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1 Introduction

New experiments being conducted and planned on accelerators impose heavy
demands on the used track detectors. In particular, proportional chambers are
required to have stable and long period of operation at high counting rates as well
as to have a small dead time, contain a small amount of substance on the way
of registered particles and at the same time providing a high detection efficiency,
covering considerable areas (= 1000cm?). As is shown in [1], reduction of the
wire step to improve the coordinate resolution of the chamber leads to limitations
imposed on the allowable wire length, which are connected with the instability of
the wire as to its attraction to the cathode. On the other hand, the dimensions
of the sensitive area of one of the proportional chambers in the forward detector
of the ANKE spectrometer [2] are 58cm x 49cm. From [1] it follows that with the
required step 1mm, the wires in such a chamber will be unstable at the standard
geometry. That is why there have been developed and produced chambers with
wires lying on a dielectric film, as is shown in Fig.1 [3]. The film surface opposite
to the wire side is covered with a conductive silver paint. from now on it will be
referred to as strip surface. To avoid accumulation of the positive charge on the
film, which would distort the electric field and lead to an amplification drop, the
film was made of a material with a small conductivity v ~ 107°Q~'em™"'. This
allowed a sufficiently quick evacuation of the positive ions from the film surface,
thus retaining the chamber operation at high counting rates. The technology of
preparing a film and constructing such chambers, their working characteristics
as well as results of their performance in experiments will be dwelled on in other
publications. This particular work is devoted to a numerical investigation of
electrostatics of such chambers as well as to the impact of various factors on
their working characteristics.

2 Field equations

In the case of an ideal dielectric, the potential of the electrostatic field ¢ obeys
the equation

V(EV(b) = =0 (1)

where € is the dielectric constant of the medium, p is the space density of a free
charge. In the absence of space charges and in a uniform medium, (1) reduces to
the Laplace equation

Ad =0, (2)
and the electric field strength is defined by the potential gradient

E=-Vg. (3)
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Figure 1: A proportional chamber with a dielectric film.

In the presence of a boundary between two media with the dielectric constants ¢,
and €, correspondingly, there must be conditions of conjugation imposed on it:

(625(2) - EIE(l)) 7= ag, (4)

— —

(E® -~ EW) x i =0, (5)

where o is the surface charge and 7 is the unit vector perpendicular to the
boundary and pointing from region 1 to region 2. In the absence of the surface
charge condition (4) reduces to

(@B - o EY) =0, (6)

where F is the field component perpendicular to the boundary of two dielectrics.
In the case of an isotropic linear conducting medium, the field strength is
connected with the current density by the Ohm law:

j=1E, (7)

where 7 is the conductivity of the medium. Taking into account (3) and applying
the divergence operator to both parts of the previous equation, we obtain:

~V - (yV¢) = divj. (®)

The terms on the right side of the equation refer to the density of current sources
in the medium and in their absence this equation reduces once again to the
Laplace equation (2). In the general case of a boundary between two conductive
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media with the conductivity v, and 7y, correspondingly, as well as in the absence
of current sources, two conditions are fulfilled:

W _
BT =g, )
1Y = nEL. (10)

The first condition expresses continuity of the tangent component of the field
strength, whereas the second one refers to the continuity of the normal component
of the current density on the boundary of the media. In the case when one of the
media is non-conductive (7, = 0), the second condition reduces to E(ll) = 0. This
is easy to understand bearing in mind that in a stationary situation the current
does not flow through the boundary between a conductor and a dielectric. Thus,
boundary conditions for a conducting film have been completely specified and the
Laplace equation in it can be solved independently. After the potential inside the
conductive film has been found, one may pass on to solving the Laplace equation
in the other part of the chamber. Conditions for the boundary between the film
and gas follow from the continuity of the potential: (1) = ¢,

It is necessary to note, that from these equations it follows that the field in
the chamber in the stationary case is dependent neither on the dielectric constant
of the film material, nor on its conductivity. These properties of the film affect
only dynamic characteristics. The above-mentioned problem will be discussed
later on.

Solution of these boundary-value problems was carried out using the finite-
difference method on the grid sequence with a decreasing step. At first the
solution was obtained on a rough grid, then it was transferred onto a smaller grid
by means of interpolation and used as an initial approximation for the iterative
method. Near the points of the curved boundary a non-uniform grid was used [4].
This leads to a second order approximation at the inner points of the grid and
keeps both symmetry and positive definiteness of the difference problem matrix.
These properties of the matrix allow the use of the successive over-relaxation
iteration method:

" = (1 -w)®" +w(TI" + F), (11)

where ®" is the approximation to the problem’s solution at a n-iteration, F' is
the vector of the right-hand sides, T is the transition matrix and w is the iterative
parameter. To achieve a faster convergence, an iterative parameter w close to the
optimal one was selected in the course of counting [5].

3 Results of calculations

Fig.2 shows the distribution of the field strength in the chamber, the field lines are
given in Fig.3. In this figure, the density of the field lines is proportional to the
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Figure 2: Electric field in the chamber with parameters 2o = 2.0mm, s = 1.0mm,
h = 0.1mm, U, = —2700V, Usprip = —17001".
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Figure 3: Field lines in the chamber. Chamber parameters are the same as for
Fig.2. The density of the field lines is proportional to the field strength.



field strength. It is necessary to note, that there is an area near the boundary
of the chamber cell with the field lines going not to the wire, but to the film
surface. Thus, electrons produced in this area as a result of ionization by a passing
particle, will not reach the anode wire and will not induce avalanche formation.
Let us assume that tracks cross the chamber perpendicularly to the wire plane.
Tracks crossing the area from which electrons drift towards the anode wire will be
considered as geometrically efficient. The relative number of such tracks will be
called geometrical efficiency. For example, in a case referring to Fig.2, geometrical
efficiency amounted to ~ 99.2%. From an analysis of initial equations it is easy
to see that the configuration of field lines and therefore the geometrical efficiency
depend only on the ratio of the potentials at the cathode and strips, but is
not dependent on the absolute values of the potentials. Fig.4 shows the chamber
geometrical efficiency as a function of the ratio of the potentials at the electrodes.
With the ratio Ugyrip/Ucatn =~ 0.65, the geometrical efficiency reaches a value
exceeding 99.7%. It is also easy to see, that with an increased gap between
the cathode and the wires and with an invariable step of wires, the geometrical
efficiency also increases.
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Figure 4: Geometrical efficiency of the chamber with 2z = 2.0mm, s = 1.0mm,
h = 0.1mm as a function of Ustrip/Ucath-

From the configuration of the field lines in the chamber, it becomes clear
that part of the positive ions, left after the avalanche electrons moved onto the
wire, will drift not towards the cathode, but towards the dielectric film. Thus,
part of the ions, instead of drifting the whole way towards the cathode (about
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2mm), move to the film and their paths do not exceed 250pm. This leads to a
reduced relaxation time of the residual space charge around the wire, and thus to
increasing chamber counting rates. The area from which the ions drift towards
the film is shown in Fig.5. In the same figure the avalanche formation area is
given for comparison. As is seen, the overlap of these areas covers about half
the avalanche formation area. Due to the electron diffusion over the avalanche
formation area, about half the produced ions will drift towards the film.

Y, mm

Figure 5: Line separating two areas from which ions drift to the film and to
the cathode correspondingly (solid line). The dashed line shows the avalanche
formation region (E > 20kV/cm).

4 Amplitude characteristics of the chamber

In this part the impact of various chamber parameters on the gas amplification
will be considered. The above mentioned methodic allows calculating the field
at any point of the chamber. Bearing in mind the dependence of the Townsend
first coefficient o on the field strength, gas amplification is possible to calculate
according to the formula

G= exp(/a(E)dl), (12)

where integration is carried out along the electron drift path (that is along the
field line). It is clear that this formula does not take into account the influence of
the avalanche space charge, which becomes noticeable at a higher amplification
(2 5-10°), the influence of electron diffusion, as well as the statistical character
of cluster formation along the particle trajectory. Nevertheless, this formula is
suitable for calculations if it is considered as an approximation which allows
evaluating the impact of various factors on the amplification in the chamber.
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Evaluation of the gas amplification was based on the data for « from [6]. Fig.6
shows the gas amplification as a function of the point of creation of a primary
electron. As is seen, the amplification coefficient can differ by almost a factor
of two, which, in its turn, will lead to a broader amplitude distribution in the
chamber. For comparison the same dependence is given for a chamber without a
dielectric film. This dependence is of the opposite character, but the amplification
coefficient differs by a factor of two as well. Thus, the amplitude distribution in a
chamber with a dielectric film is not expected to differ greatly from the amplitude
range of a usual chamber.
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Figure 6: Amplification in the chamber with 20 = 2.0mm, s = 1.0mm,

h = 0.1mm as a function of the point of creation of the primary electron ().
For comparison the same dependence is given for a usual proportional chamber
without a dielectric film with the same gap and step [1].

A more realistic description of the amplification can be achieved by taking into
account the statistical character of cluster formation along a particle trajectory
(see Fig.7). Let us assume that a particle crosses the chamber at an angle of 6.
Then the total length of the track inside the gas gap in the chamber is equal to
d = zycos(#). The track may cross several neighboring chamber cells. In this
case, electrons produced as a result of ionization will drift towards different wires.
Let us consider the amplitude characteristics of a single cell. Let us assume that
the counting rate is uniform over the chamber and the tracks cross the chamber



at angles in the interval —10° < 0 < 10° with a track making a contribution
into the amplitude distribution only if half the track belongs to the given cell.
Thus, we exclude the cases when a track only touches the cell, with its major
part lying in the neighboring cell. As is known, clusters are distributed along the
track according to Poisson’s law

P(n) = (ud)"e;c\?(—m)’

(13)

where P(n) is the probability of production of n electrons on a track with a
length d, 11 is the number of electrons per track length unit created by a passing
particle. As is known, for the gas CFy p=5lem™ [7]. In Fig.8 an example of
amplitude distributions, obtained by the above-mentioned method, is given for
chambers with a dielectric film and without it. As could be expected from Fig.6,
the widths of the distributions are approximately equal.

Figure 7: Cluster formation along the particle track.

Fig.9 shows the most probable amplitude as a function of the voltage at the
strips and cathode. As is clearly seen from the figures, with an increase of the
voltage by 300V at the strips, the amplitude increases by a factor of more than
10, whereas the amplitude increase amounts to 30% with the same increase of
the voltage at the cathode. Apart from that, the growth of amplitude along with
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Figure 8: An example of amplitude distributions for MWPC with a dielectric
film (empty histogram) and for a chamber without it (shaded histogram).
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Figure 9: Most probable amplitude for MWPC with a film as a function of strips
voltage (a) and cathode voltage (b).

10



the growth of voltage is exponential for the strips, whereas this growth for the
cathode is only linear. This indicates that the decisive factor for the amplification
is the voltage at the strips, with the voltage at the cathode conditioning only the
drift of the primary electron.

As the wire lies on a dielectric film and it is influenced by the electrostatic
forces from the strips, the wire is expected to be to one extent or another pressed
in the film. Let us evaluate the forces acting on the wire. The linear density of
the charge on the wire can be calculated by integrating the field strength along
the closed curve enveloping the wire at a small distance from it:

n=27reo/E"-dZ (14)

With Uegen, = —2700V and Uy, = —1700V the calculation of the integral leads
to the value n = 4.6 x 1077Q)/m. On the other hand, the density of the charge
on the film is calculated analogously:

o(z) = E(z,y = h+0) - diiy = E,(z,y = h+0), (15)

where 77 is the unit vector normal to the surface, with the expression E(x,y =
h +0) to be understood as the value of the field directly above the film. Fig.10
shows the distribution of the surface density of the charge near the wire. Thus,
the force acting on the wire is possible to evaluate according to the formula:

__n_ [o)
21eg J T(x)

dz, (16)

where r(z) is the distance between the point with the coordinate z on the film
surface and the center of the wire. Upon substituting the known values for  and
o(x), the calculations give F' ~ 6 N/m.

Bearing in mind the force with which the wire acts on the film, it is possible
to evaluate the value of the wire pressing into the film according to formula [8]

Ah = :TI;— In (ro/h), (17)
where K is the Young modulus of the film material, rq is the wire radius, h is the
film thickness. If the Young modulus of the film equals 2- 108 Pa (polyethylene),
then Ah ~ 0.1umn. When such a chamber is operated, a mixture containing iso-
propylene alcohol vapor is blown through the chamber to provide the necessary
film conductivity. As the film is saturated with the alcohol and becomes friabler,
its Young modulus may become lower than that of the dry one. That is why the
pressing-in value can be significantly greater. Fig.11 shows the most probable
amplitude and amplitude resolution as a function of the value of the wire pressing
into the dielectric film. As is seen, at first the amplitude decreases until ~ 75%,
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Figure 10: a) Surface density of the charge of the film near the wire; b) value of
the potential of the electric field near the film. Ucyp = —2700V Ugyrip = —1700V.
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Figure 11: Most probable amplitude (a) and amplitude resolution (b) as a func-
tion of the wire pressing into the film.
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but then it remains approximately at the same level. As far as the amplitude
resolution is concerned, it is practically not dependent upon the degree of the
wire pressing into the film. It is important to note that in the calculations the
counting rates were implicitly supposed to be low, that is charge accumulates
neither around the wire, nor on the film. At high counting rates the charge
accumulated on the film, without enough time for evacuation due to the low
conductivity of the film, will influence the electric field configuration, and thus,
the amplification. The charge relaxation time can be evaluated in the following
way. From equations (1) and (8) it follows that

divy = gp. (18)
Bearing in mind that divj = —0p/0t, we get
_
p=——0p/0t, (19)
therefore, the charge evolution in the film obeys the following law:
p(t) = pyexp (—gt), (20)

where pg is an initial charge distribution. The typical value of the dielectric
constant for the film material is 3 = 5€¢o and the conductivity is 10~7Q~1m-1.
Thus, the characteristic time of charge relaxation is 7 ~ 3. 10~4s. Taking into
account that the transverse avalanche size is about 100um owing to diffusion and
that the counting rate is stable, we get that the counting rate for 1em of wire,
giving rise to a significant influence of the charge accumulated on the film, is
equal to ~ 3-10°s~1. Or, for a chamber with the step lmmm the critical counting
rate ~ 3-10%s~Lem 2. It is necessary to note that such a consideration does not
take into account the field distortion, which is due to the charge accumulated on
the film.

The influence of the charge accumulated on the film can be evaluated in the
following way. Let the average amplification in the chamber be equal to A. Then
the total charge accumulated in a time unit on a wire length unit equals

C] = AEN, (21)

where e is the electron charge, N is the counting rate per a wire length unit. The
rate of ion evacuation due to the film conductivity equals

Cz = p/To, (22)

where p is the charge accumulated on the film per a wire length unit. Stationary
conditions can be written in the form of equality Cy = C,. For evaluation one may
assume that the charge is distributed around the wire according the Gaussian law.
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Taking into account (21) and (22), the following can be written for the surface
density of the charge accumulated around the wire:

_ AeNTr (z—my)?
o(z) = Ax\/EeXp( STONSE ),

where Az characterizes the width of charge distribution around the wire. It
is seen from Fig.5 that for a chamber with one millimeter step one can assume
Az =~ 100um. It is necessary to note that with account of additional charge on the
film the field in the chamber cannot be calculated in the form of superposition of
the field in the absence of accumulated charge on the film and the field produced
by this charge. This is conditioned by the fact that additional charge on the
film would influence the value of charge induced on the wire and thus change the
chamber "unperturbed” field. To calculate the field in this case, it is necessary
to solve the Laplace equation once again, but this time with boundary conditions
taking into account the current from the film surface. Charge leaving a surface
unit in a time unit is equal to o(z)/7p. Then, taking into consideration the Ohm
law, for the Laplace equation in the film the boundary condition on the boundary
between the film and gas can be presented in the form

(23)

Ei(z,y=h=0)= Lo() (24)
To
As this boundary condition influences only the vector of the right side of (11)
and the transition matrix remains unchanged, the method of successive over-
relaxation can be applied once again to solve the difference problem.

Fig.12(a) shows the linear density of the charge induced on the wire as a
function of the chamber counting rate. The values of voltage at the cathode and
strips are selected in such a way that amplification amounts to 5 - 105 at low
counting rate when the influence of accumulated charge can be neglected. Such
amplification allows one to neglect the influence of the avalanche field on the
avalanche development. As is seen from the figure, increased counting rate leads
to an increase of the accumulated charge on the film, which in its turn decreases
charge induced on the wire. This leads to a drop in amplification. Fig.12(D)
shows the most probable amplitude as a function of the chamber counting rate.
It is clear that the amplification drop value also depends on the absolute value
of amplification. With higher amplification the influence of counting rate on the
chamber amplitude characteristics takes place earlier.

5 Conclusion

In this paper electrostatic properties of multiwire proportional chambers with a
dielectric film of a low conductivity v ~ 10~ "Qem have been considered. Distri-
bution of the field strength in the chamber and configuration of the field lines have
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Figure 12: Linear density of the charge induced on the wire (a) and the most
probable amplitude (b) as a function of chamber counting rate. 7y and A, are
the linear density of the charge and amplitude at low counting rate when the
influence of the charge accumulated on the film can be neglected.

been obtained. The amplitude characteristics of such chambers have also been in-
vestigated. It is necessary to note that in so doing, the influence of the avalanche
space charge was not taken into account (which is valid up to the amplification
~ 5-10°) as well as the influence of the avalanche diffusion. In the framework
of this model it was shown that the amplitude distribution for a chamber with
a film did not differ much from the distribution in a usual chamber. The major
influence on the value of amplification is exerted by the value of voltage applied
to the strips. The influence of the cathode voltage value is considerably weaker.
Generally its role is to provide the necessary velocity of the drift of primary elec-
trons. As far as the counting rate characteristics are concerned, the calculations
showed that at an amplification up to ~ 5-10° the chamber continued working
up to the counting rate ~ 5-10°m=2s~!, if a 20% drop in the amplitude was
regarded as allowable in comparison with the signal amplitude at low counting
rate.
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subject of this paper. Also I am grateful to Prof. V.I.Komarov for a careful
reading of the manuscript and valuable comments.
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