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DESCRIBING THE EQUATION OF MOTION
IN DIHEDRAL ANGLES Å A METHOD FOR IN SILICO

FOLDING OF PROTEINS
U.H. E. Hansmann, J. Sk�riv�anek

John v. Neumann Institute for Computing, Forschungszentrum Jéulich, Germany

The successful deciphering of the human genom has highlighted an old challenge in protein science:
for most of the resolved protein sequences we do not know the corresponding structures and functions.
Neither do we understand in detail the mechanism by which a protein folds into its biologically active
form. Computer experiments offer one way to evaluate the sequence-structure relationship and the
folding process but are extremely difˇcult for detailed protein models. This is because the energy
landscape of all-atom protein models is characterized by a multitude of local minima separated by high
energy barriers. Here, we describe an algorithm that allows one to partially overcome this multiple-
minima problem. For this purpose a formulation of Lagrange's equation of motion for proteins described
by internal coordinates is presented. Unlike in the previous work, not only velocities and accelerations
are described by bond length, bond angles and dihedral angles, but a complete formalism is presented
that includes also the positions of atoms and rotation vectors.

“¸¶¥Ï´μ¥ ¤¥±μ¤¨·μ¢ ´¨¥ £¥´μ³  Î¥²μ¢¥±  ¢Ò¤¢¨´Ê²μ ´  ¶¥·¢Ò° ¶² ´ ¸É ·ÊÕ ¶·μ¡²¥³Ê ¨§Ê-
Î¥´¨Ö ¡¥²±μ¢: ¤²Ö ¡μ²ÓÏ¨´¸É¢  · ¸Ï¨Ë·μ¢ ´´ÒÌ ¶μ¸²¥¤μ¢ É¥²Ó´μ¸É¥° ¡¥²±μ¢ ³Ò ´¥ §´ ¥³ ¸μμÉ-
¢¥É¸É¢ÊÕÐ¨¥ ¸É·Ê±ÉÊ·Ò ¨ ËÊ´±Í¨¨. ’μÎ´μ É ± ¦¥ ³Ò ´¥ ¶μ´¨³ ¥³ ³¥Ì ´¨§³, ¶μ ±μÉμ·μ³Ê ¡¥²μ±
¶¥·¥Ìμ¤¨É ¢ ¡¨μ²μ£¨Î¥¸±¨  ±É¨¢´ÊÕ Ëμ·³Ê. Šμ³¶ÓÕÉ¥·´Ò¥ Ô±¸¶¥·¨³¥´ÉÒ ¶μ§¢μ²ÖÕÉ ´ °É¨ ¸¶μ¸μ¡
¢ÒÎ¨¸²¥´¨Ö ¸μμÉ´μÏ¥´¨Ö ®¶μ¸²¥¤μ¢ É¥²Ó´μ¸ÉÓÄ¸É·Ê±ÉÊ· ¯ ¨ Ëμ²¤¨´£ , ´μ μ´ ¸É ´μ¢¨É¸Ö ±· °´¥
¸²μ¦´Ò³ ¶·¨ μ¶¨¸ ´¨¨ ¶μ¤·μ¡´ÒÌ ³μ¤¥²¥° ¡¥²±μ¢. �Éμ ¶·μ¨¸Ìμ¤¨É ¶μÉμ³Ê, ÎÉμ Ô´¥·£¥É¨Î¥¸±¨°
² ´¤Ï ËÉ ¶μ²´μ Éμ³´ÒÌ ³μ¤¥²¥° ¡¥²±μ¢ Ì · ±É¥·¨§Ê¥É¸Ö ³´μ¦¥¸É¢μ³ ²μ± ²Ó´ÒÌ ³¨´¨³Ê³μ¢, · §-
¤¥²¥´´ÒÌ ¢Ò¸μ±μÔ´¥·£¥É¨Î¥¸±¨³¨ ¡ ·Ó¥· ³¨. ‡¤¥¸Ó ¶·¥¤¸É ¢²¥´  ²£μ·¨É³, ¶μ§¢μ²ÖÕÐ¨° Î ¸É¨Î´μ
¶·¥μ¤μ²¥ÉÓ ÔÉÊ ¶·μ¡²¥³Ê ³´μ¦¥¸É¢¥´´ÒÌ ³¨´¨³Ê³μ¢. ‘ ÔÉμ° Í¥²ÓÕ Ëμ·³Ê²¨·ÊÕÉ¸Ö Ê· ¢´¥´¨Ö ¤¢¨-
¦¥´¨Ö ‹ £· ´¦  ¤²Ö ¡¥²±μ¢, μ¶¨¸Ò¢ ¥³ÒÌ ¢´ÊÉ·¥´´¨³¨ ±μμ·¤¨´ É ³¨. ‚ μÉ²¨Î¨¥ μÉ ¶·¥¤Ò¤ÊÐ¥°
· ¡μÉÒ ¸ ¶μ³μÐÓÕ ¤²¨´Ò ¸¢Ö§¨, Ê£²  ¸¢Ö§¨ ¨ ¤¢Ê£· ´´μ£μ Ê£²  ´¥ Éμ²Ó±μ μ¶¨¸Ò¢ ÕÉ¸Ö ¸±μ·μ¸É¨
¨ Ê¸±μ·¥´¨Ö, ´μ ¨ ¸É·μ¨É¸Ö ¶μ²´Ò° Ëμ·³ ²¨§³, ¢±²ÕÎ ÕÐ¨° É ±¦¥ ¶μ²μ¦¥´¨Ö  Éμ³μ¢ ¨ ¢¥±Éμ·Ò
¢· Ð¥´¨Ö.

PACS: 11.10.Ef; 45.20.Jj

INTRODUCTION

One of the most common and important classes of molecules in living systems are proteins.
Muscles and connective tissues are formed by them, and as enzymes, they catalyze and
regulate biochemical reactions in the cell. Greatly differing in size and structure, all proteins
are chemically linear chain molecules with the twenty naturally occurring amino acids as
monomers. Locally, regular elements like helices, sheets and turns are formed, but the
biological function of a protein is decided by its unique overall three-dimensional shape that
is speciˇed solely by the sequence of amino acids.
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The sequence of amino acids that make up a protein is set in the genome. Hence, after
the successful completion of the human genome project one knows in principal the chemical
composition of all proteins in the human body. However, for most of the resolved protein
sequences one does not know the corresponding structures. Since proteins are only functional
if they fold into their speciˇc shape, it is important to understand how the structure and
function of proteins emerge from their sequence of amino acids.

One possibility to unveil the sequence-structure (function) relationship are computer ex-
periments. Most proteins exist at room temperature in a unique structure that one can identify
with the lowest potential energy conformation. However, simulations at these temperatures
are extremely difˇcult for detailed protein models. This is because the energy landscape of
all-atom protein models is characterized by a multitude of local minima separated by high
energy barriers. This multitude of potential traps is at least in part due to the large number
of degrees of freedom in regular molecular dynamics simulations of proteins.

In many biophysical and biochemical simulations the motion of the atoms is constraint
and the number of degrees of freedom is less than 3N , where N is the number of systems.
In such a case it becomes advantageous to go to a set of internal coordinates that re
ect
the true degrees of freedom of the system. An example are proteins, where the length of
chemical bonds and the bond angles 
uctuate little, and therefore their movement can often be
neglected. In fact, the ECEPP force ˇeld Ref. [5] assumes explicitly such a ˇxed geometry,
and a conˇguration of a protein is described as a set of dihedral angles φ, ψ, ω (for the
backbone) and χ's (for the side chains).

The advantages of such an approach are obvious: the time evolution of much less variables
needs to be calculated. For instance, the pentapeptide Met-enkephaline has 75 atoms. In
Cartesian coordinates one has to solve 225 equations of motions, in internal coordinates,
however, only 24 equations of motion (assuming bond length and bond angles ˇxed as
assumed in the ECEPP force ˇeld). Consequently, attempts were already made earlier to
derive the equation of motions of a protein in internal coordinates. To our knowledge, the ˇrst
such an attempt can be found in Ref. [1]. However, the equations derived in this work are not
fully about internal coordinates as some variables are still expressed in Cartesian coordinates.
Here, we take up their approach and present a formulation that allows a formulation of the
equation of motion of a protein solely in internal coordinates. Most of the construction and
notation in our work follows Ref. [1]. We present both a general description that allows also
in principal for variable bond length or bond angles, and the simpliˇed equations for the case
where these quantities are kept ˇxed.

1. DEFINITIONS AND NOTATIONS

An important instrument in our study is the unit vector which has only direction. Because
of the natural correspondence between unit vectors and points on the unit sphere one can
discuss directions using spherical trigonometry.

For instance, the unit vectors â, b̂ and ĉ are regarded as vertices of the spherical triangle
in Fig. 1. The angles α, β and γ ∈ 〈0; π〉 between pairs of the vectors generate sides of this
triangle.

Since we will represent all torsion angles on the unit sphere, we need to distinguish convex
and concave dihedral angles. One way, according to Ref. [4], is to consider them as angles
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Fig. 1. Representation of unit vectors on the unit sphere

with a counterclockwise orientation. So, if the angle A ∈ (−π; π〉 in Fig. 1 is positive, then
it poses the angle �(b̂, â, ĉ), as a dihedral angle between faces represented by pairs â, b̂
and â, ĉ in this counterclockwise order. We shall write A = �(ĉ, â, b̂), if it is negative.
Note that we use here and otherwise in the text mathematical terms as deˇned and explained
in Ref. [6].

2. INTERNAL VARIABLES

Ignoring global translations and rotations our aim is to describe the internal motion of all
atoms in the language of internal coordinates. Let us suppose that the positions and motions
of all atoms of a molecular conformation are given in internal coordinates. In this case, a tree
structure on the set of all atoms follows, as the positions of the atoms can be described by
relations to neighbours. In this picture, atoms can be considered as nodes and bonds as edges
of the tree. Note that in order to complete the tree, some virtual intermolecular edges need
to be added. An appropriate elimination of edges (Steiner tree) keeps all nodes in a sparse
tree conformation. An arbitrary node is now chosen as the root of this tree and anchors the
system to a ˇxed point in the space. This origin has the position vector r1 and needs to be
considered as an additional virtual node.

Each atom is connected with the origin by exactly one branch. The height of the node is
the number of elements in such a branch. Because every quantity arising in our expressions
corresponds to a node in particular branch only, it is indexed just by the height of the related
node.

We distinguish three internal coordinates for a node (i.e., atom) characterized by a vector
ri that points inside a given branch onto an atom r̄α, which has the global index α. The

ˇrst one is the torsion (dihedral) angle Φi = �(−f̂i−1, f̂i, f̂i+1), where f̂i =
1

‖fi‖
fi is the

unit vector for fi = ri − ri−1. So, �(̂fi−1, f̂i, f̂i+1) = Φi ± π according to the sign of Φi

(Fig. 3). A change of Φi determines the rotation of the following part of the tree around the
line deˇned by the node and f̂i. The second variable is the bond angle ωi between −f̂i and
f̂i+1. So, the angle between f̂i and f̂i+1 is π − ωi. Its drift designs the rotation around the

node and êi =
1

‖ei‖
ei, where ei = fi+1 × fi is a vector product. Finally, we have the bond
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length bi+1 = ‖fi+1‖, which determines a shift to the next part of the tree and we can write
fi+1 = bi+1 f̂i+1.

The index i grows from 1 at the origin level, across 2 at the root, to the height nα of
the last atom rnα = r̄α of the branch (Figs. 2, 3). The indexing is speciˇed for each branch
separately. The three coordinates Φi, ωi and bi+1 associated with the ith node on the branch
are not equivalent. The torsion angle Φi affects the positions of êi and f̂i+1, the vectors of
variables ωi and bi+1, and ωi affects f̂i+1, but not vice versa. Several internal coordinates of
the same type are at a furcate node, but each one is on a different branch. So, our indexing
up the branch is still valid.

We need two more nonparallel vectors x̂ and ŷ in addition to the origin to deˇne the
positions of the atoms in space. These two vectors are chosen here without loss of generality
as perpendicular and of unit length. They deˇne a Cartesian coordinate system together with

Fig. 2. Internal coordinates along a branch

Fig. 3. Relevant vectors of the initial part of a branch (scheme)
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the origin O and the vector of the third coordinate axis ẑ = x̂× ŷ. The position of any node
of a global index α and of a height nα is together with Cartesian coordinates deˇned by a
sequence of internal coordinates (Φ1, ω1, b2, Φ2, ω2, b3, . . . , Φnα−1, ωnα−1, bnα) along the
incident branch, where Φ1 = �(−ŷ, x̂, f̂2), Φ2 = �(−x̂, f̂2, f̂3) and ω1 is the angle between
−x̂ and f̂2 (Figs. 2, 3). The ˇrst three coordinates Φ1, ω1, b2 anchor the system in space.
The nonˇxed internal coordinates generate the set of all generalized variables.

3. THE HYBRID FORM OF THE EQUATIONS OF MOTION

We start from the Lagrangian equations of motion in the form

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 for any generalized variable θ, (1)

where θ̇ =
∂θ

∂t
. Substituting

∑
α

(
1
2
mαṙ 2

α

)
− U for the Lagrangian function L we obtain

−∂U

∂θ
=

∑
α∈D[θ]

mα

[
d

dt

(
ṙα

∂ṙα

∂θ̇

)
− ṙα

∂ṙα

∂θ

]
=

∑
α∈D[θ]

mαr̈α
∂rα

∂θ
, (2)

where U is the potential energy; α is the global index for atoms; mα is the mass and r̄α is

the position vector of the αth atom; ṙα =
∂r̄α

∂t
, r̈α =

∂2r̄α

∂t2
and D[θ] is the set of global

indices of all atoms affected by the variable θ. Our goal is to express the right side of ( 2)
by internal variables only.

Following the ideas of the authors of Ref. [1] with simpliˇcation applied in Ref. [3], one

can obtain −∂U

∂θ
as a sum of scalar products

−∂U

∂Φ
=

∑
α∈D[Φ]

(
f̂k × rα/k

)
mαr̈α,

−∂U

∂ω
=

∑
α∈D[ω]

(
êk × rα/k

)
mαr̈α, (3)

−∂U

∂b
=

∑
α∈D[b]

f̂k+1mαr̈α,

where k is the height of the node associated with the generalized variable θ (Φk, ωk or bk+1

on the branch to each atom with a global number α ∈ D [θ]), the vector rα/i is given by
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rα/i = r̄α − ri, and r̈α is the acceleration of the αth atom. This vector can be written as

r̈α =
nα−1∑
i=1

[(
Φ̈if̂i + ω̈iêi

)
× rα/i + b̈i+1f̂i+1 + 2Φ̇iω̇i

(
f̂i × êi × rα/i

)
+

+ Φ̇ 2
i

(
f̂i × f̂i × rα/i

)
+ ω̇ 2

i

(
êi × êi × rα/i

)]
+

+ 2
nα−1∑
i=2

i−1∑
m=1

[(
Φ̇mf̂m + ω̇mêm

)
×

(
Φ̇if̂i + ω̇iêi

)
× rα/i

]
+

+ 2
nα−1∑
i=1

i∑
m=1

[(
Φ̇mf̂m + ω̇mêm

)
× ḃi+1f̂i+1

]
, (4)

where θ̇ =
dθ

dt
, θ̈ =

d2θ

dt2
, f̂1 = x̂, a × b × c stands for a × (b × c) and the members of all

sums are indexed along the branch to the αth atom. If any internal coordinate θ is ˇxed, the
corresponding velocity θ̇ and acceleration θ̈ are zero. Our task is to express vectors in the
formulas (3) and (4) by internal coordinates.

Fixing bond length and bond angles, Eqs. (3) and (4) reduce to the simpliˇed versions

−∂U

∂Φ
=

∑
α∈D[Φ]

(
f̂k × rα/k

)
mαr̈α (5)

and

r̈α =
nα−1∑
i=1

[
Φ̈i f̂i × rα/i + Φ̇2

i

(
f̂i × f̂i × rα/i

)]
+ 2

nα−1∑
i=2

i−1∑
m=1

[
Φ̇mf̂m × Φ̇i f̂i × rα/i

]
. (6)

4. EQUATIONS OF MOTION SOLELY WRITTEN IN INTERNAL COORDINATES

The Cartesian coordinates of f̂i are the cosines of the angles between f̂i and x̂, ŷ, ẑ. These
cosines are (see Appendix)

f̂i(1) = (1, 0, 0)C1 · · ·Ci−1 · (1,0,0)T ,

f̂i(2) = (1, 0, 0)C0 · C1 · · ·Ci−1 · (1,0,0)T , (7)

f̂i(3) = (1, 0, 0)C−1 · C0 · C1 · · ·Ci−1 · (1,0,0)T ,

where T is the operation of transpose, the dot represents here and in the following matrix
multiplication, and the mth compose matrix is

Cm =

⎛
⎝ − cosωm sin ωm 0

− sinωm cosΦm − cosωm cosΦm − sinΦm

− sinωm sin Φm − cosωm sin Φm cosΦm

⎞
⎠ (8)

as cos(π−ωm) = − cosωm, sin(π−ωm) = sin ωm, cos(Φm ±π) = − cosΦm and sin(Φm ±
π) = − sinΦm. The initial angles are Φ0 = �(−ẑ, ŷ, x̂) = −π

2
and arbitrary Φ−1 and

ω0 = ω−1 =
π

2
are the angles between x̂ and −ŷ or ŷ and −ẑ (Fig. 3).
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As we have (1, 0, 0)C0 = (0,1,0) and (1, 0, 0)C−1 · C0 = (0,0,1), new compound
version of (7) is

f̂i =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠C1 · C2 · · ·Ci−1 · (1,0,0)T = C1 · C2 · · ·Ci−1 · (1,0,0)T , (9)

where the vector f̂i is identiˇed with its arithmetical representation. One can write

f̂i = C1 · C2 · · ·Ci−1 · x̂ (10)

extending this representation to the other vectors considered now as column matrices. As

(A ·u)×(A ·v)= A ·(u×v) holds for any orthogonal matrix A, we have êi =
1∥∥∥f̂i+1 × f̂i

∥∥∥×
(̂fi+1 × f̂i) =

1
sinωi

C1 ·C2 · · ·Ci−1 · [(Ci · x̂) × x̂]. This relation can be simpliˇed as

êi = C1 ·C2 · · ·Ci−1 · ûi (11)

using that ûi = (0,− sinΦi, cosΦi)T . Similarly, rα/i = bi+1fi+1 +bi+2fi+2 + . . .+bnαfnα

can be written as
rα/i = C1 · C2 · · ·Ci · rot(rα/i), (12)

where rot(rα/i) = (bi+1I3 + Ci+1(bi+2I3 + Ci+2(bi+3I3 + . . . + Cnα−2(bnα−1I3+
bnαCnα−1)) . . .)x̂ and I3 is the identity matrix of the third order.

Let us now deˇne for non-negative integers i, j the cumulative compose matrix

Ci,j = CT
i ·CT

i−1 · · ·CT
0 · C0 · · ·Cj =

⎧⎨
⎩

Ci+1 ·Ci+2 · · ·Cj, if i < j,
I3, if i = j,

CT
i ·CT

i−1 · · · CT
j+1, if i > j.

(13)

These orthogonal matrices have several useful properties

Ci = Ci−1,i, C1 ·C2 · · ·Ci = C0,i,
Ci,j · Cj,k = Ci,k, CT

i,j = Cj,i.
(14)

All terms of (3) and (4) can now be written as

f̂k × rα/k = C0,k−1

[
x̂ ×

(
Ck · rot(rα/k)

)]
,

êk × rα/k = C0,k−1

[
ûk ×

(
Ck · rot(rα/k)

)]
, (15)

f̂k+1 = C0,k−1Ck · x̂

and (
Φ̈i f̂i + ω̈iêi

)
× rα/i = C0,i−1

[(
Φ̈ix̂ + ω̈iûi

)
×

(
Ci · rot(rα/i)

)]
,

b̈i+1f̂i+1 = C0,i−1Ci · b̈i+1x̂,

Φ̇iω̇i

(
f̂i × êi × rα/i

)
= C0,i−1

[
x̂ × ûi ×

(
Ci · Φ̇iω̇i rot(rα/i)

)]
,

Φ̇ 2
i

(
f̂i × f̂i × rα/i

)
= C0,i−1

[
x̂ × x̂ ×

(
Ci · Φ̇2

i rot(rα/i)
)]

,

ω̇ 2
i

(
êi × êi × rα/i

)
= C0,i−1

[
ûi × ûi ×

(
Ci · ω̇ 2

i rot(rα/i)
)]

, (16)
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(
Φ̇mf̂m + ω̇mêm

)
×

(
Φ̇i f̂i + ω̇iêi

)
× rα/i

m<i=
(
C0,m−1(Φ̇mx̂ + ω̇mûm)

)
×

×
(
C0,i−1

(
(Φ̇ix̂ + ω̇iûi) × (Ci · rot(rα/i))

))
,

(
Φ̇mf̂m + ω̇mêm

)
× ḃi+1f̂i+1

m�i
=

(
C0,m−1(Φ̇mx̂ + ω̇mûm)

)
×

(
C0,i · ḃi+1x̂

)
.

As a scalar product of vectors a and b can be also written as a matrix multiplication
aT · b, and all matrices Ci and Ci,j are orthogonal, an additional reduction is obtained by
multiplication of the terms (15) and (16) in (3). This leads to our ˇnal equation of motion
that is now based only on the internal coordinates:

−∂U

∂Φ
= x̂T

∑
α∈D[Φ]

(
Ck · rot(rα/k)

)
× mαak,α,

−∂U

∂ω
= ûT

k

∑
α∈D[Φ]

(
Ck · rot(rα/k)

)
× mαak,α, (17)

−∂U

∂b
= (Ck · x̂)T

∑
α∈D[b]

mαak,α.

Here we assume

ak,α =
nα−1∑
i=1

Ck−1,i−1

[(
Φ̈ix̂ + ω̈iûi

)
×

(
Ci · rot(rα/i)

)
+ Ci · b̈i+1x̂+

+ x̂ × ûi ×
(
Ci · 2Φ̇iω̇i rot(rα/i)

)
+ x̂ × x̂ ×

(
Ci · Φ̇2

i rot(rα/i)
)

+

+ûi × ûi ×
(
Ci · ω̇ 2

i rot(rα/i)
)]

+

+ 2
nα−1∑
i=2

i−1∑
m=1

[(
Ck−1,m−1

(
Φ̇mx̂ + ω̇mûm

))
×

×
(
Ck−1,i−1

(
(Φ̇ix̂ + ω̇iûi) × (Ci · rot(rα/i))

))]
+

+ 2
nα−1∑
i=1

i∑
m=1

[(
Ck−1,m−1

(
Φ̇mx̂ + ω̇mûm

))
×

(
Ck−1,i · ḃi+1x̂

)]
. (18)

Cumulative compose matrices Ck−1,i−1 are endowed by two indices in the previous form.
But the ˇrst one is constant k − 1 dependent on the height of the generalized variable θ.

5. NUMERICAL SOLUTION

Fixing again bond length and bond angles, the ˇrst equation of (17) together with (18)
simplify to

−∂U

∂Φ
= x̂T

∑
α∈D[Φ]

(
Ck · rot(rα/k)

)
×
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× mα

{
nα−1∑
i=1

Ck−1,i−1

[
Φ̈ix̂ ×

(
Ci · rot(rα/i)

)
+ x̂ × x̂×

(
Ci · Φ̇2

i rot(rα/i)
)]

+

+ 2
nα−1∑
i=2

i−1∑
m=1

[(
Ck−1,m−1 · Φ̇mx̂

)
×

(
Ck−1,i−1

(
Φ̇ix̂ × (Ci · rot(rα/i))

))]}
. (19)

It is possible to solve the system (19) with numerical methods (see, e.g., Ref. [2]) as one
can express Φ̈'s explicitly. Adapting conventional methods for solving systems of differential
equations we represent this system in a form

M(t,y) · ẏ = f(t,y). (20)

We need unambiguous identiˇcation of internal coordinates and variables. They are
identiˇed by indices only within a particular branch. Hence, two different internal variables
with the same index can occur inside the same Eq. (19). Let now⎛

⎝ Φ(1)

ω(1)

b(1)

⎞
⎠ ,

⎛
⎝ Φ(2)

ω(2)

b(2)

⎞
⎠ , . . . ,

⎛
⎝ Φ(ι)

ω(ι)

b(ι)

⎞
⎠ , . . . ,

⎛
⎝ Φ(N)

ω(N)

b(N)

⎞
⎠ (21)

be a global indexing of triplets of internal coordinates and let

r̄1, r̄2, . . . , r̄α, . . . , r̄M (22)

be a global indexing of position vectors of the nodes (atoms). One triplet of internal variables

inside a branch is deˇned as

⎛
⎝ Φi

ωi

bi+1

⎞
⎠ above. Each triplet

⎛
⎝ Φ(ι)

ω(ι)

b(ι)

⎞
⎠ is associated just

with one node r̄ν(ι). Several triplets can be associated with the same furcate node. Let D[Φ]
be the set of all global indices of nodes, which are affected by internal variable Φ. For two
internal variables Φ(ι) and Φ(κ) is D[Φ(ι)]∩D[Φ(κ)] �= ∅, if and only if Φ(ι) and Φ(κ) lie on
the same branch. In a such case, is this intersection one of the intersecting sets (let us denote
Φ(ι) ≺ Φ(κ) ⇐⇒ D[Φ(ι)] ⊃ D[Φ(κ)])?

Let

C(ι) =

⎛
⎝ − cosω(ι) sin ω(ι) 0

− sinω(ι) cosΦ(ι) − cosω(ι) cosΦ(ι) − sinΦ(ι)

− sin ω(ι) sin Φ(ι) − cosω(ι) sin Φ(ι) cosΦ(ι)

⎞
⎠ (23)

and

C(κ,λ) =

⎧⎪⎪⎨
⎪⎪⎩

C(ι1) · C(ι2) · · ·C(ιj−1), if κ = ι1 and λ = ιj ,
I3, if κ = λ,

CT
(ιj−1) · CT

(ιj−2) · · ·CT
(ι1), if λ = ι1 and κ = ιj ,

03, if D[Φ(κ)] ∩ D[Φ(λ)] = ∅,

(24)

where I3 and 03 are identity and zero matrices and (ι1, ι2, . . . , ιj) are global indices of
a sequence of successive triplets of internal coordinates increasing along the same branch.
Moreover, let

rot(rα/ι) = (b(ι1)I3 + C(ι2)(b(ι2)I3 + C(ι3)(b(ι3)I3 + . . .

. . . + C(ιj−1)(b(ιj−1)I3 + b(ιj)C(ιj))) . . .)x̂, (25)
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where (ι1, ι2, . . . , ιj) are indices of the increasing sequence of all successive internal coordi-
nates impacting against the αth node and starting from ι1 = ι.

Let the actual interval variable Φ = Φ(μ). We can rewrite Eqs. (19) under this denotation
onto

− ∂U

∂Φ(μ)
=

=
N∑

ι=1

Φ̈(ι)x̂T
∑

α∈Dιμ

mα

(
C(μ) · rot(rα/μ)

)
× C(μ,ι)

(
x̂ ×

(
C(ι) · rot(rα/ι)

))
+

+
N∑

ι=1

Φ̇ 2
(ι)x̂

T
∑

α∈Dιμ

mα

(
C(μ) · rot(rα/μ)

)
× C(μ,ι)

(
x̂ × x̂ ×

(
C(ι) · rot(rα/ι)

))
+

+ 2
N∑

ι=1

∑
Φ(λ)≺Φ(ι)

Φ̇(ι)Φ̇(λ)x̂T
∑

α∈Dιμ

mα

(
C(μ) · rot(rα/μ)

)
×

(
C(μ,λ) · x̂

)
×

×
(
C(μ,ι)

(
x̂ × (C(ι) · rot(rα/ι))

))
(26)

for Dιμ = D[Φ(ι)] ∩ D[Φ(μ)] and μ = 1, 2, . . . , N.
Hence, one can replace these N differential equations of the second order by 2N equations

of the ˇrst order (20) that can be solved with standard techniques:

Φ̇(μ) = Ψ(μ), (27)

N∑
ι=1

Ψ̇(ι)x̂T
∑

α∈Dιμ

mα

(
C(μ) · rot(rα/μ)

)
× C(μ,ι)

(
x̂ ×

(
C(ι) · rot(rα/ι)

))
=

−
N∑

ι=1

Ψ 2
(ι)x̂

T
∑

α∈Dιμ

mα

(
C(μ) · rot(rα/μ)

)
× C(μ,ι)

(
x̂ × x̂ ×

(
C(ι) · rot(rα/ι)

))
−

− 2
N∑

ι=1

∑
Φ(λ)≺Φ(ι)

Ψ(ι)Ψ(λ)x̂
T

∑
α∈Dιμ

mα

(
C(μ) · rot(rα/μ)

)
×

(
C(μ,λ) · x̂

)
×

×
(
C(μ,ι) ·

(
x̂ × (C(ι) · rot(rα/ι))

))
− ∂U

∂Φ(μ)
(28)

for y = (Φ(1), . . . ,Φ(N),Ψ(1), . . . ,Ψ(N))T .

CONCLUSION

We have developed equations of motion for proteins that, unlike earlier forms, rely only
on internal coordinates. This is not only satisfying from a mathematical point of view, but
also allows a formulation of molecular dynamics solely in internal coordinates. As the ®hard¯
degrees of freedom are integrated out in such a description, this allows larger time steps. The
resulting faster sampling is a necessary condition for even simulation of small proteins (of
order ≈ 50 residues).
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