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MEANING OF SOME PARTICULAR RIEMANNIAN
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The geometrical meaning of a particularly simple metric in the superspace is elucidated and the
possible connection with mechanisms of topological origin in high energy physics, i.e., the localization
of the ˇelds in a particular sector of supermanifold, is analyzed and discussed. The description and
the analysis of some interesting aspects of the simplest Riemannian superspaces are presented from the
point of view of the possible vacuum solutions.
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1. INTRODUCTION AND MOTIVATION

Several attempts have been made by various groups to construct the theory of super-
gravity as the geometry of a superspace possessing nonzero curvature and torsion tensors
without undesirable higher spin states [1, 2]. Only few years after those works, the consistent
construction of the superˇeld supergravity was formulated in the pioneering papers indepen-
dently by V. I. Ogievetsky and E. Sokatchev [3] and S. J. Gates and W. Siegel [4]. From these
times in several areas of theoretical physics the description of different systems was given
in the context of geometry of supermanifolds and superˇelds [5]: supergravity and d-branes
models with warped supersymmetry [6], super-Landau systems [7], superbrane actions from
nonlinearly realized supersymmetries [8], etc.

It is therefore of interest to study the geometry not only of the simplest superspaces, but
also the more unusual or nonstandard ones and elucidate all the gauge degrees of freedom
that they possess. This fact will clarify and expand the possibilities to construct more realistic
physical models and new mathematically consistent theories of supergravity. On the other
hand, the appearance of supergroups must draw attention to the study of the geometries of
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the homogeneous superspaces whose groups of motions they are. Another motivation of the
study of these Riemannian superspaces is in order to establish some degree of uniqueness in
the obtained supersymmetric solutions.

Motivated by the above-said, this work is devoted to study and analyze the simplest
nontrivial supermetric given by Volkov and Pashnev in [9] from the point of view of the
possible vacuum solutions:

ds2 = ωμωμ + aωαωα − a∗ω
.
αω .

α.

This particular extended supermetric contains the complex parameters a and a∗ that make it
different of other more standard supermetrics. Then, our main task is to ˇnd the meaning
and the role played by these complex parameters from the geometrical and physical point
of view. To this end, we compare the solution of [10] that was computed in the extended
four-dimensional superspace proposed in [9, 11], compactiˇed to one dimension and restricted
to the pure time-dependent case with:

i) the well-known solution described in references [12, 13] that was formulated in a
superspace (1 | 2);

ii) a multidimensional warped model described in [14], in this case with dependence on
the four-dimensional coordinates.

Our goal is to show that, from the point of view of the obtained solutions, the complex
parameters a localize the ˇelds in a speciˇc region of the bosonic part of this extended
superspace, they explicitly breakdown the chiral symmetry when some conditions are required
and all these very important properties remain although the supersymmetry of the model was
completely broken. Also, besides all these highligts, we also show that the obtained vacuum
states from the extended supermetric are very well deˇned in any Hilbert space.

The paper is organized as follows: in Sec. 2 we give a brief review, based on a previous
work of the author [10], about the N = 1 extended four-dimensional superspace proposed by
Volkov and Pashnev and its solution. Section 3 is devoted to analyze the relation of the super-
metric under consideration with the superspace (1 | 2) given explicitly under which conditions
one is reduced to the other one from the point of view of the obtained vacuum solutions. In
Sec. 4 a surprising connection between the extended supermetric and multidimensional warped
gravity model solutions is shown and some hints of a possible new mechanism of the ˇeld
localization are proposed, and ˇnally in Sec. 5 the main results and concluding remarks are
given.

2. THE EXTENDED FOUR-DIMENSIONAL N = 1 SUPERSPACE

The superspace (1, 3 | 1) has four bosonic coordinates xμ and one Majorana bispinor:(
t, xi, θα, θ

.
α
)
.

Two possible realizations for this superspace are →
{

osp (2, 2) → Bosonic−Fermionic
osp (1/2, R) → Bosonic

with the following group structure for the bosonicÄfermionic realization:(
SU(1, 1) Q

Q SU(1, 1)

)
.



Geometrical Properties and the Physical Meaning of Some Particular Riemannian Superspaces 833

We will concentrate our analysis on the superspace (1, 3 | 1) with extended line element as
in [9, 11]

ds2 = ωμωμ + aωαωα − a∗ω
.
αω .

α (1)

invariant to the following supersymmetric transformations:

x′
μ = xμ + i

(
θα(σ)

α
.

β
ξ

.

β − ξα(σ)
α

.

β
θ

.

β
)

; θ′α = θα + ξα; θ′
.
α

= θ
.
α

+ ξ
.
α
,

where the Cartan forms of the group of the supersymmetry are

ωμ = dxμ − i
(
dθ σμθ − θ σμdθ

)
; ωα = dθα; ω

.
α = dθ

.
α
.

The spinorial indices are related as follows (the dotted indices are similarly related, as usual):

θα = εαβθβ ; θα = θβεβα; εαβ = −εβα; εαβ = −εβα; ε12 = ε12 = 1.

The complex constants a and a∗ in the extended line element are arbitrary. This arbitrarity
for the choice of a and a∗ is constrained by the invariance and reality of the interval (1).
The solution for the metric in the time-dependent case with 3 spatial dimensions compactiˇed
(i.e., R1 ⊗ S3, [15]) takes the form [10]

gab (t) = eA(t)+ξ�(t)gab (0) (2)

with the following superˇeld solution:

� (t) = φα + χ .
α

(i.e., chiral plus antichiral parts). The system of equations for A(t) and �(t) that we are
looking for was given in [10], and is the following:

|a|2 Ä + m2 = 0, χ̈ .
α − i

ω

2
(
σ0

)α

α̇
φα = 0, −

..

φα + i
ω

2
(
σ0

) .

β

α
χ .

β
= 0. (3)

The above system can be solved exactly with the following result:

A = −
(

m

|a|

)2

t2 + c1t + c2; c1, c2 ∈ C (4)

and

φα =
◦
φα

(
α eiωt/2 + β e−iωt/2

)
+

2i

ω

(
σ0

) .

β

α
Z .

β
, (5)

χ .
α =

(
σ0

)α
.
α

◦
φα

(
α eiωt/2 − β e−iωt/2

)
+

2i

ω

(
σ0

)α
.
α

Zα, (6)

where
◦
φα, Zα and Z .

β
are constant spinors and the frequency goes as: ω2 ∼ 4/|a|2. The

superˇeld solution for the ˇelds (see the ®square states¯ of [10, 11]) that we are looking for,
has the following form:

gab (t) = exp

[
−

(
m

|a|

)2

t2 + c1t + c2

]
eξ�(t)gab (0) (7)
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with

� (t) =
◦
φα

[(
α eiωt/2 + β e−iωt/2

)
−

(
σ0

)α
.
α

(
α eiωt/2 − β e−iωt/2

)]
+

+
2i

ω

[(
σ0

) .

β

α
Z .

β
+

(
σ0

)α
.
α

Zα

]
(8)

and
gab (0) = 〈Ψ (0)|Lab |Ψ (0)〉 (9)

that is nothing else than the ®square¯ of the state Ψ1 (Lab =
(

a
a+

)
ab

with a and a+ being

the standard creation and annihilation operators). The meaning of expression (9) was given
by the authors in [10] and can be resumed as:

i) it is the ®square¯ of the state Ψ and it is the fundamental solution of the square root of
the interval (1), precisely describing a trajectory in the superspace [9Ä11];

ii) for these states Ψ the zero component of the current is not positively deˇnite given
explicitly by

j0(x) = 2EΨ†Ψ

but for the states gab

j0(x) = 2E2gabgab

then, j0(x) for the states gab is positively deˇnite (the energy E appears squared);
iii) from ii), such states Ψ are related to ordinary physical observables only through their

®square¯ gab in the sense of expressions as (9), and this fact is very important in order to
explain the reason why these fractional spin states are not easy to see or to detect in the nature
under ordinary conditions (for all the details we recommend the reader to see paper [10] and
references therein);

iv) and fundamentally we will take under consideration here only the particular case
of spin 2 because for this state the Hilbert space is dense and these states lead a thermal
spectrum [10, 16] (gab in expression (9) has s = 2: each state Ψ contributes to a spin weight
equal to one). Other interesting possibilities given by this type of coherent states solutions and
their physical meaning, that can give some theoretical evidence of more degrees of freedom
for the graviton in the sense of [29], will be analyzed in detail in a separate paper [16].

The gab at time t is given by the following expression [10, Appendix]:

gab (t) = exp

[
−

(
m

|a|

)2

t2 + c′1t + c′2

]
eξ�(t) |f(ξ)|2

(
α
α∗

)
ab

, (10)

where α and α∗ are the respective eigenvalues of the creation-annihilation operators a and
a+. And the dynamics for Ψ becomes now to

Ψλ (t) = exp

{
−1

2

[(
m

|a|

)2

t2 + c′1t + c′2

]}
exp

[
ξ�(t)

2

]
|f(ξ)|

(
α1/2

α∗1/2

)
λ

. (11)

1This particular realization was initially introduced in [28] between the fundamental states |Ψ〉 in the initial time,
where the subalgebra is the HeisenbergÄWeyl algebra (with generators a, a+ and (n + 1/2)).
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3. RELATION WITH THE (1 | 2) SUPERSPACE

We pass now to the description of the superspaces under consideration from the uniqueness
of the possible solutions for the metric components, the supergroup structures deˇned by the
possible group of motions and the possible physical interpretation of these results. The
superspace (1, 2) has one bosonic coordinate t and two Majorana spinors: xμ ≡

(
t, θ1, θ2

)
(we use similar notation as in [12, 13]). The big group in which this superspace is contained
is OSP (3, 2), schematically as (

O (3) Q
Q SP (2)

)
.

The solution for the metric in this case is given by [12, 13]

gab = gab e2σ(t,θ), (12)

where the following superˇeld was introduced:

σ (t, θ) = A (t) + θβBβ + θαθαF (t) .

From the Einstein equations for the (1 | 2) superspace we obtain the following set:⎧⎪⎨
⎪⎩

.

Bα + bβ
αBβ −

.

ABα = 0,

..

A − 1
2

.

A2 +
1
2
BγBγ =

λ

4
(
e2A − 1

)
,

(13)

where bαβ = bβα is an arbitrary symmetric matrix. Making a suitable transformation in the
ˇrst of above equations the explicit form of the Bγ ˇeld that we are looking for is

BγBγ = νανα e2A. (14)

να is a constant spinor and
√

b was associated in [13] with the mass. Inserting (14) in the
second equation of system (13) leads to the following new equation:

..

A′ − 1
2

.

A′2 =
λ

4

(
e2A′ − 1

)
, (15)

where the transformation A′ = A− νανα

λ
was used. Notice that in [13] the derivation of the

solution of Eq. (15) was not explicitly explained, but however it is easy to see that it can be
reduced to the following expression:

( .

W
)2

=
λ

4

(
W 2 +

1
2W 2

)
+ C (16)

with W = exp
(
−A′

2

)
and C is an arbitrary constant. When C = 0, Eq. (16) is the equation

of motion for a supersymmetric oscillator in the potential of the form k

(
X2 +

1
X2

)
, for
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which the group O (3) is a dynamic symmetry group. Notice that from the point of view
of a potential it is possible to redeˇne it in order that C disappears, but the conservation of
C is crucial for the determination of the families of solutions of the problem. This type of
equations of motion for an oscillator with conformal symmetry was considered earlier in the
non-supersymmetric case in [17]. The solutions for the possible values of constant C are

C = 0 → e−A =
√

2
2

sinh
(√

λt + ϕ0

)
, ϕ0 =

√
λt0,

8C2

λ2
< 1 → e−A =

√
2

2

[
sinh

(√
λt + ϕ0

) √
1 − κ2 − κ

]
, κ =

2
√

2C
λ

,

(17)

8C2

λ2
= 1 → e−A =

√
2

2

[
e(

√
λt+ϕ0)
√

2
− κ

]
,

σ (t, θ) = A (t) + θαBα.

Notice that λ takes the place of the cosmological constant and is related to b by
b = −λ/2. The superˇeld solution (17) N = 2 (chiral or antichiral two-components spinors)
has conformal symmetry in the case C = 0 and is not unique: as was pointed out in [12, 13, 18]
there exists a larger class of vacuum solutions. The dynamics of the solution is very simple
as is easy to see from Eqs. (17), that is not the case in the superspace (1, 3 | 1) as we showed
in the previous Section.

With the description of both superspaces above, we pass now to compare them in order
to establish if a one-to-one mapping exists between these superspaces. By simple inspection
we can see that the fermionic part of the superspace solutions (2) and (17) is mapped one to
one, explicitly (for the (1 | 2) superspace indexes 1 and 2 for α and β are understood):

να = −2β
◦
φα, 2

√
b = ω, θ1 ↔ θ

.
α
, θ2 ↔ θα,

(
σ0

)α
.
α
↔ b2

1

if the following conditions over the four-dimensional solution hold

α = β, Zα = Z .

β
= 0.

For the bosonic part of the superˇeld solutions (17) and (4) no direct relation exists
between them. Only taking the limit of the constants |a| → ∞ of the extended superspace
(1, 3 | 1) (i.e., going to the standard (1, 3 | 1) superspace) the Gaussian solution (7) goes to
the same type as described in (17) for the (1 | 2) superspace, with c1 ≈

√
λ and c2 ≈ ϕ0.

And this fact is nontrivial because the chirality is explicitly restored in this limit as we can
easily see from Eqs. (3) when |a| → ∞, ω2 → 0. It is clear that the solution coming from
four-dimensional extended superspace is a physical one because it represents a semiclassical
(Gaussian) state of the Husimi's type [10, 19]. The important role played by constants a and
a∗ in the extended line element (1) is to localize the physical state in a precise region of the
spaceÄtime, as is easily seen from expression (7). This fact can give some hints in order
to explain and to treat from the mathematical point of view the mechanism of conˇnement,
spontaneous compactiˇcation and other problems in high energy particle physics that can have
a topological origin [16].
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4. RELATION WITH ®WARPED¯ GRAVITY MODELS

It is well known that large extra dimensions offer an opportunity for a new solution to the
hierarchy problem [20]. Field theoretical localization mechanisms for scalar and fermions [21]
as well as for gauge bosons [22] were found. The crucial ingredient of this scenario is a
brane on which standard model particles are localized. In string theory, ˇelds can naturally
be localized on D-branes due to the open strings ending on them [23]. Up until recently,
extra dimensions had to be compactiˇed, since the localization mechanism for gravity was not
known. It was suggested in [24] that gravitational interactions between particles on a brane
in uncompactiˇed ˇve-dimensional space could have the correct four-dimensional Newtonian
behaviour, provided that the bulk cosmological constant and the brane tension are related.
Recently, it was found by Randall and Sundrum that gravitons can be localized on a brane
which separates two patches of AdS5 spaceÄtime [25]. The necessary requirement for the
four-dimensional brane Universe to be static is that the tension of the brane is ˇne-tuned to the
bulk cosmological constant [24, 25]. On the other hand, recent papers present an interesting
model in which the extra dimensions are used only as a mathematical tool taking advantage
of the AdS/CFT correspondence that claims that the 5D warped dimension is related to a
strongly coupled 4D theory [26].

A remarkable property of the solution given by expression (7) is that the physical state
gab (x) is localized in a particular position of the spaceÄtime. The supermetric coefˇcients a
and a∗ play the important role of localization of the ˇelds in the bosonic part of the superspace
in similar and suggestive form as the well-known ®warp factors¯ in multidimensional grav-
ity [14] for a positive (or negative) tension brane. But the essential difference is that, because
of the C-constants a and a∗ coming from the BL,0(even) fermionic part of the superspace
under consideration, not additional and/or topological structures that break the symmetries of
the model (i.e., re	ection Z2-symmetry) are required: the natural structure of the superspace
produces this effect.

Also it is interesting to remark here that the Gaussian-type solution (7) is a very well
deˇned physical state in a Hilbert space [10, 19] from the mathematical point of view, contrary
to the case u (y) = c e−H|y| given in [14] that, although it was possible to ˇnd a manner
to include it in any Hilbert space, it is strongly needed to take special mathematical and
physical particular assumptions whose meaning is obscure. The comparison with the case of
ˇve-dimensional gravity plus cosmological constant [14] is given in the table1.

Notice the following important observations:
i) that for the solution in the ˇve-dimensional gravity plus Λ case, the explicit presence

of the cosmological term is necessary for the consistency of the model: the ®ˇne-tuning¯

H ≡
√
−2Λ

3
=

|T |
M3

, where T is the tension of the brane and M3 is the constant of the

EinsteinÄHilbert +Λ action;
ii) about the localization of the ˇelds given by the particular superspace treated here, the

Z2 symmetry is noncompatible with the solution that clearly is not chiral or antichiral. This
fact is consistent with the analysis given for a similar superspace as considered in [10, 27],

1The extended superspace solution in the case contains all the four-dimensional coordinates: x ≡ (t, x), c′1x ≡
c′1μxμ and c′2 scalar.
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Spacetime (5 − D) gravity + Λ Superspace (1, 3 | 1)

Interval ds2 = A (y) dx2
3+1 − dy ds2 = ωμωμ + aωαωα − a∗ω

.
αω .

α

Equation
[
− ∂2

y − m2 eH|y|+

[
|a|2
(
∂2
0 − ∂2

i

)
+

1

4
(∂η − ∂ξ + i ∂μ (σμ) ξ)2 −

+H2 − 2Hδ(y)
]
u(y) = 0 −1

4
(∂η + ∂ξ + i ∂μ (σμ) ξ)2 + m2

]ab

cd

gab = 0

Solution u(y) = c e−H|y|, gab(x) = exp

[
−
(

m

|a|

)2

x2 + c′1x + c′2

]
×

H ≡
√

−2Λ

3
=

|T |
M3

×eξ�(x) |f(ξ)|2
(

α
α∗

)
ab

where the consistent solutions are superprojected in a sector of the physical states that are not
chiral or antichiral;

iii) the ˇeld equation in ˇnal form for the ˇve-dimensional gravity depends on the extra
dimension, that in the model proposed here it depends on all superspace coordinates but the
ˇeld solution is attached in the 3 + 1 spaceÄtime.

From the points discussed above and the ®state of the art¯ of the problem, we see
the importance of proposing new mechanisms and alternative models that can help us to
understand and to handle the problem. Then, it is not difˇcult to think to promove the
extended supermetric under study to build a strongly coupled 4D model, using this particular
N = 1 toy superspace. We will treat this issue in a further work [16].

5. CONCLUDING REMARKS

In the present paper from the point of view of the symmetries and the obtained vacuum
solutions we have analyzed the superspace N = 1 extended metric proposed by Volkov and
Pashnev in [9]. This particular model, in spite of its high simplicity, presents a much richer
structure than the other degenerate standard superspaces because it contains the complex
parameters a and a∗ that make it different. The role played by the complex parameters a and
a∗ can be resumed as follows:

i) the C-parameters a and a∗ ˇx the ˇeld in a speciˇc sector of the even part (BL,0) of
the supermanifold;

ii) these parameters, that are responsible for the nontrivial part of the model, break the
chiral symmetry of the ˇeld solution. The chiral symmetry is restored when the metric in
question degenerates in the limit |a| → ∞ (with all other parameters of the model ˇxed);

iii) the ˇelds remain attached in a speciˇc region of the spaceÄtime when the supersym-
metry of the model is completely broken even if all fermions are switched off.

iv) we have analyzed and compared from the point of view of the obtained solutions
the superspace (1 | 2) with the particular superspace (1, 3 | 1) proposed by Volkov and Pash-
nev [9, 11], compactiˇed to one dimension and restricted to the pure time-dependent case. The
possibility that the nondegenerate superspace (1, 3 |1) with extended line element is reduced
to the superspace (1 | 2) is subject to the condition |a| → ∞. The fermionic part of both
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superspaces is mapped one to one by means of a suitable deˇnition of the fermionic variables
and coefˇcients.

In comparison with the ˇve-dimensional gravity plus cosmological constant of [14], the
simple supersymmetric model under analysis here has the following advantages:

v) the mechanism of localization of the ˇelds in the bosonic four-dimensional part of the
supermanifold does not depend on the cosmological constant;

vi) the ˇelds attached are Gaussian-type solutions (7), very well deˇned physical state in
a Hilbert space from the mathematical point of view, contrary to the case u(y) = c e−H|y|

given in [16];
vii) not additional and/or topological structures that break the symmetries of the model

(i.e., re	ection Z2-symmetry) are required to attach the ˇelds: the natural structure of the
superspace produces this effect through the C-parameters a and a∗.
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APPENDIX

The dynamics of the |Ψ〉 ˇelds, in the representation that we are interested in, can be
simpliˇed considering these ˇelds as coherent states in the sense that they are eigenstates
of a2 [19]

∣∣Ψ1/4 (0, ξ, q)
〉

=
+∞∑
k=0

f2k (0, ξ) |2k〉 =
+∞∑
k=0

f2k (0, ξ)

(
a†)2k√
(2k)!

|0〉 ,

(A1)∣∣Ψ3/4 (0, ξ, q)
〉

=
+∞∑
k=0

f2k+1 (0, ξ) |2k + 1〉 =
+∞∑
k=0

f2k+1 (0, ξ)

(
a†)2k+1√
(2k + 1)!

|0〉 .

From a technical point of view these states are one-mode squeezed states constructed by the
action of the generators of the SU(1, 1) group over the vacuum. For simplicity, we will
take all normalization and fermionic dependence or possible CS fermionic realization into the
functions f (ξ). Explicitly at t = 0∣∣Ψ1/4 (0, ξ, q)

〉
= f (ξ) |α+〉 ,∣∣Ψ3/4 (0, ξ, q)

〉
= f (ξ) |α−〉 ,

(A2)

where |α±〉 are the CS basic states in the subspaces λ = 1/4 and λ = 3/4 of the full Hilbert
space. In the case of the physical state that we are interested in, we used the HW realization
for the states Ψ

|Ψ〉 =
f (ξ)

2
(|α+〉 + |α−〉) = f (ξ) |α〉 , (A3)



840 Cirilo-Lombardo D. J.

where, however, the linear combination of the states |α+〉 and |α−〉 spans now the full Hilbert
space (dense) corresponding λ to the CS basis. The ®square¯ states at t = 0 are

gab (0) = 〈Ψ (0)|Lab |Ψ (0)〉 = 〈Ψ (0)|
(

a
a+

)
ab

|Ψ (0)〉 = f∗ (ξ) f (ξ)
(

α
α∗

)
ab

. (A4)

The algebra (topological information of the group manifold) is ®mapped¯ over the spinors
solutions through the eigenvalues α and α∗. Notice that the constants c′1 and c′2 in the
exponential functions in expressions (10) and (11) can be easily determined as functions of
frequency ω as in [19] for the Schréodinger equation.
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