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In the presence of the space charge (s. c.) forces the synchrotron oscillations result in periodical
modulation of the s. c. tune shift, periodical crossing of betatron resonances and particle trapping in
resonance islands. The trapping effect for one-dimensional resonance is considered using classical
perturbation theory and ®frozen core¯ approach to calculation of the s. c. forces. The beam losses and
the emittance growth are analyzed for the arbitrary order resonance; the numerical results are given for
the third-order resonance.

—¨¸²¥´´μ¥ ³μ¤¥²¨·μ¢ ´¨¥ ¶μ¶¥·¥Î´ÒÌ ·¥§μ´ ´¸´ÒÌ ÔËË¥±Éμ¢ ¢ ¶·¨¸ÊÉ¸É¢¨¨ ¶·μ¸É· ´¸É¢¥´-
´μ£μ § ·Ö¤  [1] ¶μ± § ²μ, ÎÉμ ¡² £μ¤ ·Ö ÔÉ¨³ ÔËË¥±É ³ Î ¸É¨ÍÒ ³μ£ÊÉ § Ì¢ ÉÒ¢ ÉÓ¸Ö ¢ ¸É ¡¨²Ó´Ò¥
·¥§μ´ ´¸´Ò¥ μ¸É·μ¢ . ŒÒ  ´ ²¨§¨·Ê¥³ ¢²¨Ö´¨¥ ¸¨² ¶·μ¸É· ´¸É¢¥´´μ£μ § ·Ö¤  ´  ¶¥·¥¸¥Î¥´¨¥ μ¤-
´μ³¥·´μ£μ ·¥§μ´ ´¸ , ¨¸¶μ²Ó§ÊÖ ±² ¸¸¨Î¥¸±ÊÕ É¥μ·¨Õ ¢μ§³ÊÐ¥´¨° ¨ ³¥Éμ¤ ®§ ³μ·μ¦¥´´μ£μ Ö¤· ¯
¤²Ö · ¸Î¥É  ±Ê²μ´μ¢¸±¨Ì ¸¨². ‚Ò¢¥¤¥´  ¶·μ¸É Ö Ëμ·³Ê² , μ¶·¥¤¥²ÖÕÐ Ö § ¢¨¸¨³μ¸ÉÓ ´¥²¨´¥°-
´μ£μ ±Ê²μ´μ¢¸±μ£μ ¸¤¢¨£  ¡¥É É·μ´´ÒÌ Î ¸ÉμÉ μÉ  ³¶²¨ÉÊ¤Ò ¶μ¶¥·¥Î´ÒÌ ±μ²¥¡ ´¨° ¤²Ö ³Ö£±μ°
Ëμ±Ê¸¨·μ¢±¨ ¨ ±·Ê£²μ£μ ¶ÊÎ± . �´ ²¨§ ¸É ¡¨²Ó´ÒÌ ¸¥¶ · É·¨¸ ¶μ¶¥·¥Î´ÒÌ ±μ²¥¡ ´¨° ¢ ¶·¨¸ÊÉ-
¸É¢¨¨ ±Ê²μ´μ¢¸±μ£μ ¸¤¢¨£  ¡¥É É·μ´´ÒÌ Î ¸ÉμÉ ¶μ± § ², ÎÉμ μ±ÉÊ¶μ²Ó´ Ö ´¥²¨´¥°´μ¸ÉÓ ³ £´¨É´μ£μ
¶μ²Ö ¶·¨ ¶· ¢¨²Ó´μ³ ¢Ò¡μ·¥ §´ ±  Ê³¥´ÓÏ ¥É  ³¶²¨ÉÊ¤Ò ±μ²¥¡ ´¨° § Ì¢ Î¥´´ÒÌ Î ¸É¨Í. � °¤¥´
¶·μ¸Éμ°  ²£μ·¨É³ μÍ¥´±¨ ¶μÉ¥·Ó ¶ÊÎ±  ¨ ·μ¸É  Ô³¨ÉÉ ´¸  ¤²Ö ·¥§μ´ ´¸  ¶·μ¨§¢μ²Ó´μ£μ ¶μ·Ö¤± 
¢ ¶·μÍ¥¸¸¥ § Ì¢ É  Î ¸É¨Í ¶·¨ ³μ¤Ê²ÖÍ¨¨ ¡¥É É·μ´´μ° Î ¸ÉμÉÒ, ¢Ò§¢ ´´μ° ¸¨´Ì·μÉ·μ´´Ò³¨ ±μ-
²¥¡ ´¨Ö³¨. ‘· ¢´¥´¨¥ ¸ ·¥§Ê²ÓÉ É ³¨ Î¨¸²¥´´μ£μ ³μ¤¥²¨·μ¢ ´¨Ö ¤²Ö ·¥§μ´ ´¸  É·¥ÉÓ¥£μ ¶μ·Ö¤± 
¶μ¤É¢¥·¤¨²μ ¶·¨³¥´¨³μ¸ÉÓ É¥μ·¨¨ ¢μ§³ÊÐ¥´¨° ± ¶·μ¡²¥³¥ ±Ê²μ´μ¢¸±μ£μ ¶¥·¥¸¥Î¥´¨Ö ·¥§μ´ ´¸ .

PACS: 29.20.df

INTRODUCTION

Let us consider particle dynamics in circular accelerators and storage rings in the presence
of the space charge (s. c.) ˇelds and the external perturbations creating one-dimensional
betatron resonance. A numerical modeling for the third-order resonance [1] has shown that
due to interaction of these effects the particles may be trapped into the stable islands.

Assuming that main part of the beam is unperturbed, we can use for the analytic studies
so-called ®frozen core¯ model [2]. A theory of the particle motion near the isolated nonlinear



Adiabatic Theory of Particle Trapping Due to Coulomb Crossing 125

resonance is developed in papers [3, 4] using the canonical ®action-phase¯ variables J , φ;
speciˇcs of our effect is connected with special form of the nonlinear tune dependence.

In bunched beams the space charge linear density (and consequently the ®instantaneous¯
s. c. shift) depends on longitudinal coordinate of the particle inside the bunch; therefore, for
some values of unperturbed betatron tune the betatron resonance is crossed periodically due
to the synchrotron oscillations.

The perturbation theory shows that in the presence of nonlinear tune dependence the
particles captured in the stationary separatrix oscillate around its center. For narrow nonlinear
resonance these oscillations are characterized by the following parameters: 1) J0 (value
of action corresponding to the separatrix center); 2) Ωs (frequency of the particle linear
oscillations around the separatrix center); 3) ΔJs (the separatrix width). If the motion is
nonstationary, the particles cross the resonance line. A character of the process depends on

the ®adiabaticity parameter¯ Kad =
δJs

ΔJs
where δJs is a shift of J0 during the period of the

particle oscillations around the separatrix center. This process is examined by A.Chao [5] for
the particular case of the ˇfth-order one-dimensional resonance. An estimate of the ®trapping
efˇciency¯ is made in assumption that all particles with Kad � 1 are trapped and all particles
with Kad > 1 are nontrapped. Here we use the same criterion and assume that all particles
crossing the resonance have Kad � 1 (®adiabatic model¯) and, consequently, are captured in
the nonlinear separatrix.

For generalization we consider a resonance of an arbitrary order; the numerical results
are applied to the third-order resonance. Let us mark that the adiabatic model gives only the
®upper limit¯ for the losses; nevertheless, it can be useful due to its simplicity and common
theory for arbitrary order resonances.

PARAMETERS OF STABLE ISLANDS

Initial Assumptions. Let us assume that transverse motion in horizontal plane (y = 0) is
deˇned by the following equation:

ẍ +
(

Q0

R

)2

x =
eZi

Aimpc2β2γ3
E(x) exp

(
− z2

2σ2
z

)
+ anδ(s)xn−1. (1)

In Eq. (1) x is the transverse coordinate of the particle; z is the particle distance from the bunch
center; independent variable s is a length along the ring circumstances; Q0 is the unperturbed
betatron tune; e is electron charge; mp is proton mass; β, γ are relativistic parameters; Zi

and Ai are, correspondingly, charge and atomic numbers of circulating particle; E(x) is the
beam electrical ˇeld at the bunch center in the rest system; δ(s) is delta function; an is an
amplitude of the nonlinear lens. Here we consider axe-symmetric Gaussian beam with space

charge density ρ(x, y, z) proportional to exp
(
−x2 + y2

2σ2
x

− z2

2σ2
z

)
. In Eq. (1) σx, σy , σz are

corresponding rms beam sizes (σx = σy), σi =
√

εiβi (εi are rms emittances, βi are the
corresponding beta functions).

In paper [1] the third-order resonance (n = 3) is considered. For numerical analysis
parameters of the SIS-18 synchrotron were taken: machine radius R = 34.4 m, horizontal
synchrotron tune Q0 = 4.3, σx = 0.01 m. For round Gaussian beam the s. c. force in the
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right-hand side (RHS) of Eq. (1) is

RHS = K exp
(
− z2

σ2
z

)
1
x

[
1 − exp

(
−x2

σ2
x

)]
. (2)

Perveance K is connected with linear Coulomb shift ΔQ0
sc by the following formula: K =

ΔQ0
sc

2σ2

R2
(2Q0 − ΔQ0

sc). For SIS-18 we obtain the resonance width g ∼ 10−4. Let us note

that in the following text we use normalized dimensionless invariant J = ε/ε0.
Hamiltonian and Equations of Motion. A value of the nonlinear s. c. tune shift ΔQsc

due to beamÄbeam interaction was derived in paper [4]. Generalizing this formula for one
beam s. c. interaction, we ˇnd that ΔQsc = ΔQ0

scΦsc(J), where function

Φsc(J) =
2
J

[
1 − exp

(
−J

2

)
I0

(
J

2

)]
. (3)

Here I0(x) is modiˇed Bessel function of the zeroth order. Using the perturbation theory we
can write the one-dimensional Hamiltonian in variables J , φ (action-phase) for the arbitrary
resonance order n (taking into account only the third order of external nonlinearity) in the
following form:

δH = Δν0
scΨ(J) + K

J2

2
− 2

n
Jn/2 cos (nφ). (4)

Here as an independent variable we use ®slow angle¯ θ = gs/R; all parameters are divided
by the resonance strength g (Δν0 = ΔQ0

x/g, Δν0
sc = ΔQ0

sc/g, K = k/g). Function Ψ(J) is

deˇned by the equation Φsc(J) =
dΨ(J)

dJ
. The canonical equations of motion are

dJ

dθ
= 2Jn/2 sin(nφ),

dφ

dθ
= Δν0 − Δν0

scΦsc(J) + KJ − J
n
2 −1 cos (nφ).

(5)

The phase space topology depends on four parameters: two dimensionless tune shifts Δν0,
Δν0

sc, the octupole nonlinear coefˇcient K and order of the resonance n. Stationary points are

deˇned by equations
dJ

dθ
= 0,

dφ

dθ
= 0. Then we ˇnd from the equation for

dJ

dθ
: sin (nφ) = 0,

cos (nφ) = ±1. Substituting these values in the Hamiltonian (Eq. (4)) and an equation for
dφ

dθ
(the second line of Eq. (5)), we obtain

H±(J) = Δν0J − Δν0
scΨ(J) ± 2

n
Jn/2 + K

J2

2
, (6)

Δν1,2(J) = Δν0 − Δν0
scΦsc(J) ± 2

n
J

n
2 −1 + KJ. (7)

The stable ˇxed point J0 is deˇned by a solution of the nonlinear equation Δν2(J) = 0. The
separatrix parameters can be found by standard procedure [3, 4] using Eqs. (5)Ä(7).

Let us consider the equation for the separatrix center Δν2(J0) = 0. Firstly, let us note that
in high currents machines the resonance strength g � ΔQ0

sc (for example, in our numerical
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simulations [1] g = 10−4, ΔQ0
sc = 0.1 and normalized s. c. tune shift Δν0

sc = 1000). Then
at the ˇrst approximation we may neglect resonant term, and an equation for the separatrix
center is written as follows:

Λ − Φsc(J) + K̃J = 0. (8)

Here Λ = Δν0/Δν0
sc, K̃ = K/Δν0

sc (Λ < 1 since it is a condition of resonance crossing).
We see that the equation does not depend on the resonance order and the resonance strength!

Fig. 1. Dependence of the separatrix para-
meters xmin =

√
Jmin, x0 =

√
J0, xmax =√

Jmax on the nonlinearity parameter (n = 3,

Δν0
sc = 1000, Δν0 = 50, Λ = 1/20)

Let us ˇnd an approximate solution for K̃ =
0, taking into account that for J � 1 Φsc(J) →
2/J . Then the approximate solution of Eq. (8)

is J0 ∼ 2/Λ = 2
ΔQ0

sc

ΔQ0
. We see that the value

of invariant for the island center goes to inˇnity
when distance from the resonance goes to zero.

The exact separatrix parameters were found
using the program written in MATHCAD lan-
guage. An example of the results is given in
Fig. 1. We see from Fig. 1 that the positive sign
of the nonlinearity increases the stability (the area
of the separatrix is decreased with K̃).

Theory of Small Oscillations and Adiabatic-
ity Criterion. For narrow nonlinear resonance
the oscillations are characterized by the following
parameters: 1) J0 (value of action corresponding
to the separatrix center); 2) Ωs (frequency of the
particle linear oscillations around the separatrix center); 3) ΔJs (the separatrix width). These
parameters can be found using the technique given in [5]. Let us present the Hamiltonian
H(J, φ) in the following form:

H(J, φ) = H0(J) − 2
n

J
n/2
0 cos (nφ). (9)

Here H0(J) = Δν0J − Δν0
scΨ(J) + K

J2

2
. Near the thin one-dimensional resonance we can

expand the function H0(J) in Taylor series on the small parameter ΔJ = J − J0; then we
can write H(J, φ) in a form of the pendulum Hamiltonian:

H(J, φ) = −1
2
G(J0)(ΔJ)2 + F (J0) cos (χ). (10)

Here χ = nφ, G(J0) = −n
∂2H0(J)

∂J2
(J = J0) = nΔν0

sc

dΦ(J)
dJ

(J = J0) + K , F (J0) =

2(J0)n/2. The corresponding equations of motion are

d(ΔJ)
dθ

= F (J0) sin (χ),
dχ

dθ
= G(J0)ΔJ. (11)

This approximation is valid only for thin resonance (ΔJs/J0 � 1). The separatrix width is

ΔJs = 2

√
F (J0)
G(J0)

. (12)
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Thus, the criterion of ®narrow separatrix¯ is Kns =
2
J0

√
F (J0)
G(J0)

� 1. For large J0 −dΦ
dJ

(J =

J0) ∼
2
J2

0

; then we obtain the following estimate for the separatrix width:

ΔJs = 2
√

2/n(J0)n/4+1(2Δν0
sc + KJ2

0 ). (13)

We see from Eq. (13) that the separatrix area is increased with growth of the coordinate of
the invariant center J0. A frequency of the linear oscillations in the island is

Ωs =
√

F (J0)G(J0). (14)

ADIABATIC RESONANCE CROSSING IN BUNCHED BEAM

Adiabatic Island Parameters. In the bunched beam the linear s. c. density and the
corresponding tune shift periodically oscillate with the synchrotron frequency; that results in
crossing of the resonance ®islands¯. When the island crossing is ®adiabatic¯, a particle can
be trapped into the island if the island area S is such that it increases during the passage.
According to the theory, a particle remains trapped until the island area returns back to the
same value where the original trapping occurs. The typical example of the trapped particle
trajectory is given in Fig. 2.

Fig. 2. Trapping of particle during one synchrotron oscillation: a) single particle invariant; b) phase
space (in normalized units)

In adiabatic approximation the parameters of the captured island coincide with stationary
ones. For Gaussian bunch the s. c. tune shift is

Δνsc(u) = Δν0
sc exp

(
−u2

2

)
. (15)

Here νs =
√

Qs/g, u = z/σs, z is deviation from the bunch center. For K the separatrix
characteristics depend on resonance number n and three normalized parameters: space charge
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tune shift Δν0
sc, tune distance from the resonance Δν0 and longitudinal variable u. Numerical

simulations data (n = 3, ΔQ0
sc = 0.1, ΔQ0 = 1/60, g = 10−4) correspond to the following

normalized variables: Δν0
sc = 1000, Δν0 = 167. Dependence of the separatrix parameters

on u is plotted in Fig. 3 (the picture coincides with results of the numerical simulations). We
see from Fig. 3 that the separatrix disappears if u � ut, where ut is determined by condition

Δν0 = Δν0
sc exp

(
−u2

t

2

)
; then

u ut =

√
2 ln

(
Δν0

sc

Δν0

)
= 2

√
2 ln

(
1
Λ

)
. (16)

Near ut the separatrix center is deˇned by the following relation: J0 =
3
8
(ut − u).

Fig. 3. Dependence of the invariants of the separatrix characteristic points on the normalized longitudinal

coordinate u (n = 3, Δν0
sc = 1000, Δν0 = 167); dotted curve corresponds to the separatrix center

Adiabaticity Criterion. If the motion is nonstationary, the particles cross the resonance
line. A character of the process depends on the ®adiabaticity parameter¯ Kad = δJ0/J0,
where δJ0 is a shift of J0 during the period of the particle oscillations around the separatrix
center. Let us assume that J0 = J0(u), u is a slow changing parameter depending on
independent variable θ. Change of J0 during one period of transverse oscillations inside the
separatrix

δJ0 =
dJ0

du

du

dθ

2π

Ωs
=

dJ0

du

du

dθ

2π√
F (J0)G(J0)

. (17)

Then the adiabaticity criterion is

Kad =
δJ0

J0
=

dJ0

du

du

dθ

π

F (J0)
. (18)

Neglecting the separatrix width, we suppose that J0 = J , where J is particle invariant. Then
we obtain the following condition of the resonance crossing (see Fig. 3):

u0 � u1(J) = ut

(
1 − 3

8ut
J

)
. (19)
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Strictly speaking, condition of the adiabaticity is Kad � 1; however, here we will use
Chao's condition [5] (Kad � 1) to determine the capture area. Then we obtain a necessary
condition for u0 with account of the adiabaticity criterion (here b = 3/4πνsut):

u0 � u2(J) =

√
(bJn/2)2 + u2

t

(
1 − 3

8
J

)2

. (20)

Different areas in plane u0, J are plotted in Fig. 4. Of course, the boundaries between regions
are diffused; for example, the particles in area 2 can increase their invariants due to diffusion
crossing and then go to ®adiabaticity regions¯.

Fig. 4. Separation of different areas in plane u0, J (n = 3, b = 0.2): area 1 (0 < u0 < u1(J)) Å no

resonance crossing; area 2 (u1(J) < u0 < u2(J)) Å adiabatic resonance crossing; area 3 (u2(J) <

u0 < ∞) Å diffusion resonance crossing

Beam Losses and Emittance Growth. Let us calculate a number of captured particles.

The distribution on amplitudes u0 for Gaussian beam is deˇned by f(u0) = u0 exp
(
−u2

0

2

)
;

integrating on u0 from u1(J) up to u2(J), we obtain the following expression for a number
of captured particles:

ΔN

N
=

(8/3)ut∫
0

exp

[
−J − 1

2

(
ut −

3
8
J

)2
] [

1 − exp
(
−b2Jn

2

)]
dJ. (21)

For weak resonance g → 0, νs = Qs/g → ∞ and, consequently, b → 0; then u2(J) →
u1(J) and the adiabaticity area goes to zero. For strong resonance νs = Qs/g → 0 and,
consequently, b → ∞ (adiabatic limit). Neglecting the term in brackets in RHS of Eq. (21),
we obtain that the number of captured particles is

ΔN

N
= ΛC(Λ). (22)

Here due to Eq. (16)

C(Λ) =

(8/3)ut∫
0

exp

[
−J

(
1 − 3

8
ut

)
− 1

2

(
3
8
J

)2
]

dJ. (23)
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For small values of parameter Λ we have that C(Λ) ∼ 1.3. The captured particle is lost if
its maximal invariant (at the bunch center) exceeds the chamber aperture Jlim (J0(0) > Jlim).
In a frame of our simpliˇed model, we have the following approximate condition of the

Fig. 5. Dependence of J on Qx

particle loss:
2
Λ

� Jlim, ΔQ0
sc � 1

2
ΔQ0Jlim. If the

captured particles are not lost, then the capture results
in an increase of the average emittance since part of the
synchrotron period is spent by the particle inside the is-
land. The average invariant during the capture period is

Jav ∼ 1
2
[J0(0) + J ] =

1
Λ

+
J

2
. Taking into account that

the particle spends inside the separatrix only part of period,

which is deˇned by μ(u0) =
2
π

arcsin
[
umin(J)

u0

]
, we ˇnd

that a change of the average invariant is

ΔJav =

∞∫
0

exp(−J)
(

1
Λ

+
J

2

)
dJ

u2(J)∫
u1(J)

u0 exp
(
−u2

0

2

)
μ(u0, J)du0.

(24)
This integral is calculated numerically for SIS-18; the results are given in Fig. 5 (comparison
with data of numerical simulations [1] gives satisfactory coincidence).

CONCLUSIONS

The analytic approach gives deep insight into the mechanism of the Coulomb resonance
crossing; it allows us the straight forward scaling of the parameters for an arbitrary resonance
order. Besides, we discover an interesting mechanism of suppression of s. c. losses and the
emittance growth using the octupole nonlinearity with correctly chosen sign.

In the future we are going to consider crossing of two-dimensional betatron resonance and
to apply the results in analysis of s. c. effects in designed high-current rings: SIS100 (FAIR
project, Germany) and TWAC (ITEP, Moscow).
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