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ON UNIFIED FIELD THEORIES,
DYNAMICAL TORSION AND GEOMETRICAL MODELS

D. J. Cirilo-Lombardo
Joint Institute for Nuclear Research, Dubna

A new model of a nondualistic uniˇed theory is proposed. This model is absolutely consistent
from the mathematical and geometrical points of view and is based on a manifold equipped with an
underlying hypercomplex structure and zero nonmetricity. Also we showed that interesting wormhole
solutions, similar to the non-Abelian BornÄInfeld theory of our previous work [14] can be obtained.
The solution of this model is explicitly compared with our previous one and we ˇnd that the torsion
plays in this uniˇed theory a role similar to that of YangÄMills type strength ˇeld coming from the
non-Abelian BornÄInfeld energy momentum tensor. The meaning of the HosoyaÄOgura ansatz (namely,
the alignment of the isospin with the frame geometry of the space-time) is completely elucidated.
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PACS: 04.50.Kd

1. MOTIVATION AND SUMMARY OF THE RESULTS

As is well known, spin-angular momentum and mass appear in very symmetric way
in nongravitational physics. Moreover, the labels of the irreducible representations of the
Poincare group [1] are precisely the mass and the spin. Then, in view of this fact, one is able
to note that the Einstein theory is incomplete because only energy-momentum and not spin-
angular momentum is given dynamical importance for the structure (geometrical properties)
of the space-time.

The Einstein theory is deduced assuming a priori the Riemannian structure of the space-
time, that is without torsion. Arguments have been given that the space-time should exhibit
both curvature and torsion in the presence of the matter [2Ä6].

The coupling of spin density to torsion of space-time is natural when the R4 geometry is
extended to U4, from a Riemannian to RiemannianÄCartan geometry [2Ä4, 6]. For instance,
the EinsteinÄCartan theory is the simplest generalization of Einstein's theory obtained in the
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U4 geometry. But, however, in the usual EinsteinÄCartan geometry [2Ä4, 6] the spin-geometry
coupling and the energy-geometry coupling still appear. The Christoffel connection depends
upon the metric and its derivatives, but the torsion terms are regarded as independent ˇelds.
Then, the direct consequence is that we have upon variation with respect to the metric and
the contorsion second-order differential equations for gμν and algebraic equations for Tμνρ.
This fact is unnatural and its meaning is obscure, indeed we can eliminate the torsion of the
ˇeld equations and obtain an Einstein theory with a modiˇed matter ˇeld Lagrangian. Thus,
the theories involved are dynamically equivalent [7].

At this stage one suspects that a deeper question is involved in the same root of the
problem: spin, energy-matter and space-time structure. The theories described above, besides
the obvious difference of the spin-torsion coupling, that is both Einstein and EinsteinÄCartan,
are dualistic theories: we must include the ˇelds (matter) by means of the addition of a
(nongeometric) Lagrangian to the gravitational (geometrical) one. Einstein himself pointed
out that this fact is ®undesirable¯ and only has the status of some bridge towards the ˇnal
uniˇed theory. It seems reasonable, for instance, to continue these efforts in order to obtain
the correct way to solve the important problem of the natural uniˇcation of the natural world
(matter, energy, spin).

In this report we present a new model of a nondualistic uniˇed theory. This model is
absolutely consistent from the mathematical and geometrical points of view and is based
on a manifold equipped with an underlying hypercomplex structure and zero nonmetricity,
that lead to the important fact that the torsion of the space-time structure turns to be totally
antisymmetric: this is the only important case that this type of afˇne geometrical frameworks
are compatible with the physical ®equivalence principle¯. Also we showed that interesting
wormhole solutions, similarly to the previous reference with the non-Abelian BornÄInfeld
theory, can be obtained in this theory. The solution of this model is explicitly compared
with our previous one and we ˇnd that the torsion plays in this uniˇed theory a role similar
to that of YangÄMills type strength ˇeld coming from the non-Abelian BornÄInfeld energy
momentum tensor of our previous reference. Another important result is that the meaning of
the HosoyaÄOgura ansatz (namely, the alignment of the isospin with the frame geometry of
the space-time) is completely elucidated.

2. THE SPACE-TIME MANIFOLD AND THE GEOMETRICAL ACTION

The starting point is an hypercomplex construction of the (metric compatible) space-time
manifold [8]. We list the main ingredients for this construction.

The metric is
gμν = gμν = gνμ ∈ R with ∇g = 0. (1)

Also, we assume that the potential torsion exists and arises in a natural form, considering
that the geometry is reductive (the ∇ for the covariant derivative with respect to the full
connection Γ). This potential torsion has the following properties:

fμν = fμν = −fνμ ∈ HC, ∇[ρfμν] = Tμνρ = εμνρσhσ, (2)

with the last equality coming from the full antisymmetry of the torsion ˇeld. Immediately we
can see, as a consequence of the above statements, the following:
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i) the torsion is the dual of an axial vector hσ;
ii) from i) follows the existence in the space-time of a completely antisymmetric tensor

covariantly constant εμνρσ (∇ε = 0) .
Notice that, as we will show in detail elsewhere [9], the choice for the real nature of the

metric and the pure hypercomplex potential tensor comes from the Hermitian nature of the
theory: if we assume (1), the condition (2) arises automatically.

The second important point is to consider the extended curvature [10]

Rab
μν = Rab

μν + Σab
μν (3)

with
Rab

μν = ∂μωab
ν − ∂νωab

μ + ωac
μ ωb

νc − ωac
ν ωb

μc, Σab
μν = −

(
ea

μeb
ν − ea

νeb
μ

)
.

We assume here ωab
ν is a SO (d − 1, 1) connection and ea

μ is a vierbein ˇeld. Equation (3)
can be obtained, for example, using the formulation that was ˇrst introduced in seminal works
by E. Cartan long time ago [10]. It is well known that in such a formalism the gravitational
ˇeld is represented as a connection one form associated with some group which contains the
Lorentz group as subgroup. The typical example is provided by the SO (d, 1) de Sitter gauge
theory of gravity. In this speciˇc case, the SO (d, 1) gravitational gauge ˇeld ωAB

μ = −ωBA
μ

is broken into the SO (d − 1, 1) connection ωab
μ and the ωda

μ = ea
μ vierbein ˇeld, with the

dimension d ˇxed. Then, the de Sitter (anti-de Sitter) curvature

Rab
μν = ∂μωAB

ν − ∂νωAB
μ + ωAC

μ ωB
νC − ωAC

ν ωB
μC (4)

splits into the curvature (3).
Now we deˇne the following geometrical object:

Ra
μ = λ

(
ea

μ + fa
μ

)
+ Ra

μ

(
Ma

μ ≡ eaνMνμ

)
. (5)

The action will contain, as usual, R = det
(
Ra

μ

)
as the geometrical object that deˇnes the

dynamics of the theory. The particularly convenient deˇnition of Ra
μ makes it easy to establish

the equivalent expression in the spirit of the uniˇed theories developed some time ago by
Eddington, Einstein and Born and Infeld, for example:√

detRa
μRaν =

√
det

[
λ2

(
gμν + fa

μfaν

)
+ 2λR(μν) + 2λfa

μR[aν] + Ra
μRaν

]
, (6)

where Rμν = R(μν) + R[μν].
The important point to consider in this simple Cartan inspired model is that, although

a cosmological constant λ is required, the expansion of the action in four dimensions leads
automatically to the HilbertÄEinstein part when fa

μ = 0. Explicitly (R = gαβRαβ)

S =
∫

d4x (e + f)
{

λ4 + λ3 (R + fa
μRμ

a)+

+
λ2

2!
[R2 − RμνRμν + (fa

μRμ
a)2 − fμνfρσRμρRνσ]+

+
λ

3!
[R3 − 3RRμνRμν + 2RμαRαβRβ

μ + (fa
μRμ

a )3−

− 3(fa
μRμ

a)fμνfρσRμρRνσ + 2fμνRα
μRαβRβ

ν ] + det (Rμν)
}

. (7)
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3. THE DYNAMICAL EQUATIONS

Deˇning
ηabRa

μRb
ν ≡ Gμν , (8)

the variation with respect to the metric gμν is straightforward:

δ
√

G

δgαβ
=

√
G

2
(
G−1

)μν [
λ2 (−gβνgαμ + fβνfαμ) + 2λfαμR[βν]

]
. (9)

In order to compute the variation with respect to f , it is useful to remind the structure of the
Riemann tensor [12]

Rμν =

R(μν)︷ ︸︸ ︷
◦
Rμν − T α

μρT
ρ
αν +

R[μν]︷ ︸︸ ︷
◦
∇αT α

μν , (10)

where
◦
Rμν and

◦
∇α are the Riemann tensor and the covariant derivative computed from the

Christoffel symbol { ρ
μν }. Then, using the last expression (10), we obtain for the f variation

δ
√

G

δfστ
= ∇ρ

(
∂
√

G

∂Tρστ

)
− ∂

√
G

∂fστ
≡ ∇ρT

ρστ − F
στ = 0. (11)

From the above expressions it is not difˇcult to see that the full set of equations involved in
our task are

Rμν = −2λ (gμν + fμν) , (12)

∇ρ

(
∂
√

G

∂Tρστ

)
− ∂

√
G

∂fστ
≡ ∇ρT

ρστ − F
στ = 0. (13)

4. THE DYNAMICAL EQUATIONS II:
PHYSICAL AND GEOMETRICAL INTERPRETATION

The above variational equations (in Palatini's sense [10, 12]) (12) and (13), despite their
simplest and compact form, contain the deep physical and geometrical meaning, which is
necessary to clarify.

For expression (13) we have a highly nonlinear dynamical (propagating) equation for the
torsion ˇeld, where the variation was performed with respect to their potential fμν and having
a nonlinear term proportional to fμν playing the role of current for the Tρστ . Then, the
potential two form is associated nonlinearly to the torsion ˇeld as its source regarding similar
association between the electromagnetic ˇeld and the spin in particle physics.

For expression (12), ˇrstly it is useful to split the equation into the symmetric and the
antisymmetric parts using (10):

R(μν) =
◦
Rμν − T α

μρT
ρ
αν = −2λgμν , (14)

R[μν] =
◦
∇αT α

μν = −2λfμν = ∇αT α
μν , (15)
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the last equality coming from Eq. (2). The symmetric part (14) can be written in a ®GR¯
suggestive fashion:

◦
Rμν = −2λgμν + T α

μρT
ρ
αν . (16)

We can advertise that the equation has the aspect of the Einstein equations with the cosmo-
logical term modiˇed by the torsion symmetric term T α

μρT
ρ
αν . This can be interpreted by the

energy of the gravitational ˇeld itself.
The second antisymmetric part (15) is more involved. In order to understand it, it will

be necessary to use the language of differential forms to rewrite them which, beside their
symbolic and conceptual simplicity, permit us to check consistency and covariance step by
step:

∇αT α
μν = −2λfμν , d ∗T = −2λ ∗f. (17)

Now, using (2) (T = ∗h)

dh = −2λ ∗f ⇒ ∗f = − 1
2λ

dh, (18)

in more familiar form
∇μhν −∇νhμ = −2λ ∗fμν , (19)

then, using (2), follows again: T = df = ∗h and Eq. (17)

d ∗f = 0 (20)

and fundamentally

df = − 1
2λ

d ∗dh = T = ∗h, (21)

d ∗dh = −2λ ∗h (22)

that we can recognize the LaplaceÄde Rham operator that helps us to write the wave covariant
equation

[(dδ + δd) + 2λ] ∗h = 0, (Δ + 2λ) ∗h = 0. (23)

If we start with the potential it is not difˇcult to see that an equivalent equation can be found:

(Δ + 2λ) ∗f = 0. (24)

Notice that Eq. (23) comes from (18) and is a consequence of the Tfh-relation (T = df = ∗h),
but (24) comes directly from (17). The geometric interplay between Tfh-relations is1

T∫
↙↗

d
↘

(−1)d+1
∗

∗
↖

f −1
∗
d

2λ
←−−−−−−−−−−−−−−−−→

−2λ

∫ ∗

h (25)

1In order to be consistent with the action of the Hodge operator (∗), in this section, we assume an even number
of dimensions.
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And ˇnally, the explicit computation of the determinant in (d = 4) of expression (8) that
will help us in comparing the unitarian model introduced here (in the sense of Eddington [13])
with the dualistic non-Abelian BornÄInfeld model of [14], takes the familiar form [14]

S =
b2

4π

∫ √
−g dx4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≡R︷ ︸︸ ︷√

γ4 − γ2

2
G

2 − γ

3
G

3
+

1
8

(
G

2
)2

− 1
4
G

4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (26)

Gμν ≡
[
λ2

(
gμν + fa

μfaν

)
+ 2λR(μν) + 2λfa

μR[aν] + Ra
μRaν

]
, (27)

Gν
ν ≡

[
λ2 (d + fμνfμν) + 2λ (RS + RA) +

(
R2

S + R2
A

)]
, (28)

where

RS ≡ gμνR(μν); RA ≡ fμνR[μν]; γ ≡ Gν
ν

d
; Gμν ≡ Gμν − gμν

4
Gν

ν ;

G
ν

ρG
ρ

ν ≡ G
2
, G

ν

λG
λ

ρG
ρ

ν ≡ G
3
(
G

ν

ρG
ρ

ν

)2

≡
(
G

2
)2

G
ν

μG
μ

λG
λ

ρG
ρ

ν ≡ G
4

(29)

and the relevant quantities involved into the dynamical equations (12) and (13) are

F
μν ≡ ∂LG

∂fμν
=

λ2Nμν
(
δσ
μfρ

ν + δσ
ν fρ

μ

)
2R

, (30)

T
εγδ ≡ ∂LG

∂Tεγδ
=

NμνM ε·γ·δ
·α·β

(
2λδα

μδβ
ν + Rα

ν δβ
μ + Rα

μδβ
ν

)
2R

, (31)

Nμν = g

[
−γ2Gμν − γ

(
G2

)μν
+

(
G2

)μ

μ
Gμν

2
−

−
(
G3

)μν
+

4γ3gμν

d
−

γ
(
G2

)μ

μ
gμν

d
−

(
G3

)μ

μ
gμν

3d

]
, (32)

M ε·γ·δ
·α·β =

(
δε
μT δ γ

ν + T δε
μ δγ

ν

)
. (33)

5. WORMHOLE-INSTANTON SOLUTION IN UFT THEORY

The action in four dimensions is given by

S = − 1
16πG

∫
d4x

√
det |Gμν |, (34)

R ≡
√

γ4 − γ2

2
G

2 − γ

3
G

3
+

1
8

(
G

2
)2

− 1
4
G

4
. (35)
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Scalar curvature R and the torsion two-form ˇeld T a
μν with a SU(2) Å YangÄMills structure

are deˇned in terms of the afˇne connection Γλ
μν and the SU(2) potential torsion fa

μ by

R = gμνRμν , Rμν = Rλ
μλν , Rλ

μλν = ∂νΓλ
μρ − ∂ρΓλ

μν + . . . ,

T a
μν = ∂μfa

ν − ∂νfa
μ + εa

bcf
b
μf c

ν .
(36)

G and Λ are the Newton gravitational constant and the cosmological constant, respectively.
Notice the important fact that from the last equation for the torsion two-form, the potential
fa

μ must be proportional to the antisymmetric part of the afˇne connection Γλ
μν as in the

StraussÄEinstein UFT. As in the case of EinsteinÄYangÄMills systems, for our new UFT
model it can be interpreted as a prototype of gauge theories interacting with gravity (e.g.,
QCD, GUTs, etc.). Upon varying the action (31), we obtain the Einstein equation

Rμν = −2λ (gμν + fμν) (37)

and the ˇeld equation for the torsion two-form in differential form

d∗Ta +
1
2
εabc (fb ∧∗

Tc −∗
Tb ∧ fc) = F

a, (38)

where we deˇne as usual

T
a
bc ≡ ∂LNBI

∂T bc
a

, F
a
bc ≡ ∂LNBI

∂Fa
.

We are going to seek for a classical solution of Eqs. (33) and (34) with the following spheri-
cally symmetric ansatz for the metric and gauge connection:

ds2 = dτ2 + a2 (τ)σi ⊗ σi ≡ dτ2 + ei ⊗ ei, (39)

here τ is the Euclidean time and the dreibein is deˇned by ei ≡ a2 (τ) σi. The gauge
connection is

fa ≡ fa
μ dxμ = hσa (40)

for a = 1, 2, 3 and for a = 0
f0 ≡ f0

μ dxμ = sσ0, (41)

this choice for the potential torsion is the most general and consistent from the physical and
mathematical points of view, as we will show soon. The σi one-form satisˇes the SU(2)
MaurerÄCartan structure equation

dσa + εa
bcσ

b ∧ σc = 0. (42)

Notice that in the ansatz the frame and isospin indices are identiˇed as for the case with the
NBI Lagrangian of [14]. The torsion two-form

T γ =
1
2
T γ

μν dxμ ∧ dxν (43)

becomes

T a = dfa +
1
2
εa

bcf
b ∧ f c =

(
−h +

1
2
h2

)
εa

bcσ
b ∧ σc. (44)
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Notice that f0 plays no role here because we take simply ds = 0 (the U (1) component of
SU(2), in principle, does not form part of the space spherical symmetry), and the expression
for the torsion is analogous to the non-Abelian two-form strength ˇeld of [14]. Also the
LeviÄCivitta tensor is deˇned in order to have the T pure hyperimaginary in agreement with
expression (2). Inserting T a from Eq. (44) into the dynamical equation (38), we obtain

d∗Ta +
1
2
εabc (fb ∧ ∗

Tc − ∗
Tb ∧ fc) = ∗

F
a,

(−2h + h2)(1 − h)dτ ∧ eb ∧ ec = −2λdτ ∧ eb ∧ ec,
(45)

where

∗
T

a≡λ
√

|g|√
3

hA(−2h + h2)dτ ∧ ea

a2
, (46)

∗
F

a = −2λ2
√
|g|√

3
hA

dτ ∧ eb ∧ ec

a3
, (47)

A ≡ λ4
[
(1 + α)2 + α/2

]
, (48)

and

α =
1
2
(
s2 + 3h2

)
, (49)

from expression (45) we have an algebraic cubic equation for h

(−2h + h2)(1 − h) + 2λ = 0. (50)

We can see that, in contrast with our previous work with a dualistic theory [14], for h
there exist three nontrivial solutions depending on the cosmological constant λ. But, at this
preliminary analysis of the problem, only the values of h that make the quantity

(
−h + 1/2h2

)
∈ R are relevant for our purposes: due to the pure imaginary character of T in the Euclidean
framework (see Appendix 1) and mainly to compare with the NABI wormhole solution of
our previous work (the question of the h ∈ C will be the focus of a further paper [9]). As
the value of h ∈ R is −1 and in four space-time dimensions λ = |1 − d| = 3,

T a
bc|h1 = 3

εa
bc

a2
; T a

0c = 0. (51)

Namely, only the magnetic ˇeld is nonvanishing, while the electric ˇeld vanishes. An
analogous feature can be seen in the solution of Giddings and Strominger [15] and in our
previous paper [14]. Substituting the expression for the torsion two-form (51) into the
symmetric part of the variational equation, namely,1

R(μν) =
◦
Rμν − T α

μρT
ρ
αν = −2λgμν (52)

1In the tetrad:
◦
R00 = −3

··
a

a
,
◦
Rab = −

⎡
⎣ ··

a

a
+ 2

( ·
a

a

)2

− 2

a2

⎤
⎦.
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(in the tetrad:
◦
R00 = −3

··
a/a,

◦
Rab = −1/a[

··
aa + 2

·
a
2
− 2]), we reduce Eq. (15) to an ordinary

differential equation for the scale factor a,[( .
a

a

)2

− 1
a2

]
=

2λ

3
− 9

2a4
, (53)

ln
[
1 + 4a2 + 2

√
−9 + 2a2 + 4a4

]
2
√

2
= τ − τ0, (54)

T α
μρT

ρ
αν =

(
−h + 1/2h2

)2

a4
2δμν =

9
2a4

δμν . (55)

There are two values for the scale factor a: max. and min., respectively, namely,

a = ∓e−
√

2(τ−τ0)
√

37 − 2 e2
√

2(τ−τ0) + e4
√

2(τ−τ0)

2
√

2
. (56)

Now we will need to see what happens with Eq. (17) in this particular case under consideration.
Well, Eq. (17) takes the following form:

d ∗T a +
1
2
εabc (fb ∧∗Tc − ∗Tb ∧ fc) = −2λ∗fa,

(−2h + h2)(1 − h)dτ ∧ eb ∧ ec = −2λdτ ∧ eb ∧ ec,
(57)

∗T a≡h(−2h + h2) dτ ∧ ea

a2
, (58)

∗fa = −h
dτ ∧ eb ∧ ec

a3
. (59)

Then we arrived at the same equation for λ as (50) corroborating the self-consistency of the
procedure.

6. DISCUSSION

In the previous section we showed that the nondualistic uniˇed model proposed here has,
from the point of view of the obtained solutions, deep differences with the dualistic non-
Abelian BornÄInfeld model of our early reference. The ˇrst obvious difference comes from a
conceptual framework: the geometrical action will provide, besides the space-time structure,
the matter-energy spin distribution. This fact is the same basis of the uniˇcation: all the
(apparently disconnected) theories and interactions of the natural world appear naturally as
a consequence of the intrinsic space-time geometry. The second point to have account here
is about the Hosoya and Ogura ansatz: Why does the identiˇcation of the isospin structure
of the YangÄMills ˇeld with the space frame lead to a physical situation similar to that in a
nondualistic uniˇed theory with torsion? The answer is: because at once such identiˇcation
is implemented, a potential torsion is introduced and the solution of the set of equations is
the consistency between the deˇnition of the torsion tensor from the potential and the Cartan
structure equations, namely,

df = T + fα ∧ T βηαβ , (60)
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Dωα ≡ dωα + ωα
β ∧ ωβ = T α, (61)

Rα
β = Dωα

β . (62)

Here, however, f ≡ 1
2
fαβωα ∧ ωβ , T ≡ Tαβγωα ∧ ωβ ∧ ωγ , T α ≡ 1

2
T α

γβωγ ∧ ωβ and

fα ≡ fa
μωμ. The set of equations (60), (61) is clearly self-consistent. The explanation from a

pure algebraic and geometrical framework about what happens with the underlying structure
of the manifold is given with details in Appendix 2.

The third point is about the obtained solutions for the scale factor a in the UFT and in
the NABI model already introduced in [14]. The difference with our previous work comes
precisely from the set of equations in both models that differ precisely in two points, namely,

i) the presence of the cosmological (dimension-dependent) constant λ that transforms the
simple equation for h in [14] to a cubic equation in the UFT case;

ii) the form of the function A that comes from the particular form of the determinantal
actions: from the geometrical fundamental Lagrangian here and the NABI energy momentum
tensor in [14].

Beside these differences, both solutions describe a classical wormhole instanton, but this
solution, Eq. (56), grows faster than the previous one of [14] due to its manifestly exponential
behaviour. This characteristic of the solution can be analyzed in the context of in
ationary
cosmological models, issue that will be a focus in a future work [9]. By the way, it is
interesting to note that N. Chernikov in [18] was able to ˇnd the link between the dynamical
ˇeld equations of the standard (Abelian) BornÄInfeld theory and the T α

βα covector torsion:

T β
αβ =

δμ
α − fρ

αfμ
ρ√

1 + S − G2

◦
∇γ

fγ
μ − Gf̃γ

μ√
1 + S − G2

. (63)

However, S and G are the scalar and pseudoscalar invariants of the antisymmetric part
(
f[μν]

)
of the fundamental nonsymmetric tensor Gμν = g(μν) + f[μν] of the EinsteinÄStrauss uniˇed
theory (®∼¯ means ®dual¯ in the common electromagnetic sense and the modern notation
in (63) is from [19]). Notice from (63) that when the covector torsion is zero, the set of
equations are precisely as in the EinsteinÄBornÄInfeld model. This fact occurs in the model
present here due to the full antisymmetry of the torsion tensor: T α

βα ≡ 0, but a cosmological
constant remains. Then, a slight discrepancy arises between the EinsteinÄStrauss theory with
an asymmetric fundamental tensor and the theory presented due to the (still) existence of
a cosmological term. This important issue must be discussed with greater care in the near
future [9].

The advantages of this nice model are clearly exposed in all this paper. The things to
improve are:

i) the dependence on the dimensions through the cosmological constant λ = |1 − d|;
ii) the lack of a manifest fermionic structure;
iii) tetrad ˇeld depending on the breaking of symmetry of the underlying topological

action, then the clear necessity of a reductive space-time structure from the geometrical point
of view.

Acknowledgements. This paper is in the memory of the soviet scientist N.A. Chernikov,
who was the ˇrst to remark the connection between the BornÄInfeld ˇeld equations and the
general form of the afˇne geometries.
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Appendix 1

ON HYPERCOMPLEX AND COMPLEX QUANTITIES

In abstract algebra, the split-complex numbers (or hyperbolic numbers) are a two-dimen-
sional commutative algebra over the real numbers different from the complex numbers. Every
split-complex number has the form

x + yj,

where x and y are real numbers. The number j is similar to the imaginary unit i, except that

j2 = 1.

As an algebra over the reals, the split-complex numbers are simply the same as the direct
sum algebra R ⊕ R (under the isomorphism sending x + yj to (x + y, x − y)). The name
split comes from this characterization: as a real algebra, the split-complex numbers ®split¯
into the direct sum R ⊕ R.

Geometrically, multiplication of split-complex numbers preserves the (square) Minkowski
norm (x2−y2) in the same way that multiplication of complex numbers preserves the (square)
Euclidean norm (x2 + y2). Unlike the complex numbers, the split-complex numbers contain
nontrivial idempotents (other than 0 and 1), as well as zero divisors, and therefore they do
not form a ˇeld.

The split-complex number is one of the concepts necessary to read a 2 × 2 real matrix.
Split-complex numbers (sometimes called hyperbolic hypercomplex numbers) are con-

structed from the bases with j2 = +1 a nonreal root of 1.
Algebras that include such nonreal roots of 1 contain idempotents and zero divisors

(1 + j)(1 − j) = 0, so such algebras cannot be division algebras. However, these properties
can turn out to be very meaningful, for instance, in describing the Lorentz transformations of
special relativity.

Appendix 2

HOLONOMIC AND ANHOLONOMIC ®COORDINATES¯

There is a confusion in the literature over the use of the word ®coordinates¯. As a result, in
the older literature in
uenced by J.A. Schouten [12], the terms ®holonomic coordinate system¯
and ®anholonomic system¯ are used. And for an anholonomic system an ®anholonomic
object¯ is employed. In the newer literature, exempliˇed by Bernard Schutz [16], the terms
®coordinate system¯ and ®noncoordinate system¯ are used. In this case the ®anholonomic
object¯ is replaced by the Lie algebra structure constant tensor. The key is to understand
the relationships between manifolds and the vector ˇelds which live on them. Also we must
understand the difference between a commutative Lie group and a noncommutative Lie group
and the effect which this difference makes on the vector ˇelds on the respective Lie group
manifolds. A coordinate system (= holonomic coordinate system) is characterized by the
partial derivative nature of the vector ˇelds associated with the coordinates. In symbols we
can write that for coordinates, x1, x2, . . . , we have the vector ˇeld basis:

∂

∂x1
,

∂

∂x2
.
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Because a partial derivative is with respect to one variable and leaves all others ˇxed, the
partial derivative operators are commutative. That is[

∂

∂x1
,

∂

∂x2

]
≡ ∂

∂x1

∂

∂x2
− ∂

∂x1

∂

∂x2
= 0

(the same is true for any xi, xj of course).
On any manifold, however, our starting point could be to consider the set of vector ˇelds

which live on the manifold. These vector ˇelds are characterized by the 
ow lines (or integral
curves) on the manifold. These 
ow lines can be used to describe coordinate systems on the
manifold. In this case we will describe the vector ˇelds in terms of the parameters along the

ow lines. If we write these parameters with Greek letters μ, λ, etc. (to distinguish them
from coordinates xi), then we can write these vector ˇelds as

V =
d

dμ
, W =

d

dλ
.

Notice that these are total differential operators. These operators are appropriate in case the
operators do not commute. In this case the parameters are not a parameterization appropriate
to a coordinate system (or are ®anholonomic coordinates¯ in the terminology of Schouten).
As long as the vector ˇelds V and W are independent, we can use them as a basis for a grid
of parameters μ and λ. And, assuming V and W do not commute, this grid will not be a
coordinate system (i.e., is ®anholonomic¯). Thus, it is clear that the ®anholonomic object¯
must be equivalent to the Lie bracket structure constants for a Lie algebra. For a Lie algebra
this is a tensor. How then is it possible for the ®anholonomic object¯ of a geometry to
be coordinatized away? To understand this we need a simple example. Take the ordinary
Euclidean plane R2, with coordinates x and y. We can deˇne the X and Y vector ˇelds as

X =
∂

∂x
, Y =

∂

∂y
.

This simply means that we ˇll up the x direction in the plane with a congruence of
parallel 
ow lines for the vector ˇeld X , and similarly for the y direction. This is a perfectly
commutative basis for R2. However, we can also deˇne polar ®coordinates¯ (more correctly
parameters) r and θ on R2. In this case we can deˇne the vector ˇelds:

r̂ = cos θX + sin θ Y, θ̂ = − sin θX + cos θ Y

and the commutator of these vector ˇelds is[
r̂, θ̂

]
= − θ̂

r
.

Thus, r̂ and θ̂ are a noncoordinate basis (cf. [16, p. 44]). It is clear, however, that we
can revert to a coordinate basis with X and Y as basis vector ˇelds. So in this case the
commutator ®anholonomic¯ object can be coordinatized away by changing to the x, y axes
as coordinates. This is possible because the underlying manifold R2 is a commutative Lie
group. Other examples of commutative Lie group manifolds are the n-dimensional vector
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spaces Rn, Cn of real or complex numbers and the n-dimensional torus T n (i.e., a direct
product of n circles S1).

By now it should be clear that if the underlying manifold is a noncommutative Lie group,
then the (noncommutative) Lie algebra of left-invariant vector ˇelds on the Lie group manifold
will provide a vector ˇeld basis (equivalent in dimensionality to that of the Lie group) which
is a noncoordinate basis (i.e., ®anholonomic¯). And in this case the commutator of these
vector ˇelds is nonzero and thus the Lie algebra structure constant tensor is nonzero. This
tensor plays the role of the ®anholonomic object¯ and there is no way to coordinatize away
this tensor. Moreover, the connection provided by the left-invariant vector ˇelds provides
an absolute parallelism structure on the Lie group manifold. (Note: absolute parallelism
provides parallel transport of tangent vectors independent of the path throughout the Lie
group manifold.)

This connection is commonly called the Cartan connection because of his attempt to
describe electromagnetism by way of the torsion tensor T associated with this asymmetric
connection:

Γα
βγ − Γα

γβ = T α
βγ .

This torsion tensor is equivalent to the Lie algebra structure constant tensor [11]:

[Xi, Xj ] = T k
ijZk

(where T is usually written as C: the structure constant or function, in the general case).
In summary, three cases must clearly be distinguished:
i) The underlying manifold is a commutative Lie group (for example, Rn, Cn, T n). In

this case, the Lie algebra (of left-invariant vector ˇelds) is commutative and thus provides a
coordinate basis (®holonomic coordinates¯). However, it is possible to set up a noncoordinate
basis for vector ˇelds, in which the basis ˇelds do not commute. This sets up an artiˇcial
nonzero commutator, which plays the role of an ®anholonomic object¯. But, clearly, it can
be coordinatized away by reverting to the commutative Lie algebra basis structure of left-
invariant vector ˇelds. (Note that on any manifold there is an inˇnite dimensional basis of
vector ˇelds. However, on a Lie group manifold, the action of the Lie group on itself and its
vector ˇelds provides for a ˇnite set of left-invariant basis ˇelds, where the dimensionality of
this basis is that of the Lie group itself. This is the canonical basis for the Lie algebra of the
Lie group).

ii) The underlying manifold is a noncommutative Lie group (for example, SU(n), SO(n),
E6, E7, E8). In this case, the Lie algebra (of left-invariant vector ˇelds) is noncommutative,
and thus provides a noncoordinate basis (®anholonomic coordinates¯). The Lie algebra
structure constant tensor Ck

ij plays many roles: ®anholonomic object¯; torsion tensor (relative
to the Cartan connection); and (for particle physics) gauge group eigenvalues.

iii) The underlying manifold is not a Lie group. (For example, spheres Sn of any
dimension n, except 1 and 3, since S1 = U(1), and S3 = SU(2) are Lie groups.) This case
may be of interest to certain applications of mechanics. However, it should be noted that
according to the classiˇcation work of [17], only Lie group manifolds are capable of carrying
an absolute parallelism connection. The one exception to this rule is the 7-sphere S7, which
gets its parallelization from the fact that it is the set of unit length vectors in the 8-d Cayley
algebra (the octonions).
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Thus, if one is attempting to model electromagnetism via torsion in an absolute parallelism
geometry, one should consider only the noncommutative Lie group case. (The commutative
Lie groups carry no (Cartan-type) torsion, of course.)
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