, and to use Tikhonov regularization to obtain stable solution on the
other hand.

Keeping in mind applications of the problem, we consider the surface S as well as
Cauchy conditions f and g on that surface being both measurement data, that is, being given
approximately. Thus we have approximate functions f δ, gδ, Fμ instead of exact functions f ,
g and F such that ��f δ − f

�� � δ,
��gδ − g

�� � δ, (3)

‖Fμ − F‖ � μ. (4)

In case when the surface S is given approximately, the right-hand side of the integral
equation requires calculating the normal to this surface, or, actually, the gradient of the
function Fμ, which is an ill-posed problem of differentiation of an inaccurately given function.
A stable method of its solution is based upon Morozov approach to the problem of an
unbounded operator reconstruction [2]. As an approximate value of the gradient of Fμ we
will take the gradient of the extremal of Tikhonov functional, the extremal is obtained as a
Fourier double series [3]:

Wμ
β (x, y) =

∞∑
n,m=1

F̃μ
nm

1 + β

[(
πn

lx

)2

+
(

πm

ly

)2
] sin

πnx

lx
sin

πmy

ly
, (5)

β is the regularization parameter. Accordingly,

∇xyW
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β (x, y) =
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F̃μ
nm

1 + β

[(
πn

lx

)2

+
(

πm

ly

)2
]×

×
(
i
πn

lx
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πnx

lx
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ly
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πm

ly
cos
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πnx
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)
. (6)

According to [1] stable approximate solution of the problem (1) can be presented as

uδ,μ
α (M) = vδ,μ

α (M) − Φδ,μ(M), M ∈ D(F, H), (7)

D(F, H) is given by (2), Φδ,μ is given by

Φδ,μ(M) = −
∫

Π(0)

[
gδ(P )ϕ(M, P )nμ

1 (P )−

− f δ(P )(∇P ϕ(M, P ),nμ
1 (P ))

]
P=P (x,y,W μ

β
)∈Sμ

dxP dyP , (8)
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nμ
1 = nμ

1,β(μ) = ∇xyWμ
β(μ) − k, β(μ) = constμ, nμ

1 = |nμ
1 |, Wμ

β is given by (5),

ϕ(M, P ) =
2

πlxly

∞∑
n,m=1

e−π
√

n2
l2

+ m2
l2

|zM−zP |√
n2

l2x
+

m2

l2y

×

× sin
πnxM

lx
sin

πmyM

ly
sin

πnxP

lx
sin

πmyP

ly
, (9)

function vμ,δ
α is given by

vμ,δ
α (M) =

∞∑
n,m=1

Φ̃μ,δ
nm(a) e

π

√
n2
l2x

+ m2
l2y

(zM−a)

1 + α e
2π

√
n2
l2x

+ m2
l2y

(H−a)
sin

πnxM

lx
sin

πmyM

ly
. (10)

Here Φ̃μ,δ
nm(a) are Fourier coefˇcients of function Φμ,δ(M)|M∈Π(a):

Φ̃μ,δ
nm(a) =

4
lxly

lx∫
0

dx

ly∫
0

dy Φδ,μ(x, y, a) sin
πnx

lx
sin

πmy

ly
, (11)

α is the regularization parameter. According to (2) notation, the a value is taken such that

a < min
(x,y)∈Π(0)

F (x, y).

The theorem of uniform convergence of the approximate stable solution of the problem (1)
to the exact one is proved [1].

NUMERICAL SOLUTION

Here we will take a close look at the discretization of the problem (1) to obtain numerical
solution in case when the surface S and the Cauchy conditions f and g are given approximately
(3), (4).

Let the rectangle Π(0) given by (2) be covered with uniform grid (Nx + 1) × (Ny + 1)
such that

xi = i
lx
Nx

, i = 0, . . . , Nx,

yj = j
ly
Ny

, j = 0, . . . , Ny,
(12)

then the Fourier series

Φ(x, y) =
∞∑

n,m=1

Φ̃nm sin
πnx

lx
sin

πmy

ly



Discretization and Its Proof for Numerical Solution of a Cauchy Problem for Laplace Equation 297

substituted for the sum

Φ(xi, yj) =
Nx−1∑
n=1

Ny−1∑
m=1

Φ̃N
nm sin

πnxi

lx
sin

πmyj

ly
, i = 0, . . . , Nx, j = 0, . . . , Ny,

and the Fourier coefˇcients

Φ̃nm =
4

lxly

lx∫
0

dx

ly∫
0

dy Φ(x, y) sin
πnx

lx
sin

πmy

ly

are calculated as

Φ̃N
nm =

4
NxNy

Nx−1∑
i=1

Ny−1∑
j=1

Φ(xi, yj) sin
πnxi

lx
sin

πmyj

ly
, n = 1, . . . , Nx, m = 1, . . . , Ny.

Norms (3) and (4) are regarded as ˇnite sums, functions f, g, F, f δ, gδ, Fμ are regarded
as traces of continuous functions on the grid (12).

Substitute the function ϕ (9) in (8) for its ˇnite sum Å function ϕN (M, P ), substitute
the integral (8) itself for composite trapezium formula on grid (12) over Π(0):

Φδ,μ,NT (M) = − lxly
NxNy

Nx−1∑
i=1

Ny−1∑
j=1

[
gδ(xi, yj)ϕN (M, Pμ

ij)n
μ
1 (xi, yj)−

− f δ(xi, yj)(∇P ϕN (M, Pμ
ij),n

μ
1 (xi, yj))

]
, Pμ

ij = (xi, yj , W
μ
β (xi, yj)), (13)

Wμ
β (xi, yj) =

Nx−1∑
n=1

Ny−1∑
m=1

F̃μ
nm

1 + β

[(
πn

lx

)2

+
(

πm

ly

)2
] sin
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lx
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ly
. (14)

Omitting the proof we get the estimate |Φδ,μ,NT (M) − Φ(M)|:

|Φδ,μ,NT (M) − Φ(M)|M∈Π(a) � C1
√

μ + C2δ + C3N
−2
x + C4N

−2
y +

+ C5 e−πd min [Nx/lx,Ny/ly ] min [Nx/lx, Ny/ly] =
= Δ(μ, δ, Nx, Ny), d = min

(x,y)
F (x, y) − a. (15)

The heart of the algorithm for solving the problem (1) is calculation of ®discrete¯ Fourier
coefˇcients of continuous function Φδ,μ (8):

Φ̃δ,μ,NT
nm (a) =

4
NxNy

Nx−1∑
i=1

Ny−1∑
j=1

Φδ,μ,NT (xi, yj , a) sin
πnxi

lx
sin

πmyj

ly
,

(16)
n = 1, . . . , Nx − 1, m = 1, . . . , Ny − 1.
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To calculate NxNy values of function Φδ,μ,NT , each of them being an integral calculated as
a sum of NxNy terms, we need the order of (NxNy)3 operations, since there is a double
Fourier series under the integral sign, producing NxNy operations for every ˇxed pair of M
and P . This is the decisive factor since we need the order of (NxNy)2 operations to calculate
Fourier coefˇcients having calculated function values. We can reduce the scope of work if
we calculate Fourier coefˇcients as integrals

Φ̃δ,μ,NT
nm (a) =

4
lxly

lx∫
0

dx

ly∫
0

dy Φδ,μ,NT (x, y, a) sin
πnx

lx
sin

πmy

ly
, (17)

and perform the integration in (17) under the sum sign in (13), and after that integrate the
function ϕN and its derivatives series term by term. With regard to orthogonality of sines we
have

Φ̃δ,μ,NT
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where nμ
1 = (nμ

1,x, nμ
1,y,−1) is given by ∇xyWμ

β −k; Wμ
β is given by (14) and nμ

1 = |nμ
1 | =√

1 + (nμ
1,x)2 + (nμ

1,y)2.

Note that Φδ,μ,NT (a) = 0 for n > Nx, m > Ny, since the series ϕ(M, P ) (9) is
substituted for the ˇnite sum ϕN .

Also note that to calculate Fourier coefˇcients by (18) we need the order of (NxNy)2

operations.
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Discrete approximate solution uδ,μ,NT
α of the problem (1) is given by

uδ,μ,NT
α (xi, yj, z) = vδ,μ,NT

α (xi, yj, z)−Φδ,μ,NT (xi, yj , z), (xi, yj, z) ∈ D(Wμ
β , H), (19)

vμ,δ,NT
α (xi, yj, z) =

∞∑
n,m=1
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√
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=
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π
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√
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function Φδ,μ,NT is calculated by (13).
The theorem of uniform convergence of the discrete approximate stable solution of the

problem (1) to the exact one is proved:
Theorem. Let the solution of the problem (1) exist in D(H, F ), α = α(Δ), α(Δ) →

0, Δ/
√

α(Δ) → 0 as Δ → 0. Then the function uα(Δ) given by (19), where according to
(15), Δ = Δ(μ, δ, Nx, Ny) = C1

√
μ + C2δ + C3N

−2
x + C3N

−2
y + C5 e−πd min [Nx/lx,Ny/ly ]

min [Nx/lx, Ny/ly], converges uniformly to the exact solution of the problem (1) as δ → 0,
μ → 0, Nx → ∞, Ny → ∞ in D(F + ε, H − ε), where ε > 0 is some ˇxed number as small
as is wished.

CONCLUSIONS

Research results may be applied to obtain numerical solutions of problems described by
harmonic functions, for example, to a problem of a stationary temperature ˇeld analytical
continuation toward its sources with the purpose of the sources identiˇcation [4].
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