PROPERTIES OF GENERALIZED MATRIX SEQUENCE

E. B. Dushanov
Institute of Nuclear Physics, Tashkent, Uzbekistan

In case of a block-tridiagonal matrix, the problem of calculation of generalized double-point matrix sequence is examined. The general form of an inverse matrix of the bordered matrix is obtained when the initial matrix is singular. The criterion of existence of the generalized matrix sequence is found, and the algorithm of calculation of the sequence and the structure elements of the block-tridiagonal matrices is given.

Исследуется проблема вычислений обобщенной двухточечной матричной последовательности в случае блочно-трехдиагональной матрицы. В общей форме получена обратная матрица для окаймленной матрицы для случая, когда исходная матрица сингулярна. Найден критерий существования обобщенной матричной последовательности, и представлен алгоритм вычисления последовательности и структурных элементов блочно-трехдиагональных матриц.

PACS: 02.10.Yn; 02.60.-x

INTRODUCTION

Consider the matrix sequence

$$
\begin{equation*}
\Lambda_{i+1}=q_{i}-p_{i} \Lambda_{i}^{-1} r_{i}, \quad \Lambda_{2}=q_{1}, \quad i=2, \ldots, m \tag{1}
\end{equation*}
$$

where $\left\{q_{i}\right\}_{i=1}^{m}$ are quadratic-diagonal and $\left\{p_{i}, r_{i}\right\}_{i=2}^{m}$ are sub (off)-diagonal elements of the block-tridiagonal matrix in the form:

$$
C=\left[\begin{array}{cccc}
q_{1} & r_{2} & & \tag{2}\\
p_{2} & q_{2} & \ddots & \\
& \ddots & \ddots & r_{m} \\
& & p_{m} & q_{m}
\end{array}\right]
$$

Here, the orders of sub (off)-diagonal elements are defined by respective diagonal blocks q_{i-1} and q_{i}.

Let n_{i} be the orders of matrices q_{i}. We are interested in the problem of existence of sequence (1) when some of Λ_{i} are singularities, i.e., $\operatorname{det}\left(\Lambda_{i}\right)=0$. It is known that the properties of elements Λ_{i} are connected with the properties of principal upper angular minors of matrix C (2). Consequently, when the singularity of Λ_{i} appears, the existence of sequence (1) will depend on the invertibility of the next bordered matrix:

$$
\Lambda_{i}^{i+1}=\left[\begin{array}{cc}
\Lambda_{i} & r_{i} \tag{3}\\
p_{i} & q_{i}
\end{array}\right]
$$

1. METHOD OF CALCULATION OF THE GENERALIZED MATRIX SEQUENCE

It is known that in the case of nonsingularity of matrix Λ_{i}, the invertibility of matrix (3) is due to nonsingularity of matrix $q_{i}-p_{i} \Lambda_{i}^{-1} r_{i}[1,2]$. We consider certain cases with nonsingular Λ_{i}.

If the orders of submatrices q_{i-1} and q_{i} are equal, i.e., $n_{i-1}=n_{i}$, then the invertibility of one of the next submatrices $\Lambda_{i}-r_{i} q_{i}^{-1} p_{i}, r_{i}-\Lambda_{i} p_{i}^{-1} q_{i}$, and $p_{i}-q_{i} r_{i}^{-1} \Lambda_{i}$ is the invertibility criterion of matrix (3). All these cases reduce to the Frobenius Theorem [1].

Let now matrices p_{i} and r_{i} have the general form, i.e., submatrices q_{i-1} and q_{i} have different orders and $\operatorname{det}\left(q_{i}\right)=0$. Then the next theorem takes place.

Theorem 1. The necessary and sufficient condition for invertibility of the general form of matrix (3) is the invertibility of the matrix $F_{i}=Q_{i}-P_{i} Q_{i-1}^{-1} P_{i}^{T}$, where $Q_{i}=q_{i}^{T} q_{i}+$ $r_{i}^{T} r_{i}, P_{i}=r_{i}^{T} \Lambda_{i}+q_{i}^{T} p_{i}, Q_{i-1}=\Lambda_{i}^{T} \Lambda_{i}+p_{i}^{T} p_{i}, T$ is the symbol of transposition. Here

$$
\begin{align*}
& {\left[\begin{array}{cc}
\Lambda_{i} & r_{i} \\
p_{i} & q_{i}
\end{array}\right]^{-1}=} \\
& \quad \quad=\left[\begin{array}{cc}
E & -Q_{i-1}^{-1} P_{i}^{T} \\
E
\end{array}\right]\left[\begin{array}{cc}
Q_{i-1}^{-1} & \\
& F_{i}^{-1}
\end{array}\right]\left[\begin{array}{cc}
E & \\
-P_{i} Q_{i-1}^{-1} & E
\end{array}\right]\left[\begin{array}{cc}
\Lambda_{i}^{T} & r_{i}^{T} \\
p_{i}^{T} & q_{i}^{T}
\end{array}\right] \tag{4}
\end{align*}
$$

Denote the elements of the inverse matrix for (3) by $\omega_{i-1}, \beta_{i}, c_{i}$ and ω_{i}, i.e.,

$$
\left[\begin{array}{ll}
\Lambda_{i} & r_{i} \\
p_{i} & q_{i}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\omega_{i-1} & c_{i} \\
\beta_{i} & \omega_{i}
\end{array}\right]
$$

For example, consider the estimation of the next perturbation analysis [3-5]. For matrix (3) such type of estimation has the form:

$$
\left\|\left(\tilde{\Lambda}_{i}^{i+1}\right)^{-1}-\left(\Lambda_{i}^{i+1}\right)^{-1}\right\| \leqslant \max \left(\left\|\omega_{i-1}\right\|,\left\|\beta_{i}\right\|\right) \max \left(\mu,\left\|\theta_{i-1} c_{i}\right\|\right) \frac{1}{1-\mu}
$$

where

$$
\mu=\left\|E-\tilde{\Lambda}_{i}^{i+1}\left(\Lambda_{i}^{i+1}\right)^{-1}\right\|, \quad \tilde{\Lambda}_{i}^{i+1}=\left[\begin{array}{cc}
\Lambda_{i}+\theta_{i-1} & r_{i} \\
p_{i} & q_{i}
\end{array}\right]
$$

is the perturbation matrix obtained instead of (3), as a result of computation.
Indeed, the matrix consequence

$$
B_{j}=B_{j-1}\left(E-\Theta_{j-1}\right), \quad \Theta_{j-1}=E-\tilde{\Lambda}_{i}^{i+1} B_{j-1}, \quad B_{0}=\left(\Lambda_{i}^{i+1}\right)^{-1}, \quad j=1,2, \ldots
$$

tends to $\left(\tilde{\Lambda}_{i}^{i+1}\right)^{-1}$ at $\left\|\Theta_{0}\right\| \equiv \mu<1$.
Having expressed Θ_{j-1} through Θ_{0} we receive

$$
B_{j}=B_{0}-B_{0}\left(\Theta_{0}+\Theta_{0}^{2}+\ldots\right)
$$

where

$$
\Theta_{0}=\left[\begin{array}{cc}
\theta_{i-1} \omega_{i-1} & \theta_{i-1} c_{i} \\
0 & 0
\end{array}\right]
$$

Hence,

$$
\begin{array}{r}
\Theta_{0}+\Theta_{0}^{2}+\ldots=\left[\begin{array}{cc}
E+\theta_{i-1} \omega_{i-1}+\left(\theta_{i-1} \omega_{i-1}\right)^{2}+\ldots & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\theta_{i-1} \omega_{i-1} & \theta_{i-1} c_{i} \\
0 & 0
\end{array}\right]= \\
=\left[\begin{array}{cc}
\left(E-\theta_{i-1} \omega_{i-1}\right)^{-1} & \theta_{i-1} c_{i} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\theta_{i-1} \omega_{i-1} & \theta_{i-1} c_{i} \\
0 & 0
\end{array}\right]
\end{array}
$$

So then,

$$
\begin{aligned}
\left\|B_{j}-\left(\Lambda_{i}^{i+1}\right)^{-1}\right\|=\left\|\left[\begin{array}{c}
\omega_{i-1} \\
\beta_{i}
\end{array}\right]\left(E-\theta_{i-1} \omega_{i-1}\right)^{-1}\left[\theta_{i-1} \omega_{i-1}, \theta_{i-1} c_{i}\right]\right\| & \leqslant \\
& \leqslant \max \left(\left\|\omega_{i-1}\right\|,\left\|\beta_{i}\right\|\right) \max \left(\mu,\left\|\theta_{i-1} c_{i}\right\|\right) \frac{1}{1-\mu}
\end{aligned}
$$

The invertibility of matrix Λ_{i} leads to the continuous existence of consequence (1), i.e., the subsequent elements of this consequence will be functions of Λ_{i}. When $\operatorname{det}\left(\Lambda_{i}\right)=0$, the continuity will depend on nonsingularity of Λ_{i}^{i+1} (3).

Theorem 2. Let in consequence (1) the Λ_{i} be singular. Then the criterion of continuous existence of (1) will be the invertibility of matrix (3) and

$$
\begin{equation*}
\Lambda_{i+2}=q_{i+1}-p_{i+1} \omega_{i} r_{i+1} \tag{5}
\end{equation*}
$$

In case of existence of consequence with discontinuation, i.e., singularity of matrix (3), necessary and sufficient condition of invertibility of matrix C (2) will be the invertibility of the induced matrix of the following form:

$$
C_{\mathrm{ind}}=\bar{\Lambda}_{i}^{i+1}=\left[\begin{array}{cc}
\Lambda_{i} & r_{i} \tag{6}\\
p_{i} & q_{i}-\theta_{i}
\end{array}\right]
$$

where $\theta_{i}=r_{i+1}\left(Q_{i+1}^{m}\right)^{-1} p_{i+1}, Q_{i+1}^{m}$ is an submatrix of C (2).
In case of singularity of matrix Q_{i+1}^{m} and at $\operatorname{det}\left(\Lambda_{j}\right)=0(i<j \leqslant m+1)$ we have the next matrix-factorized decomposition [6]:

$$
C=\left[\begin{array}{ccccc}
E & & & & \\
p_{i-1}\left(Q_{1}^{i}\right)^{-1} & E & r_{i+1}\left(Q_{i+2}^{j}\right)^{-1} & & \\
& & E & & \\
& & p_{j-1}\left(Q_{i+2}^{j}\right)^{-1} & E & \\
& & & & E
\end{array}\right] \times
$$

$$
\begin{aligned}
& \times\left[\begin{array}{ccccc}
Q_{1}^{i} & & & \\
& \bar{\Lambda}_{i}^{i+1} & 0 & -r_{i+1}\left(Q_{i+2}^{j}\right)^{-1} r_{j-1} & \\
& 0 & Q_{i+2}^{j} & 0 & \\
& -p_{j-1}\left(Q_{i+2}^{j}\right)^{-1} p_{i+1} & 0 & \Lambda_{j}^{j+1} & r_{j+1} \\
& & & p_{j+1} & Q_{j+2}^{m}
\end{array}\right] \times \\
& \times\left[\begin{array}{ccccc}
E & \left(Q_{1}^{i}\right)^{-1} r_{i-1} & & & \\
& E & & & \\
& \left(Q_{i+2}^{j}\right)^{-1} p_{i+1} & E & \left(Q_{i+2}^{j}\right)^{-1} r_{j-1} & \\
& & E & E
\end{array}\right],
\end{aligned}
$$

where $p_{k-1}\left(Q_{l}^{k}\right)^{-1}$ and $\left(Q_{l}^{k}\right)^{-1} r_{k-1}$ are the matrix half-lines and half-columns, the dimensions of which be detemined by appropriate diagonal blocks Q_{l}^{k} and $q_{k-1} ; r_{i+1}\left(Q_{i+2}^{j}\right)^{-1} r_{j-1}$ and $p_{j-1}\left(Q_{i+2}^{j}\right)^{-1} p_{i+1}$ are the matrix elements whose elements will depend on appropriate diagonal elements q_{i} and q_{j-1}.

Let Λ_{j}^{j+1} be singular. If the submatrix Q_{1}^{j} of matrix C is nonsingular, then by virtue of Theorem 2 the matrix $\bar{\Lambda}_{i}^{i+1}$ also is nonsingular and here

$$
\begin{aligned}
& \Lambda_{j}=q_{j-1}-p_{j-1}\left(Q_{1}^{j}\right)^{-1} r_{j-1}= \\
& \quad=q_{j-1}-p_{j-1}\left(\Lambda_{j-1}^{-1}+\left(Q_{i+2}^{j}\right)^{-1} p_{i+1}\left(\bar{\Lambda}_{i}^{i+1}\right)^{-1} r_{i+1}\left(Q_{i+2}^{j}\right)^{-1}\right) r_{j-1}
\end{aligned}
$$

may be nonsingular. In case, when Λ_{j} is singular, then $C_{\mathrm{ind}}=\bar{\Lambda}_{j}^{j+1}$. This type of discontinuation of consequence (1) at the point $(i+1)$ is named the II type of discontinuation.

If the submatrix Q_{1}^{j} is singular, then $\bar{\Lambda}_{i}^{i+1}$ will be singular. Then the induced matrix will have the following form:

$$
C_{\mathrm{ind}}=\left[\begin{array}{cc}
\bar{\Lambda}_{i}^{i+1} & r_{i+1}\left(Q_{i+2}^{j}\right)^{-1} r_{j-1} \\
p_{j-1}\left(Q_{i+2}^{j}\right)^{-1} p_{i+1} & \bar{\Lambda}_{j}^{j+1}
\end{array}\right],
$$

where $\bar{\Lambda}_{i}^{i+1}$ and $\bar{\Lambda}_{j}^{j+1}$ are nonsingular matrices. This type of discontinuation of consequence (1) at the point $(i+1)$ is named the I type of discontinuation.

2. ALGORITHM AND RESULTS

For the nonsingular block-tridiagonal matrix C (2), if its principal upper angular $n_{i-1^{-}}$ order minors vanish, for any i from $(2 \leqslant i \leqslant m)$, then the corresponding element Λ_{i} of the consequence will be singular $[2,3,7,8]$. As a corollary of Theorem 2, the following
matrix-factorization decompositions for C take place:

$$
\begin{align*}
& C=\left[\begin{array}{llllllll}
E & & & & & & & \\
-\beta_{2} & E & & & & & & \\
& \ddots & \ddots & & & & & \\
& -\beta_{i-1} & E & & & & & \\
& & 0 & E & & & & \\
& & -\beta_{i+1 i} & -\tilde{\beta}_{i+1} & E & & & \\
& & & & -\beta_{i+2} & E & & \\
& & & & & \ddots & \ddots & \\
& & & & & & -\beta_{m} & E
\end{array}\right] \times \\
& \times\left[\begin{array}{ccccccccc}
\Lambda_{2} & & & & & & & \\
& \ddots & & & & & & \\
& & \Lambda_{i-1} & & & & & \\
& & & \Lambda_{i} & r_{i} & & & \\
& & & p_{i} & q_{i} & & & \\
& & & & & \Lambda_{i+2} & & \\
& & & & & & \ddots & \\
& & & & & & & \Lambda_{m}
\end{array}\right] \times \\
& \times\left[\begin{array}{ccccccc}
E & -c_{2} & & & & & \\
& \ddots & \ddots & & & & \\
& E & -c_{i-1} \\
& & E & 0 & -c_{i i+1} & & \\
& & & E & -\tilde{c}_{i+1} & & \\
& & & & E & -c_{i+2} & \\
& & & & & \ddots & \ddots \\
& & & & & & -c_{m} \\
& & & & & & E
\end{array}\right] \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
\beta_{j}=-p_{j} \Lambda_{j}^{-1}, \quad c_{j} & =-\Lambda_{j}^{-1} r_{j}, \quad \\
\tilde{\beta}_{i+1} & =-p_{i+1} \omega_{i}, \quad \tilde{c}_{i+1}=-\omega_{i} r_{i+1},
\end{aligned}
$$

and when $\operatorname{det}\left(\Lambda_{i}\right)=0$, we attain $\beta_{i+1}=-p_{i+1}, c_{i+1}=-r_{i+1}, \beta_{i+1 i}=\beta_{i+1} \beta_{i}$, $c_{i i+1}=c_{i} c_{i+1}$.

Below we will give the algorithm of calculation of consequence (1) and structure elements (β, c) of matrix (7):

Start of computations:

$i=1, \Lambda_{i+1}=q_{i} ;$
(1) ${ }^{0} \quad i=i+1$;

If $\operatorname{det}\left(\Lambda_{i}\right)=0$, then $(3)^{0}$, otherwise $(2)^{0}$.
$(2)^{0} \beta_{i}=-p_{i} \Lambda_{i}^{-1}, c_{i}=-\Lambda_{i}^{-1} r_{i}, \Lambda_{i+1}=q_{i}-p_{i} \Lambda_{i}^{-1} r_{i} ;$
If $i=m$, then computations are over, otherwise $(1)^{0}$.
$(3)^{0}$ If $\operatorname{det}\left(q_{i}\right)=0$, then $(6)^{0}$, otherwise $(4)^{0}$.
(4) ${ }^{0} f_{i}=\Lambda_{i}-r_{i} q_{i}^{-1} p_{i} ;$

If $\operatorname{det}\left(f_{i}\right)=0$, then computations are over, otherwise $(5)^{0}$.
$(5)^{0} \omega_{i}=q_{i}^{-1}+q_{i}^{-1} p_{i} f_{i}^{-1} r_{i} q_{i}^{-1}, \beta_{i}=-q_{i}^{-1} p_{i} f_{i}^{-1}, c_{i}=-f_{i}^{-1} r_{i} q_{i}^{-1} ;$
If $i=m$, computations are over, otherwise $(14)^{0}$.
$(6)^{0}$ If $\operatorname{det}\left(p_{i}\right)=0$, then $(9)^{0}$, otherwise $(7)^{0}$.
$(7)^{0} f_{i}=\Lambda_{i} p_{i}^{-1} q_{i}-r_{i} ;$
If $\operatorname{det}\left(f_{i}\right)=0$, then computations are over, otherwise $(8)^{0}$.
$(8)^{0} \omega_{i}=f_{i}^{-1} \Lambda_{i} p_{i}^{-1}, \beta_{i}=-f_{i}^{-1}, c_{i}=p_{i}^{-1}+p_{i}^{-1} q_{i} f_{i}^{-1} \Lambda_{i} p_{i}^{-1} ;$
If $i=m$, computations are over, otherwise $(14)^{0}$.
$(9)^{0}$ If $\operatorname{det}\left(r_{i}\right)=0$, then $(12)^{0}$, otherwise $(10)^{0}$.
$(10)^{0} f_{i}=q_{i} r_{i}^{-1} \Lambda_{i}-p_{i}$;
If $\operatorname{det}\left(f_{i}\right)=0$, then computations are over, otherwise $(11)^{0}$.
$(11)^{0} \omega_{i}=r_{i}^{-1} \Lambda_{i} f_{i}^{-1}, \beta_{i}=r_{i}^{-1}+r_{i}^{-1} \Lambda_{i} f_{i}^{-1} q_{i} r_{i}^{-1}, c_{i}=-f_{i}^{-1}$;
If $i=m$, computations are over, otherwise $(14)^{0}$.
$(12)^{0} Q_{i-1}=\Lambda_{i}^{T} \Lambda_{i}+p_{i}^{T} p_{i}, \tilde{Q}_{i-1}=\Lambda_{i} \Lambda_{i}^{T}+r_{i} r_{i}^{T}$;
If $\operatorname{det}\left(Q_{i-1}\right)=0$ or $\operatorname{det}\left(\tilde{Q}_{i-1}\right)=0$, then computations are over, otherwise $(13)^{0}$.
$(13)^{0} P_{i}=r_{i}^{T} \Lambda_{i}+q_{i}^{T} p_{i}, \tilde{P}_{i}=p_{i} \Lambda_{i}^{T}+q_{i} r_{i}^{T} ;$
$Q_{i}=q_{i}^{T} q_{i}+r_{i}^{T} r_{i}, \tilde{Q}_{i}=q_{i} q_{i}^{T}+p_{i} p_{i}^{T} ;$
$f_{i}=Q_{i}-P_{i} Q_{i-1}^{-1} P_{i}^{T}, \tilde{f}_{i}=\tilde{Q}_{i}-\tilde{P}_{i} \tilde{Q}_{i-1}^{-1} \tilde{P}_{i}^{T} ;$
$\omega_{i}=f_{i}^{-1}\left(q_{i}^{T}-P_{i} Q_{i-1}^{-1} p_{i}^{T}\right), \beta_{i}=f_{i}^{-1}\left(r_{i}^{T}-P_{i} Q_{i-1}^{-1} \Lambda_{i}^{T}\right), c_{i}=\left(p_{i}^{T}-\Lambda_{i}^{T} \tilde{Q}_{i-1}^{-1} \tilde{P}_{i}^{T}\right) \tilde{f}_{i}^{-1} ;$
If $i=m$, then computations are over, otherwise (14) ${ }^{0}$.
$(14)^{0} i=i+1, \beta_{i}=-p_{i}, c_{i}=-r_{i}, \tilde{\beta}_{i}=-p_{i} \omega_{i-1}, \tilde{c}_{i}=-\omega_{i-1} r_{i}, \Lambda_{i+1}=q_{i}-p_{i} \omega_{i-1} r_{i} ;$
If $i=m$, then computations are over, otherwise (1) ${ }^{0}$.
End of computations.
Example. Let the block-tridiagonal matrix be given

$$
C=\left[\begin{array}{rrrrrrr}
1 & -1 & 1 & & & & \tag{8}\\
-1 & 1 & -1 & 1 & & & \\
0 & -1 & 1 & -1 & 1 & & \\
& 0 & -1 & 1 & -1 & 1 & \\
& & 0 & -1 & 0 & 0 & 1 \\
& & & 1 & 1 & 1 & 0 \\
& & & & 0 & 1 & 0
\end{array}\right]
$$

Computed values of consequence (1) and the structure elements of matrix (8) by algorithm $1^{0}-14^{0}$
\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|}\hline i & \Lambda_{i+1} & \omega_{i} & \beta_{i+1} & c_{i+1} & \tilde{\beta}_{i+1} & \tilde{c}_{i+1} \\
\hline 1 & {\left[\begin{array}{rr}1 & -1 \\
-1 & 1\end{array}\right]} & - \\
2 & \text { Indef. } \\
3 & {\left[\begin{array}{rr}0 & -1 \\
0 & 0\end{array}\right]} & {\left[\begin{array}{rr}-1 & 1 \\
-1 & -1\end{array}\right]} & {\left[\begin{array}{rr}1 & -1 \\
1 & 1\end{array}\right]} & - & - \\
4 & {\left[\begin{array}{rr}-1 & 0 \\
1 & -1\end{array}\right]} & {\left[\begin{array}{rr}0 & 1 \\
0 & -1\end{array}\right]} & {\left[\begin{array}{rr}-1 & 1 \\
0 & 0\end{array}\right]} & {\left[\begin{array}{ll}0 & 0 \\
0 & 0\end{array}
$$\right]}

Indef. \& - \& {\left[\begin{array}{rr}-1

1\end{array}\right]} \& 0\end{array}\right]\)| - |
| :---: |

The diagonal blocks have the orders $[2 \times 2]$ except for the last diagonal block. In this case Λ_{2} and Λ_{4} will be singular. Shown in the Table are the elements of consequence (1) and the structure elements of the matrix, which were computed on the base of algorithm $1^{0}-14^{0}$.

REFERENCES

1. Malozemov V. N., Monako M. F., Petrov A. V. Frobenius, Sherman-Morrison Formulas and Similar Problems // J. Vich. Mat. i Mat. Fiz. 2002. V.42. P. 1459-1465 (in Russian).
2. Emel'yanenko G. A., Rakhmonov T. T., Dushanov E. B. Critical-Component Method for Solving Systems of Linear Equations with a Tridiagonal Matrix of the General Form. JINR Preprint E11-96-105. Dubna, 1996.
3. Faddeev D. K., Faddeeva V. N. Computational Methods of Linear Algebra. M.; L.: Fizmatgiz, 1963.
4. Voevodin V. V., Kuznetsov Yu. A. Matrices and Computations. M.: Nauka, 1984.
5. Rice J. Matrix Computations and Mathematical Software. McCraw-Hill Book Comp., 1981.
6. Emel'yanenko G. A., Rakhmonov T. T. Generators of Matrix-Factorized Representations of BlockTridiagonal Matrices and Their Inverces. JINR Preprint P11-93-265. Dubna, 1993 (in Russian).
7. Gantmakher F. R. Theory of Matrices. 2nd ed. M.: Nauka, 1966.
8. Golub G. H., Van Loan Ch. F. Matrix Computations. The John Hopkins Univ. Press, 1989.
