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1 Introduction

The using of renormalization group (RG) approach to the analysis of fully developed
magnetohydrodynamic (MHD) turbulence belongs to often discussed topics of clas-
sical stochastic processes [1-5]. In these investigations the randomly forced HD and
MHD equations have been used to obtain a regular expansion of scaling exponents
in the small parameter ¢ = 2 — A. It is the deviation of the power of wave-number
A in the correlation function of the random force from the critical value A, = 2 , at
which the corresponding field theory is logarithmic [6].

Recently the RG approach to the fully developed turbulence most has been carried
out for the analysis of 2-dimensional turbulence [7], or in general, d-dimensional
(d > 2) turbulence [8]. The authors notice that at two dimensions an additional class
of divergences appears because the long-range correlation function of the random
force is a power-like function of the wave-number proportional to k*~%2¢, which is
a singular function of k? at the origin supposing d = 2. At two dimensions this
correlation function is renormalized by counter-terms proportional to &2, which are
added to the force correlation function at the outset. Therefore, in d-dimensional
case one must use an additional expansion, the parameter of which is 26 = d — 2
besides 2¢ [3].

Here we apply a modified minimal substraction scheme [9] based on the fact that
the tensor structure of counter-terms is left generally d-dependent in the calculation
of divergent part of Green’s functions, and it allows us to investigate behaviour of
the system under continual transition to d = 3 beginning from d = 2. We attempt to
restore the limit Prandtl number for d — 3 and also to establish the stability region
supposing an arbitrary dimension d, 2 < d < 3. This paper revises the analysis of
recent paper [10] of the randomly forced MHD equations with the proper account
of the additional UV - divergences (appeared in d = 2) in the developed MHD
turbulence in the frame of double expansion approach [4], and, it is alternative to
performed analysis of [5]. Renormalization of the corresponding field-theoretic model
is performed in one loop approximation, and, it is logical continuation our previous
paper [4].

2 Formulation of problem

For convenience there are remained some fundamental treatments of the problem
formulation. The present paper deals with study of the general model of stochastic
MHD. Therefore, unlike the previous paper [4], where the Lorentzian term was omit-
ted in the Navier-Stokes equation, here the model is described by system of equations
for the fluctuating local incompressible velocity field, v(z), z = (x,t), V-v = 0,
and magnetic field, b(z) in the general form

v+ (v-Viv—(b-V)b—vViv =f", (1)
db+ (v-V)b—(b-V)v —vuV?b = f°, (2)
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with V - £¥ = 0 and V - f® = 0 because the fields v, b are solenoidal, V.v = Vb=0.
The statistics of v, b is completely determined by both the non-linear equations (1,2)
and the statistics of the external large-scale random forces £V, fP. The dissipation
is controled by the parameter of kinematic viscosity v; u denotes inverse Prandtl
number.

As usually, statistical properties of the Gaussian forcing with zero mean values
of (£¥) =0, (f*) = 0 are determined by relations:

(fim)fi(@)) = 0,
(f:(fl)f:($2)> UVS Djs (-7;1 — T, [179111191:2])
() f(z2)) = u?v® Dj, (21 — T2; @, Gs10, Go20)) (3)

where the correlation matrix

Il

Djs (z;[a,91,62]) = d(ta —t2) / %d_ Pjs(k) exp [ik.x]
x [91 f2-20-2ac | 9 kz] (4)

with transverse second-rank projector Pj,(k) = 8,5 — k;ks/k?, is determined by
constants g1, g2, and, the relation d = 2 + 2§ was used in exponent of k. The
free parameter a controls the power form of magnetic forcing. The necessity to
introduce a combined forcing and also to include the additional couplings (gu2, go2)
for obtaining of multiplicatively renormalizable two dimensional stochastic MHD, is
absent in traditional formulation of stochastic hydrodymamics. The definition (4)
includes two principal — low- and high-wave number — scale kinetic forcing separated
by a transition region at the vicinity of the characteristic wave-number of order
O([gv10/ gwoﬁ). In language of classical hydrodynamics the forcing contribution o< k2
corresponds to the appearence of large eddies convected by small and active ones and
it is represented by the local term of v/V>v'. In its analogy the term b'V2b' is added
to the magnetic forcing. So, our stochastic MHD system can be described by the
field-theoretical action

% [ax [ axa

{uo V3 v}(@1) Djs (€1 — 23 [1, Guro, Juzo]) v (2) +

ud vo® V(1) Djs (31 — 25 [, o1, Guz0]) U (72) } +

+ /dxv' . (—&v +1yViv—(v-V)v—(b- V)b)

+ b (~0b +uo v Vb + (b V)v — (v V)b) . (5)

S

+

All dimensional constants gu10, gs10, Gu2o and geso, Which control the amount of ran-
domly injected energy given by (3), (4), play the role of coupling constants of the

2



perturbative expansion. Their universal values have been determined after the para-
meters €, 6 have been choosen to give the desired power form of forcing and desired
dimension.

For the convenience of further calculations the factors vu, and »3u3 including
the "bare” (molecular) viscosity v and the "bare” (molecular or microscopic) mag-
netic inverse Prandt] number uy have been extracted. The bare (non-renormalized)
quantities are denoted by subscript "0”.

3 One loop order renormalization

We apply usual RG procedure and corresponding pertubative techniques described
elsewhere in details [11]. The model (5) is renormalizable by the standard power-
counting rules, and for limits ¢ — 0, § — 0 possesses the ultraviolet (UV) di-
vergences which are present in one-particle irreducible two-point Green functions
oY Tv'e T V6 TV 199 and vertex function I''® . Due to the last the field b
(together with b') also must be renormalized. Free propagators A have been calcu-
lated in [4].

The UV divergences proportional to 1/¢,1/8,1/(2e+46), 1/(2ae+8), 1/(e(1+
a) + &), have been removed by adding suitable counter terms to the basic action
obtained from (5). Namely, the original form of the action S implies the counter
terms

Scount = / dx[v (1-Z)vV?v+ur (1-Z,)b'V?b

+ §(Z4 —Durbgopu™ ’V2v’+ (Z5 — 1) utlg, ¥ b'v3’
+ (1-2Z3)v'(b-V)b]. (6)

Within UV renormalization the divergences appearing in form of Laurent series in
the poles are contained in the constants Z,, Z,, Z;, Z; renormalizing the "bare” pa-
rameters €9 = {gio, Yo, uo} and also the constant Z; renormalizing fields b, b’. The
remaining fields ', ¥ are not renormalized due to the Galilean invariance of the model
(5).

Renormalized Green functions are expressed in terms of the renormalized para-
meters

o1 = Guiop *ZiZ, gv2 = Gv2o Mz‘s ZEZ,77,
g = Gnop 22173757, G2 = G0 p® 2,232 25,
v = i, u = uyZy'7; (7)

appearing in the renormalized action S¥ connected with the action (5) by the relation
of multiplicative renormalization: S®{e} = S{eg} . The renormalized action SE,
which depends on the renormalized parameters e(u), yields renormalized Green func-
tions without UV divergences. The expressions (7) yield the S-functions analogous
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to obtained in [3, 4]:

Bot = gu1 (—2e+2m1 +72), Byvz = gu2 (20 + 271+ y2 — 74)
Bt = gn (—2ae+7+2% —73), Bz =092 (26 +71 + 27— 73— 75)
Bu = uln— 1) 8)

The calculation of UV divergences gives Z-constants in the form
Sq Gv2 9«;1) (gbZ gv1
Z = 1+ 2% Jvz _ ol g2 _
! * e [“’\5<25 2¢) T2\ %5 QaG)] ’

Sq Gu2 gvl) (gbz gn1
= 1 — —_— T -
Z + (2m)(u + 1) [/\1 (26 2 ) F As 26 2@6):1 ’ ©)

Sq G Gv2  GuL | Gb2
Zy = lepn(_fn_fu, )
3 Teni "\ 2 T 2% 2ac T 25)°
Z, = 1+ Sa ﬁ ugs 2ugv1 G2 UGy + ) 2001902 @
‘ (2m)% gy \ 20 + 4e 2¢ 26 25 +4ae 2ae 26 )’
Sa A2 g1 Gb1 Guvi o2 | Gv29b1  Gu2 Gb2
Zy = 1 -
5 T et @t Do (25+ %e(l+a) 2  2a 2 )°

and in consequence one obtains ~y-functions :

8y 84 (Mige+Asg)
o= (@) (WAsgo+ A6 ), 2= @n)? w1 )
_ Sd _ Sd )\4 9 9
Vs = (2ﬂ)d/\7( 9o+ 9), M= Gl g (ugy + ), (10)

Sa X gk
@m)a(1+u) g ’

T =

where S; denote d-dimensional sphere, Sy = 27%2/T'(d/2) , and gy = gu1 + gu2 ,
9 = o1 + v , and d-dependent A-coefficients are

d—1 d—2 d-3
A= g M= M T
&? -2 d—1 1
M= sy M= ravy MT das)
) _d+d-4
T 4dd+2)



4 Fixed points

4.1 ”Kinetic” fixed point

Within the approach discussed in Ref.[4] the nontrivial stable ”kinetic” fixed point
of RG equations has been found:

u* (,/(1s+9d)/d— 1) /2,

. (2m)%8e(ur +1)[3d® — (9 — 4e)d? — 6d(e — 1) + 4e]
m = g 9(d — 1)2(d + 2¢ — 2) ’
(2m)¢ 8e?(u* + L)(d? — 2)

2 = 7, 9(d - 1)%(d +2¢ - 2) ()

and g3 = g5, = 0. This fixed point is identical with found one in [4] for case when
the magnetic field is considered as a passive admixture.

4.2 ”Magnetic” fixed point

Let one examines a possibility of existence a nontrivial "magnetic fixed point”. The
magnetic fixed point is characterized by zeroth g}, and u*, so, the system of five
B-equations reduces to the three equations which can be obtained substituting -
functions (10) into the system of S-functions (8). Applying g,y = u = 0 one
obtains

41902 + G200y + a3gv2gs — aagy = 0,
—Ado+asge+asgy = 0,
a19p2 + A59v2gia + GsJo2gs — Grgu2ge = 0, (12)
where
_ 2ae _2(d—-2) _(d-1)
Ay = S—d7 a = S, ) as = od
_@-5)  _@-2) _(@+d-3)
BT ddv2) MTadd+2)’ ®T dd+2)
(5d% — 3d — 24) _(@d-2)
o dd+2) =00 (13)

This system can be analytically solved with respect to gy, gs1, gr2 - Because all g;
must be positive, the system (12) with g¢,; =u =0 gives the only solution,

_ Osgp — Aq
Gv2 = ?
as



where

gy =

_ gs(asgy — Ao) — asar
as(a1 + 2a6gs — Ao)
gb(asgb - Ao) — A507

_ , 14
92 as(a1 + 2a6gs — Ao) (14

I

gb1

—a1a506 + a3a54g — 2a2a¢40 + a5V D
2(a4a? + azasas — axaf)

H

D = alaZ + 4ajaqas 4y + 2a,a3a640 + a2 A2 + dagay A

Note that the parameters a and € appears in the solution only as the product ae in
Ap. Numerical analysis of the expressions (14) shows that all g; have a discontinuity
at dg = 2.02303, and, a physical solution non exists for any a,e if d < dy . The
stability region of the magnetic fixed point is demonstrated in Fig. 1.
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Figure 1: The stability region of the magnetic fized point in the plane of {d,a}
for the physical value of e=2 .

5 Conclusions

In this paper we revised the calculations of stability ranges of developed magneto-

hydrodynamic turbulence [10] and it is logical continuation of previous paper /4]

L
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where the magnetic field has been considered as a passive admixture. The modified
standard minimal substraction scheme [9] has been used in the dimension region of
d > 2 up to d = 3. Two stable fixed point has been found. The first, the kinetic one,
corresponds to the fixed point found in [4] with nonzero inverse Prandt] number u. A
new nontrivial results of the present paper is connected with analytical calculation of
the nontrivial stable fixed magnetic point with u = g,; = 0 but nonzero Gu2, g1 and
o2 . A physical region of the renormalization group fixed point lies below the ae = 2
line, see in Fig. 1, where a stability region of the Kolmogorov scaling regime is also
demonstrated. This point losses stability below critical value of dimension d. = 2.36
(independently on the a-parameter of a magnetic forcing) as well as below the value
of a, = 0.146 (independently on the dimension). This result slightly modifies the
result of a numerical calculation in Ref.[5] performed beyond the frame of the double
expansion method which was used here.
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IOpuniun M., Crernuk M. E17-2002-31
Ycroiuuselii pexuM d-mepHoit MII-TypGysieHTHOCTH

MeTonoM peHOpMaIU3aLMOHHOM IPYIINIBI PACCMAaTPUBAETCS PA3BUTAs MATHUTO-
TMAPOIMHAMUYECKas TypOYIEHTHOCTh C NBOMHBIM Pa3lOXEHHEM B OKPECTHOCTH
JBYMEPHOIO IPOCTPAaHCTBA B UHTEpBaNie d =<2,3>. Pabora sBnseTcs JIoru4ecKum
npopomxenueM coobmenus OUSIU E17-2001-20 (dyOua, 2001). Ina anamuza
YCTOMYMBOCTH DEXHMMa KOJIMOTOPOBCKOIO CKEWIMHIa MCIOJb30BaHA HEKOTOpas
MonucUKaLua CTAaHIAPTHOH MUHUMAJIBHOM CxeMsbl BbluMTaHuit. KpoMe H3BeCTHOI
KMHETHYECKON (PMKCHPOBAHHON TOYKH PacCYUTaHa cTaOWIbHAS MACHUTHAs TOYKa
M poBepeHa 0671acTh ee cTabuIbHOCTH. OHA TepsAeT CTaGHIBHOCTb HUXKE KPUTHYE-
cKoro 3HayeHHus d, =236 (HE3aBUCHMO OT MapaMeTpa d MArHMUTHOHM HaKayKH),

a TaKXe HMXe KPUTHYECKOro 3HavyeHud a.=0,146 (He3aBHCHUMO OT pa3MepHO-
ctu d).

Pa6ora BeimonHeHa B JlabGoparopuu Teopetudeckoii dusuxku um. H. H. Boro-
mobosa OUSN.

Coobuenue OGbeIHHEHHOTO HHCTHTYTA SAEPHBIX HccienoBanmii. Iy6na, 2002

Jurcisin M., Stehlik M. E17-2002-31
Stable Regimes of d-Dimensional MHD Turbulence

Developed magnetohydrodynamic turbulence near two dimensions d up
to three dimensions has been investigated by means of renormalization group
approach and double expansion regularization, and it is logical continuation
of the previous Communication of JINR E17-2001-20 (Dubna, 2001). Some
modification of standard minimal substraction scheme has been used to analyze
the stability of the Kolmogorov scaling regime which is governed by renormaliza-
tion group fixed point. Besides the known kinetic fixed point the magnetic stable
fixed point has been calculated and its stability region has been examined.
The point loses stability below the critical value of dimension d, =236 (indepen-
dently of the a-parameter of a magnetic forcing) as well as below the value
of a.=0.146 (independently of the d-dimension).

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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