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We study the four-level system given by two quantum dots immersed in a time-dependent magnetic
ˇeld, which are coupled to each other by an effective Heisenberg-type interaction. We describe the
construction of the corresponding evolution operator in a special case of different time-dependent parallel
external magnetic ˇelds. We ˇnd a relation between the external ˇeld and the effective interaction
function. The obtained results are used to analyze the theoretical implementation of a universal quantum
gate.
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INTRODUCTION

In quantum computers (QC) the classical bit is replaced by the states of a two-level
quantum system, and the computation is performed by the manipulation of these systems.
These two-level quantum systems are called qubits and these manipulations Å quantum
gates. As for classical computers, for QC the accomplishment of an arbitrary algorithm can
be performed using just a few speciˇc manipulations called universal quantum gates. With
these universal quantum gates, a process that acts in an arbitrary number of qubits can be
constructed using gates that act only in one and two qubits. It is believed that, as for classical
computers, for QC the most promising candidate for a possible large-scale implementation
is solid-state devices. Among these devices, one can highlight the system of two coupled
semiconductor quantum dots (QD) [1]. In this system the qubits are the one-half spin states of
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an excess electron in each dot, and the universal quantum gates can be performed by applying
external electromagnetic pulses to the dots.

In the present work we study the behavior of two coupled QD, when each dot is subject to
different time-dependent parallel external magnetic ˇelds, and discuss the use of this system
to implement a universal quantum gate.

1. TWO COUPLED QUANTUM DOTS

The most general Hamiltonian Ĥ (G,F,J) of two interacting spin-1/2 particles, subject
to the external ˇelds G and F, respectively, is (we set � = 1)

Ĥ (G,F,J) = (ρ ·G) + (Σ ·F) + JijΘij/2,
(1)

ρ = σ ⊗ I, Σ = I ⊗ σ, Θij = σi ⊗ σj ,

where Jij are 9 independent functions of time; G and F are time-dependent three-vectors;
σ = (σ1, σ2, σ3) are the Pauli matrices and I is the 2 × 2 identity.

Note that the interaction with the external ˇelds in (1) is given by the solutions of the
single-spin equation (SSE) [5],

iψ̇ = ĥψ, ψT = (v1, v2) , ĥ = (σ ·K) , (2)

that describe a single ˇxed spin-1/2 particle immersed in an external ˇeld K (t).
The Hamiltonian (1) can be used to describe the coupling between two QD. When these

QD are used to implement a quantum gate, the action of the gate corresponds to the variation
of the external ˇelds during a certain time τ . The matrices Θij in (1) can be chosen spherically
symmetric, Θij ≡ Σ ·ρ = Σ3

i=1σi⊗σi, if the system obeys the following conditions (see [1]):
1) the time τ cannot be too small, to avoid transitions to higher energy levels, so that the

difference between energy levels ΔE should be larger than �/τ ;
2) the decoherence time of the physical system should be much larger than τ .
Under these conditions, the Hamiltonian (1) becomes

Ĥ (G,F,J) = (ρ ·G) + (Σ ·F) +
J (Σ · ρ)

2
. (3)

The above interaction is known as the Heisenberg interaction. We call the Schréodinger
equation with the Hamiltonian (3) the two-spin equation (TSE).

2. PARALLEL PULSES

The use of two coupled spin-1/2 particles to implement quantum algorithms requires the
control of individual spins and an interaction capable of creating an entangled state starting
from an original product state [2]. In a system described by the Hamiltonian (3) the individual
spins are controlled by the ˇelds F and G and, when these ˇelds are zero (F = G = 0), the
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evolution operation Rt (G,F,J) of the problem can be written as [3]

Rt (0, 0, J) = exp
[
iΦ (t)

2

]
[I cosΦ (t) − iA sinΦ (t)] ,

(4)

A =
1
2

[I + (Σ ·ρ)] , Φ (t) =

t∫
t0

J (τ) dτ,

where I is the 4×4 unit matrix. The above expression shows that, for Φ = π/4, the evolution

operator acts as the gate known as square root of swap (U1/2
sw ), that is capable of entangling

an initial product state. With the U
1/2
sw we can construct the universal XOR gate as [4]

UXOR = exp
(

iπρ3

4

)
exp

(
− iπΣ3

4

)
U1/2

sw exp
(

iπρ3

2

)
U1/2

sw . (5)

The above expression shows that we can construct any quantum gate by a sequence of
pulses that turn the external ˇelds and the interaction on and off. So, in principle, we do not
need the exact solutions of the TSE, once we can describe this series of pulses using Eq. (4)
and the solution of the SSE (2). However, the construction of gates by a sequence of pulses
is not appropriate, because the duration of the entire sequence can be too long, violating
the condition (2) of the preceding section, or the pulses need to vary too fast, violating the
condition (1). So, it is important to implement the gates at once, applying just one adequate
ˇeld, called the parallel pulse [4]. In the case of the XOR gate (5), in order to use a parallel
pulse, one needs to ˇnd a ˇeld whose evolution operation, at a given instant τ of time, has
the form

Rτ (G,F,J) = UXOR = exp
[
− iπ (Σ3ρ3 + Σ3 + ρ3)

4

]
. (6)

In order to ˇnd this parallel pulse, in a general case, we need to construct the evolution
operator of the TSE for different kinds of external ˇelds and interactions.

3. EVOLUTION OPERATOR OF THE TSE

In what follows we will work out problems where the external ˇelds at the two spins have
an arbitrary and independent time-dependence, but with the ˇelds in the same direction (we
choose the z direction),

G = (0, 0, B1) , F = (0, 0, B2) , B1,2 = B1,2 (t) . (7)

In this case, the Hamiltonian (3) assumes the form

Ĥ =
1
2

[(Σ3 + ρ3)B+ − (Σ3 − ρ3)B− − J ] + AJ, B± (t) = B1 (t) ± B2 (t) , (8)

with the constant 4 × 4 orthogonal matrix A given in (4).
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The evolution operator of the TSE with the Hamiltonian (8) can be written as [3]

Rt(G,F,J) = exp
(
− i

2
[(Σ3 + ρ3) Γ(t) + Σ3ρ3Φ(t)]

)
M(t),

(9)

Γ(t) =

t∫
0

B+(τ) dτ, Φ(t) =

t∫
0

J(t) dτ, M =

⎛
⎝1 0 0

0 ût 0
0 0 1

⎞
⎠ ,

where the 4×4 matrix M (t) is given in terms of the 2×2 evolution operator ût = ût (J, B−)
of the SSE (2) with the effective external ˇeld

K (t) = (J (t) , 0, B− (t)) . (10)

Therefore, in this case, the TSE problem reduces to ˇnding solutions of a SSE. In addition,
although the obtained expressions depend on the sum and the difference between the ˇelds at
the spins, only the average value of this sum is relevant, so that the explicit form of its time
variation can be arbitrary.

3.1. Exact Solutions of the Single-Spin Equation. To construct the evolution operator for
the TSE (9) we need exact solutions of the SSE (2). A number of exact solutions of the SSE
were found in [5, 6]. For periodic or quasiperiodic external ˇelds, the SSE has been studied
by many authors using different approximation methods, e.g., perturbative expansions [7].

The most complete description of the known exact solutions of the SSE can be found
in our previous work [5]. In this work we present the exact solutions for 26 families of
external ˇelds in the form (10). For each of these solutions we show that a solution for a
given K (J, B−) produces the solution for K (B−, J), so that we can interchange the role
of the external ˇelds' difference and the interaction function. Besides, in the cited article,
we develop a method of constructing new exact solutions starting from a previously known
solution, using the Darboux transformation. The solutions obtained in that way have a varied
functional dependence (polynomial, trigonometric, hyperbolic, etc.), which gives a wide range
of ˇelds to choose from that are more appropriate to adjust to experimental setups.

3.2. The Interaction Function. The effective ˇeld K (10) shows that, in order to use the
parallel ˇeld to implement a quantum gate, we need to vary independently the interaction
and the ˇelds' difference. Using the HeitlerÄLondon approximation it is possible to obtain an
expression for the effective interaction function J (a, B1, B2) as a function of the inter-dot
distance (a), and the external magnetic ˇeld at each dot (B1 and B2). The detailed calculations
can be found in our work [8], and the obtained expressions give

J =

(
1 − Δ2

)
(2 sinh (2M) + Δ exp (−2M) (2 − Δ3))

[
L − �ω0

4

(
b2
2 − b2

1

)
(b1 − b2)

b2b−

]
,

(11)

M =
2 (ea)2

a2
0 (b2 + b1)

[
b1b2

e2
+

(
B2 + B1

8mcω2
0

)2
]

, b2
i = 1 +

(
eBi

2mcω0

)2

, Δ =
b1 − b2

b1 + b2
,
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where m is the effective mass of the electron in the dot [9], ω0 is a characteristic parameter
of the dot [10], a0 =

√
�/mω0 is the effective Bohr radius, and

L =
�ω0

2

{
3

2d2 (b− + b+)2

[
1 + Δ2

(1 − Δ2)2
− 1

]
− 3

(
Δ2 − 1
b1 + b2

)
− d2

2
(
Δ4 − 6Δ2 − 3

)}
+

+
e2

a0κ

√
π

2
b̄

{√
(1 − Δ2) exp

[
−d2

(
1 − Δ2

)
b̄
]
I0

[
d2

(
1 − Δ2

)
b̄
]
−

− exp
(

d2

2
K

)
I0

(
d2

2
K

) }
, (12)

K = b̄
(
1 + Δ2

)
− 1

b̄
+

√[
(1 − Δ2) b̄

]2 − 2 (1 + Δ2) +
1
b̄2

, b̄ =
b1 + b2

2
, d =

a

a0
,

where I0 is the zeroth-order Bessel function, e is the charge of electron, and κ is the dielectric
constant of the medium. From the above expressions we see that

J (a, B+, B−) = J (a, B+) + O
(
Δ2

)
, Δ = B−/B+.

So, although the interaction function J depends on the applied external ˇelds, when
B− � B+, we can make J = J (B+) and consider the vector K in (10) as composed of two
independent functions J (t) and B− (t). Besides, the interaction function can be controlled
by electric ˇelds [9, 11], whose interference in the spin states via the spin-orbit coupling, in
many practical applications, can be neglected.

4. CONSTRUCTING THE XOR GATE

In this section we describe how the parameters of the parallel external ˇelds can be chosen,
so that the ˇelds act as a XOR gate. As described in condition (1) in Sec. 1, the variations
of the ˇelds cannot be too fast so as to prevent the excitation of higher energy-levels. This
problem can be avoided by using an adiabatic variation of the interaction, which can be
obtained by a time-dependence in the form of sech (ωt) [4]. A lot of solutions of this sech
form can be found in [5]. Let us analyze, for example, a variation of the form

J (t) =
a

coshωt
, B− = c, (13)

where a, c are constants and ω � ΔE/� (see condition (1) in Sec. 1). This interaction
function will be turned off when t � 1/ω. In this time limit the evolution operator (9), for
the ˇeld (13), will behave as the operator (6) when the following conditions are met [8]:

t∫
0

B+ (τ) dτ =
π

2
mod (2π) , F

(
1 + λ, 1 − λ, γ + 1;

1
2

)
= 0, (14)

where F (α, β, γ, z) is the Gauss hypergeometric function and the sum of ˇelds (B+) is,
besides the above condition, completely arbitrary.
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For different ˇelds at each dot, B− = c �= 0, the above conditions give the following
restriction for the amplitude of the interaction function:

a =
ωπ (1 + 4m)

4 arctan [exp (ωT )] − π
, T =

nπ

c
� 1

ω
, n, m ∈ N

∗. (15)

When the two dots are subject to the same ˇeld (B− = c = 0), the second condition in (14)
can be ˇxed using the relation F (1 + λ, 1 − λ; 3/2; 1/2) = λ−1 sin (λπ/2) [12], which gives

|a| = 2mω, m ∈ N
∗. (16)

The above relations ˇx the duration and the intensity of the ˇelds for the adiabatic parallel
pulse. The same analysis presented here can also be carried out for all the families of external
ˇelds presented in [5] and for different universal quantum gate.
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