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3D INTENSE BEAM DYNAMICS SIMULATION
BY USING MOMENTS METHOD
N. Kazarinov1, V. Aleksandrov, V. Shevtsov

Joint Institute for Nuclear Research, Dubna

The program of the 3D intense beam dynamic simulation based on the moments method is presented.
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INTRODUCTION

Within the framework of the Multi-Component Ion Beam code (MCIB04) [1], the program
for 3D simulation of the intense charged-particle beam dynamics is created.

Fast analysis and study of the averaged beam characteristics, such as root-mean-square
(RMS) dimensions, are performed by the moments method [2].

The main advantage of the moments method in comparison with macroparticle one is fast
calculation and therefore applicability for transport line optimization.

The model describing the charge density of the bunched beam is introduced. The external
electromagnetic ˇelds are assumed to be linear. The approach of effective linearization [2] of
both longitudinal and transversal beam self-ˇelds gives possibility to get the closed system of
the equations for second-order moments.

The ˇtting procedure based on minimization of a quadratic functional at any point of the
beam line by using either gradient or simplex method is available [3].

BEAM MODEL

Let us consider the train of bunches (Fig. 1), moving with average velocity β0c with
distance between its centers of mass λ = β0λ0. Here λ0 is cyclotron RF ˇeld wavelength.

Fig. 1
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The beam density may be deˇned as

ρ(x, y, z − β0ct) = Nρ‖(z − β0ct)ρ⊥(x, y), (1)

where N =
Iλ

Zeβ0c
Å the number of particles at spatial period λ; I Å beam current: Ze Å

ion charge.
Longitudinal ρ‖ and transverse ρ⊥ densities are equal to
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)
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)
. (2b)

According to formula (2 ), longitudinal density is periodical function ρ‖(z) = ρ‖(z + λ)
with a constant number of particles at period λ:

λ/2∫
−λ/2

ρ‖(z)dz = N. (3)

In the case σz � λ this model describes the beam with constant density and for σz � λ
gives Gaussian beam. The z-dependencies of the longitudinal beam density for various values
of ratio λ/σz are shown in Fig. 2.

Fig. 1. Longitudinal beam density. 1 Å λ/σz = 1; 2 Å λ/σz = 4; 3 Å λ/σz = 8

BEAM SELF-FIELD

By using formulae (1) and (2) the beam self-ˇeld may be represented as follows [4]:
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Here a =
√

2(σ2
x + σ2

y) Å RMS radius of the beam; b Å vacuum pipe radius, and prime

denotes derivative with respect to z.

MOMENTS EQUATIONS

Let us deˇne the second-order moments M of the beam distribution function f :

M = Y Y T =
1
N

∫
Y Y T f dy, (5)

where superscript T denotes transpose vector or matrix, Y T = (x, y, x′, y′, z − β0ct, δ) =
(XT , V T , Y T

‖ ) = (Y T
⊥ , Y T

‖ ) Å vector of phase space coordinates of the particle; δ = (β −
β0)/β0 Å relative momentum spread. Integration in (4) is fulˇlled over all the phase space
occupied by bunch particles (at one spatial period), prime denotes derivative with respect to
longitudinal coordinate of the bunch center of mass.

The equations for transverse second-order moments M⊥ = Y⊥Y T
⊥ do not change signiˇ-

cantly in comparison with the case of non-bunched beam [2]:

M ′
⊥ = AM⊥ + M⊥AT ; A =

(
0 E

bext + bs aext

)
. (6)

Here M⊥, A are fourth-order matrices; E is second-order unit matrix; aext and bext are 2× 2
matrices deˇned by external ˇelds. Second-order matrix bs depends on RMS dimensions and
is deˇned by beam self-ˇelds:

bs = k⊥
Z

A

I

IA

1
β3

0

1
σx + σy

(
1/σx 0

0 1/σy

)
, (7)

where A Å ion mass; IA = mc3/e Å Alfven's current.
The bunching factor k⊥ is connected with changing of the transverse beam self-ˇelds due

to changing of the longitudinal density:

k⊥ = λ

λ/2∫
−λ/2

ρ2
‖(z)dz =

√
z2
0

z2
F⊥

(
z2

z2
0

)
. (8)

Here
√

z2 is current longitudinal RMS dimension of the bunch:

z2 =

λ/2∫
−λ/2

z2ρ‖(z)dz (9)

and
√

z2
0 = λ/

√
3 its value for non-bunched beam. The plot of function F⊥(x) is shown

in Fig. 3, a.
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As can be seen from Fig. 3, a, function F⊥(x) is approximately equal to unity with
difference not greater than 6%. In the program this function is represented as the sixth-order
polynomial.

Fig. 2.

The equations for the longitudinal second-order moments M‖ have the form

M‖ = Y‖Y
T
‖ =
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zδ δ2

)
, (10 )
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Computation of average zEz in accordance with formulae (4) and (5) results in
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The bunching factor of the longitudinal motion k‖ is deˇned by the formula

k‖ = λ

λ/2∫
−λ/2

[
ρ2
‖(z) − ρ2

‖

(
λ

2

)]
dz = k⊥F‖

(
z2

z2
0

)
. (12)

The plot of function F‖(x) is shown in Fig. 3, b. In the case x ∼ 1 function F‖ is close to
zero because the longitudinal electric ˇeld of non-bunched beam is equal to zero. For the
well-bunched beam (x � 1) due to small longitudinal density at point z = λ/2, formulae (11)
and (12) become identical and function F‖ is close to unity. In the program, function F‖(x)
is approximated by the ˇfth-order polynomial for all values of x.



3D Intense Beam Dynamics Simulation by Using Moments Method 137

MCIB04 CODE MODIFICATION

The 3D moments equations were introduced into existing program library code MCIB04 [1].
The interface of the program is shown in Fig. 4.

Before launching of the program the ˇles containing the beam-line lattice, initial beam
parameters and (optionally) the longitudinal magnetic ˇeld distribution have to be created.

Fig. 3. Interface of the program

During operation of the program the changes of the second-order moments along the beam
line are computed. The plots of the longitudinal magnetic ˇeld distribution (line 1 in Fig. 4)
and RMS dimensions of the beam (line 2 Å x and line 3 Å y) are given at monitor.
The special windows are intended for values of the beam RMS dimensions at the exit of the
channel (RMSX, RMSY) and initial parameters: RMS dimensions (X , Y ), emittances (Xemit,
Yemit), mass-to-charge ratio (A/Z), kinetic energy (Energy), and beam current (Current).

The ˇtting procedure based on minimization by using either gradient or simplex method
of a quadratic functional computed for every second-order moments at any point of the beam
line is available [3].

The dependencies on distance along the channel of the beam envelopes, emittances,
momentum spread and other parameters are written to the ˇle and processed by the graphing
program package.

BUNCHING SYSTEM COMPUTATION

The simulation of the bunching system of the DC350 cyclotron axial injection beam
line [5] was fulˇlled by using created 3D version of MCIB04 code.

The bunching system consists of linear and sinusoidal bunchers. The linear buncher is
placed at 275 cm and sinusoidal Å at 80 cm from the median plane of the cyclotron. In the
simulation all bunchers were replaced by inˇnitesimal width gap with variable voltage.
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48Ca beam initial parameters

Injected beam 48Ca6+

Mass A 48

Charge Z 2Ä8

Injected current, μA 0Ä190

Ca beam current, μA 0Ä700

He beam current, μA 200

48Ca6+ kinetic energy, keV/u 3.1375

Diameter, mm 8

Emittance, π mm·mrad 142

The initial parameters of the beam are listed
in table.

The initial conditions for the moments were
deˇned at the entrance of the linear buncher and
were found by macroparticle simulation. Charge
state distributions for ion beam and its self-ˇelds
were taken into account in this simulation.

The beam focusing is provided by two
solenoids. The longitudinal magnetic ˇeld of the
cyclotron is also considered.

The matching condition at the entrance of the
spiral in	ector corresponds to the steady state of
the beam (without envelopes oscillation) in the
uniform magnetic ˇeld with magnitude to be equal
to the ˇeld in the cyclotron center. The amplitude

of the voltage at linear buncher was found to provide the equality k⊥ = 2 at the entrance of
sinusoidal buncher.

The beam envelopes near spiral in	ector of the cyclotron are shown in Fig. 5.

Fig. 4. Apertutre (A), horizontal (H) and vertical (V) 48Ca6+ beam envelopes near in	ector

Fig. 5. Bunching efˇciency versus beam current

Let us deˇne the bunching efˇciency as ratio of the number of particles within RF phase
interval |Δϕ| � 15◦ to non-bunched beam one. This quantity shows a possible increase of the
number of particles captured into acceleration in the cyclotron due to the bunching system.
The dependence of the bunching efˇciency on the 48Ca6+ beam current is shown in Fig. 6.
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