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1 Introduction

In 1934-1937, the Russian physicist P.A. Cherenkov performed a series of experiments
under the suggestion of his teacher S.I. Vavilov. In them, photons emitted by Ra
atoms passed through water. They induced the blue light observed visually. Applying
an external magnetic field, Cherenkov recognized that this blue light was produced
by secondary electrons knocked out by photons. ‘

These experiments were explained by Tamm and Frank in 1937-1939 who at-
tributed the above blue light to the radiation of a charge uniformly moving in medium
with a velocity greater than the light velocity in medium.

Theoretically, when considering the Cherenkov radiation, one usually treats ei-
ther the unbounded charge motion with a constant velocity (this corresponds to the
so-called Tamm-Frank problem [1]) or the charge motion on a finite interval with
an instantaneous acceleration and deceleration of a charge at the beginning and ter-
mination of its motion. This corresponds to the so-called Tamm problem {2]. The
physical justification for the Tamm problem is as follows. A charge, initially uni-
formly moving in vacuum (where it does not radiate), penetrates into the transparent
dielectric slab (where it radiates if the condition cos Ocn = 1/6n for the Cherenkov
angle is satisfied) and, finally, after leaving the dielectric slab, moves again in vac-
uum without radiating (we disregard the transition radiation at the boundaries of
the dielectric slab). The appearance of radiation at the moment when a charge enters
the slab and its termination at the moment when it leaves the slab are usually inter-
preted in terms of the instantaneous charge acceleration at one side of the slab and its
instantaneous deceleration at its other side. Since the Tamm problem is more phys-
ical than the Tamm-Frank one, it is frequently used for the analysis of experimental
data. Another possible application of the Tamm problem is the electron creation in
some space point (nuclear # decay) with its subsequent absorption in another space
point (nuclear B capture). Tamm obtained a remarkably simple analytic formula
describing the intensity of radiation and interpreted it as the Cherenkov radiation
on a finite interval [2].

Another viewpont on the nature of radiation observed by Cherenkov is due to
S.1. Vavilov [3]. According to him, ”We think that the most probable reason for the
7 luminiscence is the radiation arising from the deceleration of Compton electrons.
The hardness and intensity of v rays in the experiments of P.A. Cherenkov were
very large. Therefore, the number of Compton scattering events and the number
of scattered electrons should be very considerable in fluids. The free electrons in a
dense fluid should be decelerated at negligible distances. This should be followed
by the radiation of the continuos spectrum. Thus, the weak visible radiation may
arise, although the boundary of bremsstrahlung and its maximum should be located
somewhere in the Roentgen region. It follows from this that the energy distribution in
the visible region should rise towards the violet part of spectrum, and the blue-violet
part of spectrum should be especially intensive” (our translation from Russian).

This Vavilov explanation of the Cherenkov effect has given rise to a number of



attempts (see, e.g., [4,5]) in which the radiation described by the Tamm formula was
attributed to the interference of bremsstrahlungs (BS) arising at the start and end
of motion.

On the other hand, the exact solution of the Tamm problem in a non-dispersive
medium was found and analyzed in [6]. It was shown there that the Cherenkov
shock wave exists side by side with BS waves and not in any case can be reduced
to them. Then, how this fact can be reconciled with the results of [4,5] which
describe experimental data quite satisfactorily? The possible explanation of this
controversy is that the exact solution obtained in [6] was written out in the space-time
representation, while the authors of [4, 5] operated with the Tamm formula related
to the frequency representation. It might be happened that the main contribution
to the exact solution of [6] describing the Cherenkov wave is due to the integration
over the frequency region lying outside the visible part of the intensity spectrum.
Then, in principle, the radiation in the visible part of spectrum could be described
by the Tamm formula frequently used for the interpretation of experimental data.

The aim of this consideration is to resolve this controversy. We shall operate
simultaneously in the spectral representation as authors of [4,5] did and in the time
representation used in [6]. Instead of the original Tamm problem in which a charge
exhibits instantaneous acceleration and deceleration, we consider a charge motion
with a finite acceleration and deceleration and the uniform motion on the remaining
part of a trajectory. This allows us to separate contributions from the uniform and
non-uniform parts of a charge trajectory. Formerly, analytic and numerical results
for the motion with the velocity change small as compared with the charge velocity
itself were obtained in [7,8]. Unfortunately, the method used there does not work in
the treated case, since the charge is accelerated from the state of rest up to acquiring
the velocity close to that of light. Numerically, the smoothed Tamm problem with a
large velocity change was considered in [9], but their authors did not aim to resolve
there the above controversy between Refs. [4,5] and [6].

The plan of our exposition is as follows. In section 2, exact mathematical formulae
describing the EMF and radiation intensity of a charge arbitrary moving in medium
are presented. Various approximations needed for the subsequent exposition are
discussed. Section 3 is devoted to the consideration of particular cases. At first
(section (3.1)), the radiation arising from the pure decelerated (accelerated ) charge
motion in medium with arbitrary acceleration is considered. The corresponding an-
alytic formulae and numerical results are presented. This particular case is realized
in heavy-water nuclear reactors where the electrons arising from a (-decay, move
with deceleration up to their complete stopping. In subsections 3.2 and 3.3, the
analytic formulae are obtained desribing the radiation intensity from a charge whose
trajectory includes accelerated, decelerated, and uniform parts. It is shown that con-
tributions of accelerated and decelerated parts of a trajectory decrease when their
lengths tend to zero (despite the fact that the acceleration is infinite in this limit).
This means that the radiation intrensity described by the Tamm formula cannot be
attributed to the interference of BS shock waves arising at the beginning and ter-
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mination of a charge motion. In section 4, using the asymptotic behaviour of the
Fresnel integrals, we rewrite formulae of section 3 in terms of elementary functions.
This may be useful for the qualitative interpretations of calculations made in section
3. In section 5, we reconsider the original Tamm problem. It turns out that in the
framework of the approximate solution found by Tamm, it is impossible to discrim-
inate between the standard interpretation [2] of the Tamm intensity formula (which
attributes observed radiation to the radiation of the uniformly moving charge with
the velocity greater than light velocity in medium) and the one used in [4,5] (which
associates observed radiation with the interference of BS shock waves). However,
this discrimination is possible if we treat the Tamm problem using the exact time
reprentation found in [6] and the spectral representation given in section 3.2. In fact,
we prove that in some time interval, there exist the BS shock wave originating from
the beginning of motion and the Cherenkov shock wave, and there is no BS shock
wave originating from the termination of motion. Due to the lack of the second BS
wave, there is no interference between these BS waves, and, as a consequence, the
Cherenkov shock wave is not due to their interference. Further, the continuous tran-
sition from the smoothed Tamm problem studied in section 3.2 to the original Tamm
problem shows that the latter does not include the contributions of instantaneous
acceleration and deceleration. Thus, the above-mentioned alternative interpretation
of the Cherenkov radiation is not sufficient. The discussion of the results obtained
and their short resume are given in sections 6 and 7.

2 Main mathematical formulae

Let a point charge move along the z axis with a trajectory z = £(¢) in a non-dispersive
medium with the refractive index n. Then, its charge and current densities are equal

to
p=ed(2)8(y)d(z — E(1)), . = ev(t)8(2)8(y)d(z — £(t)), © = %’

We need also Fourier transforms of these densities

p(w) = o= [ exp(—iwt)p(t)dt = 5-8(2)8(y) [ exp(—iwt)é(z — €(t))dt =

= ﬁc?(x)é(y) exp(—twt(2)), J.(w)= :‘;;)6(35)6(3;) exp(—iwr(2)), (2.1)

where 7(z) is the root of the equation z — £() = 0. It was assumed here that v > 0,
that is, a charge moves in the positive direction of the z axis.

The Fourier transform of the vector potential corresponding to these densities at the
space point z,y, z is equal to

e dz’

Az(“") = ﬁc Eexp(_izlj)’ (22)

4



where ¢ = wr(2’) + knR and R = \/:cz +y?+ (2 — 2')? and k = w/c. The nonvan-
ishing Fourier component of the magnetic field strength is

1ek,rsin @

Hy(w) = exp( w)(1 - ) (2:3)

2me

Here k, = w/c, and ¢, = ¢/n is the light velocity in medium. Qutside the motion
axis, the electric field strengths are obtained from the Maxwell equation

curl A (w) = ““E( ). (2.4)
This gives:
esinf [ dz ) 1
Bow) = -2 [ Fem(-i)(1 - L)+
tekrsind [ dz'(r — 2’ cosb) 3 3 .
2mwe / R3 (- ﬁ h knRz)exp(-—u/)). (2:5)

The energy flux in the radial direction per unit time and per unit area of the obser-
vation sphere of the radius r is

&PwW c
S, = W = EEg(t)Hd’(t)

The enery radiated for the whole charge motion is
fe o) c (o] c oo . . .
_/ S,dt = E_/ dtEs(t)Ho(t) = £ 0/ dw[Es(w) H(w) + Ej(w)Hy(w)].  (26)

Usually, radial energy fluxes are related not to the unit area, but to the unit solid
angle. For this, one should multiply Eq. (2.6) by r? (r is the radius of the observation

sphere). Then,
/ S,dt = / (w)dw,
0:(8) = SV = B 0) Hy () + By () Ho(w)] (27)

Substituting (2.3) and (2.5) into (2.7), one gets for the nonvanishing components of
the energy fluxes

where

e?k*nrsin? 0
o lw) = —->
(@) 4rn2c

dz’' —z'cos
{/ﬁ(coswl smd)l)/ co [cos (1 — k23Rz) k3R31n1/)1]dz+
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+/c;z_zz(sin¢]+cos¢1) /r zcosO[Slm/)l( k:;z) 3 cosz/)l]dz}, (2.8)
where 1, = wr(2’)+kn(R—r). Equation (2.8) is very convenient, since it contains 1
rather than ¢. For the observation distance r much larger than the motion interval
L = 2z,, the second term in %, is of the order k,zo which is much smaller than
¢ ~ k,r. This fact greatly simplifies calculations for large frequencies. Equations

(2.8) are exact and valid for arbitrary motion.
Since in real situations always k,r >> 1 (for example, for A = 5-107%cm,r =
100cm and n = 1.5, k,r is about 107), one can drop terms with &, R in denominators.

Then,

e?k?nrtsin’® 0 dz cos r—2) dz cos f
o (w) = ey [ 1/)1 / ( cos 1+
dz sin 1/)1 / (r — 2 cos 0)d sin ], (2.9)

If, in addition, the motion interval L is much smaller than the radius r of the obser-
vaton sphere, one can disregard the ratios 2’/r outside the ¥, function:

62k nsin? @

o, (0) = ————— (/dz cos ¥;)? /dz sin ¢1)?]. (2.10)

Let the motion interval L be finite. In the 3; function, we develop R up to the
second order w.r.t. z'/r:

knz?sin%0

¥ = wr(2') — knz' cos § + 5,

(2.11)
Since 9, enters into sines and cosines, the last term in this expression can be neglected
if knz"sin?60/2r << 1. Or, taking for sin# and 2’ their maximal values (sinf =
1, 2z’ = L), one gets
knL?
2r

In realistic conditions, this equation is not satisfied. For example, for

<< L (2.12)

A=4-10"%cm, L=1cm, r=100cm and n =15,

inequality (2.12) takes the form 10® << 1. Complications arising from this fact were
studied in [8,10]. However, here we are mainly interested in investigating effects aris-
ing from the charge acceleration and deceleration. Thus, in all concrete calculations,
we deliberately disregard the last term in the expansion (2.11) of ;. In this case,
¥y is reduced to

1 = wr(2') — knz' cos . (2.13)



For the rectilinear motion, this approximation gives the famous Tamm formula

or(8) = e [Sinosmwto(l — Bncos )

2 _* _ Y
cosd —1/6, P to_v bn Cn (2.14)

A question arises, why it is needed to use the approximate expression (2.13) although
the numerical integration is rather easy [9]. One of the reasons is the same as for the
use of the Tamm formula which does not work at realistic distances [8,10]. Despite
this fact and due to its remarkable simplicity, the Tamm formula is extensively used
by experimentalists for the planning and interpretation of experiments. Analytic
formulae of the next section are also transparent. Since acceleration effects are
treated in them exactly, they are valid under the same condition (2.12) as the Tamm
original formula (2.14), but include, in addition, the charge finite acceleration (or
deceleration). Another reason is that experimentalists want to know what they, in
fact, measure. For this they need rather transparent analytic formulae to distinguish
contributions from the uniform and accelerated (decelerated) charge motions. The
formulae presented in the next section satisfy these requirements and may be used
for the rough estimation of the acceleration effects. After this stage, the explicit
formulae presented in this section may be applied (as it was done in [9]) to take into
account the effect of finite distances. Qur experience [9] tells us that exact numerical
calculations without preliminary analytical consideration is not very productive.

In what follows, we intend to investigate the deviation from the Tamm formula
arising from the charge deceleration. Let us consider particular cases.

3 Particular cases

3.1 Decelerated and accelerated motion on a finite interval

Let a charge move in the interval (21, z2) according to the law shown in Fig. la :

Z—-Z]+’U1(t—t1)+ a(t——tl) . (31)

The motion begins at the moment ¢; and terminates at the moment #;. The charge
velocity varies linearly with time from the value v = v, at ¢ = ¢, down to value
v=wvg at t =t3: v = v; +a(t — ;). It is convenient to express the acceleration a
and the motion interval through 2y, 29, vy, va:

v — o2 2(22 — 1)

o 2z — z3)° : A ve + vy

For the treated case, function 7(z) entering into (2.1) is given by

2
") =t 2 - (4 ST Yy (3:2)
2

Z9 — 21 ’Ul



When the condition (2.12) is fulfilled (i.e., ¢ is of the form (2.13)), the radiation

intensity can be taken in a closed form. For this we should evaluate integrals

z2 z2
I.(z1,v1;22,v2) = /cosz/)ldz, and [i(z1,v1; 22,v2) = /sinz,bldz (3.3)

z1 21

entering into (2.10). In a manifest form, they are given in Appendix. Using them,
we evaluate the intensity of radiation:

62k nsin?é

or(0) = —=5— (/dz cos 3by-)? /dz sint)?] =

e?sin® 0 _CS Y1 cos(ud — ud) + 1?[(Cs — Ci)? + (Ss — S1)+

~ 2n%cn cos? 0
+v2mal(C; — Cy)(sinu? — sinu?) — (S; — S1)(cos u2 — cos u?)}}, (3.4)

where we put

Ci=C(wm), C2=C(u), S1=S5(m), S:=S5(w), a= [nlc—ﬁ%ﬁ—?ﬁ—ﬂﬁ_ﬁ)l]m’

| k(22 = z1)n| cos §| 1 | k(22 = 21)n| cos 0] _ 1
“‘“J B ' neosd” "“J B -F 7 ncosd

C and S are Fresnel integrals defined as

S(z) = \/—‘/dtsmt2 and Cf(z \/‘/dtcost2

Plus and minus signs in (3.4) refer to cos§ > 0 and cos § < 0, respectively. Further,
Br = v1/c and B = vy/e.

When v; — v; = v, the intensity (3.4) goes into the Tamm formula (2.14) in which
one should put ¢y = (22 — 21)/2v.

Figure 2 demonstrates angular radial distributions for the fixed initial velocity 8; = 1
and different final velocities #;. The length of the sample was chosen L = 0.5¢m, the
wavelength A = 4-107%cm, the refractive index of the sample n = 1.392. For 3, close
to B1 (B2 = 0.99), the angular distribution strongly resembles the Tamm one. When
B2 diminishes (#; = 0.9 and @, = 0.8), a kind of a plato appears. Its edges are at
the Cherenkov angles corresponding to 3; and (3; (cos6; = 1/Bin, cosf; = 1/B3n).
On the Cherenkov threshold (8, = 1/n), o, has a peculiar form with fast oscillations
at large angles. This form remains the same for the velocities below the Cherenkov
threshold, but the oscillations are washed out for 8; = 0.

On the other hand, we can put 8, = 0 and change ;. The case 3, = 1 is shown in
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Fig. 2d. The curves corresponding to other (3, are shown in Fig. 3. The angular de-
pendences of the radial intensity are always smooth for #; = 0. the main maximum
of the radiation is at cos@ = 1/8;n which coincides with the Cherenkov radiation
condition. This means that under certain circumstances the bremsstrahlung can
imitate the Cherenkov radiation. Formerly, this fact was admitted in [11] for small
changes (v; — v << v1) of the charge velocity.

It was shown explicitly [12], in the time representation, that for the accelerated
charge motion, the Cherenkov-like shock wave arises at the moment when the charge
velocity coincides with the light velocity in medium. Then, the content of this sec-
tion may be viewed as the translation of [12] into the frequency language (which is
more frequently used by experimentalists).

The calculations of this section were performed with analytical formula (3.3) which
is valid both for the decelerated (v; > v;) and accelerated (v, > v;) charge motion
in medium. As far as we know, it is obtained here for the first time. The results of
this section may be useful for the studying of the Cherenkov radiation arising from
the decelerated heavy ions motion in medium (for them the energy losses are large
due to large atomic number) [13].

3.2 Simplest superposition of accelerated, decelerated, and
uniform motions

We also consider another problem corresponding to the motion shown in Fig. 1b. A
charge is at rest at the space point z = —z up to a moment ¢t = —#,. In the time
interval —tg < t < —t;, it moves with acceleration a up to reaching the velocity v at
the space point z = —z;:

1
z=—2+ 5a(t +1t0)%,  w(t) = a(t + to).

In the time interval —t; < t < t;, a charge moves with the constant velocity v:
z = vt. Finally, in the time interval ¢; < ¢ < ¢, a charge moves with deceleration a
up to reaching the state of rest at the moment ¢, at the space point z = 2:

z=2— %a(t —t0)?, v(t) = —a(t —to).

It is convenient to express o, 1, and a through zp, 2, and v:

v? 220 — 21 21
tg = —, t; = —.

‘= 2(20 — z1)’ v

<

After the moment ¢ = ¢o, the charge is at rest at the point z = 2.

Neglecting the terms of the order 1/k,r and higher outside the 1; function, one gets

for the radial intensity

e*k*r*n sin? 0
4m2c

(LI + L1.). (3.5)

or(w) =
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Here I, = ZIC("), I, = Z_[g"), (L) = (I( N, (L) = Z(lg"))', where
I(’)—-/dz—cosw,, I —/dz sin v;

. — 2 cos§
/d, zcos0cos¢i, (I;)/=/dzl%sin¢i, i=1,2,3,

where ; = kn(R — r) + 7; and R = (r? + 2 — 2r2' cos §)'/2. The superscripts 1,2
and 3 refer to the the accelerated (—zp < 2’ < —z;), uniform (—z; < 2’ < 21), and
decelerated (21 < 2’ < 2zg) parts of a charge trajectory. The functions 7;(z) entering
into t; are equal to

220 — 2
TIZ—%-F;\/(Z-*-ZO)(ZQ—ZO for —zp<z<-—z,

z
Tg:; for —z <2<z,

20—n 2 '
T3 = % —_ ; (ZO — Z)(ZO _ 21) for zZ1 <z<L 20 (3'6)

If the motion interval L = 2z is much smaller than the radius r of the observation

sphere, then
L=0=X19= IL=I=%19,

IS) = —T'—l—z_/dzlcoswia I‘Si) = —12-/d2,sin,¢,i’ 1= 1’2’3
T

and )
e’k rinsin? 6

2 2
P L2 + (1), (37)
If, in addition, the condition (2.12) is fulfilled, then

o.(0) =

I. = I.(—20,0; —21,v) + I.(—21,v; 21,v) + I(21,; 20,0),

I, = I(—20,0; —21,v) + I;(—21,v; 21,v) + I;(21,; 20,0), (3.8)
where the functions I.(21,v1; 22,v2) and I,(21, v1; 29,v2) are the same as in Eq.(3.3)
(they were explicitly written out in Appendix). Due to the symmetry of the problem,

I(=20,0; —21,v) = —I4(21,v; 20,0), I.(—20,0; —21,v) = I(z1,; 20, 0),
% [
(1 — Bncos 0)

Using (3.7), we evaluated a number of angular dependences for the § = 1 and
various values of z; (Figs. 4 and 5). Each of these figures contains three curves

(1 — Bncos )], (3.9)

Is(—Zl,’U;Zl,'U) = 0, Ic(_zl,v;zlav)

10



depicting the total intensity o, given by (3.7), its bremstrahlung part s obtained
by dropping in (3.8) the term I.(—z;,v; 21, v) corresponding to the uniform motion on
the interval (—z1, 1), and the Tamm intensity o7 obtained by dropping in (3.8) the
terms I.(—zo0,0; —21,v) and I.(21,v; 2,0) corresponding to the non-uniform motion.
For the motion shown in Fig.1(b) u; and u, are given by

1
uy = —\/k(zo - zl)nlcos0|m, Uy = \/k(zo — z1)n| cos (1

R
Bncosd’

It follows from this that for z; — 2o (this corresponds to the zero interval for the
non-uniform motion), u; — 0, u; — 0 and (see Appendix) I.(—zp,0; —z;,v) and
I.(z1,v; 20,0) also tend to zero (despite the fact that acceleration and deceleration
become infinite in this limit), and the whole intensity is reduced to the contribution
arising from a charge uniform motion on the interval (—zo, z9). The parameter z; in
Figs. 4 and 5 means z;/zo. It shows on which part of the total path a charge moves
uniformly. For example, ; = 0.999 means uniform and non-uniform motions take
place on 0.999 and 0.001 parts of the total motion path, respectively.

We turn to Fig.4a corresponding to 1 = z1/20 = .999. We see that the total
intensity oy coincides with the Tamm one o7 only in the immediate neighbourhood
of the main maximum (which, in turn, consists of many peaks). To the right of this
maximum, the intensity of the BS radiation practically coincides with the Tamm
one, while the total intensity is much smaller. To the left of main maximum, o,
practically coincides with ops, while or is by an order smaller. This looks more
pronounced for z; = 0.99, where the total and bremsstrahlung intensities increase to
the left of main maximum . Let ; = 0.9 (Fig. 4c ). We observe that ops coincides
with or to the right of the main maximum and with o; to the left of it. At the main
maximum, o3, ogs and or are of the same order. This picture remains the same for
smaller 2, up to z; = 0.1 (Fig. 4 d). Beginning from z; = 0.01, the Tamm intensity
begins to decrease in maximum (Fig. 5 a). This is more pronounced for smaller z;
(Fig.5b) where it is shown that for z; = 0.001, both or and ops begin to oscillate
to the right of main maximum (Fig. 5b). For very small z;, o7 degenerates into

2,2
or(6) = 46/\,?;1 sin? 0
while s coincides with o; everywhere except for large angles, where ogs is very
small (Fig. 5 c). Finally, for ¢; = 0, o7 is zero and ogs = o, (Fig. 5 d).
What can we learn from these figures?
1. The total intensity coincides with BS to the left of main maximum.
2. The Tamm formula satifactorily describes BS to the right of the main radiation
maximum.
3. The Tamm formula coincides with the total intensity only in the immediate vicin-
ity of the main maximum. It sharply disagrees with BS and with the total intensity
to the left of the main maximum.
4. The bremsstrahlung maximum is approximately at the angle cos = 1/8n co-
inciding with the Cherenkov radiation angle. This takes place even for Fig. 5 (d)
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which describes the accelerated and decelerated charge motions and does not include
the uniform motion.

5. The radiation from accelerated and decelerated paths of the charge trajectory
tends to zero when the lengths of these paths tend to zero (despite the infinite ac-
celeration and deceleration). There are no jumps of the charge velocity for arbitrary
small (yet, finite) acceleration and deceleration paths. Therefore, in this limit, the
Tamm formula describes the radiation of a charge uniformly moving on the finite
interval without recourse to the acceleration and deceleration contributions at the
ends of the motion interval. However, some reservation is needed. Although there
are no jumps of velocity and the acceleration is everywhere finite, there are jumps
of acceleration at the moments corresponding to the beginning and termination of
motion and at the moments when the uniform and non-uniform charge motions meet
with each other. At these moments, the third order time derivatives of the charge
trajectory are infinite and they, in principle, can give contribution to the Tamm
formula. To exclude this possibility, the everywhere continuous charge trajectory
should be considered (this is in progress now).

The problem treated in this section describes the same physical situation as the orig-
inal Tamm problem (see Introduction). Since in reality acceleration and deceleration
exhibited by a charge are always finite, the problem treated in this section is more
physical. '

To the best our knowledge, the analytic formula (3.7) describing the charge uniform
and accelerated motion and generalizing the Tamm formula, is obtained here for the
first time.

It should be noted that, in the time representation, the space-time evolution of the
shock waves arising in the treated problem was studied formerly in [9]. It was shown
there that a complex consisting of the Cherenkov shock wave and the shock wave (not
bremsstrahlung shock wave) closing the Cherenkov cone is created at the moment
when the charge velocity coincides with the light velocity in medium. On the part
of trajectory, corresponding to the uniform charge motion (Fig. 1(b)), this complex
propagates with the light velocity in medium without changing its form. On the de-
celerated part of the charge trajectory it leaves the charge at the moment when the
charge velocity again coincides with the light velocity in medium. After this moment,
it propagates with the light velocity in medium. In this section, meeting the experi-
mentalists demands, we translated results of [9] into the frequency language. In fact,
experimentalists ask the questions like these: how much photons with the frequency
w should be observed, what is their angular distribution? Analytic formulae of this
section answer these questions.

3.3 More complicated superposition of accelerated, deceler-
ated, and uniform motions

We also consider another problem corresponding to the motion shown in Fig. 1 c.
This is needed to investigate how the radiation intensity changes when the velocity
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vy changes from the value above ¢, to the value below it. A charge is at rest at the
space point z = —zp up to a moment ¢ = —to. In the time interval —to < t < —t;, it
moves with acceleration a up to reaching the velocity v; at the space point z = —z;:

1
z=—z+ §a(t +1t0)?, v=a(t+1).
It is convenient to express ¢; and a through z; and v;:
’Uf 2(20 - Z])

to—tlf—"

@ = oz,
2(z0 — 1) v

In the time interval —t; <t < —t,, a charge moves with deceleration a up to reaching
the velocity v, at the space point z = —z,:

1
z=—z1+uvi(t+t) - -2—a(t +t1)?%, v=a(t+1t).

It is convenient to express ¢; and z; through vs:

2 20, — v '
29 =20 — (Zo - 21)(2 - %), tz = to bl 2_%(20 - 21). (310)
1 1

In the time interval —t; < t < t2 a charge moves uniformly with the velocity v, up
to reaching the space point z = z,:

z=—2z34 vt +12), v=nvs.
Therefore, z; = vyty. Substituting 2z, and ¢, from (3.10), we find o
1 vy V2
to = E[ZO -_ (ZO - 21)(2 -_ 4’()_1 + ’U_?)]

In the time interval t; < ¢ < t;, a charge moves with acceleration a up to reaching
the velocity v; at the space point z = z;:

1
z =29+ vt —t2) + Ea(t —1)%, v=vy+a(t—ty).

Finally, in the time interval ¢; < t < o, a charge moves with deceleration a up to
reaching the state of rest at the moment ¢ at the space point z = z;:

z=z14+v(t—t) — %a(t —t1)}, v=wv —a(t—t).

After the moment ¢o, the charge is at rest at the point z = z;. For that motion, the
Fourier transform of the current density reduces to the following sum

Ju = %5(z)5(y)[@(z+zo)6)(—z —z1) exp(—iwT1 )+ O(2+21)O(—2 — 23) exp(—iwr)+
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O(z + 22)0(2z; — z) exp(—iwTs) + Oz — 22)O(21 — 2) exp(—iwTy)+
+0(z — 21)0(z0 — 2) exp(—iwTs)],

where

2 2
n= —to+v— (z+20)(20 — 21), T2 = —to+a[2(zo—z1)—\/(zo —21)(20 — z — 221))],
1

z 2
T= oy m=to— —[2(n = 2) = V(20— 21)(z0 + 2 — 221)],
2 1

5 =10 — vzl (20 — 2)(20 — 21). (3.11)

If the conditions knr >> 1, L << r and (2.12) are fulfilled, then radiation intensity
can be evaluated analytically:

o) = S5y 4 ), (312)

nm

where:
I. = I.(—20,0; —21,v1) + I(—21,v1; —22,v2) + I.(—22,v2; 22, v2)+

I(22,v2; 21,v1) + Le(21, 015 20,0),
I, = I;(—20,0; —2z1,v1) + L(—21,v1; —22,v2) + I;(—22,v9; 22, v2)+
I(22,v2; 21,v1) + Is(21,v1; 20, 0).

Again, due to the symmetry of the problem

I(=20,0; —2z1,v1) = I.(21,v1;20,0), [.(—21,v1; —22,v2) = (22, v2; 21, 1),

2 . w2
o (—22,v2; 22,09) = H—lﬁf—:coso)sm[v—:(l — Ban cos 0)],
Iy(=20,0; —21,v1) = —=I,(21,v15 20,0), I i(—21,v15 —22,v2) = —I,(22,v2; 21, v1),

Is(—227v2; 22, 'U2) = 07 Is =0.

Now we choose 81 = 1, 2z = 0.99 and change ;. The case §; = 1 is shown in
Fig. 4b. Smaller values of 3; are shown in Fig. 6. Consider Fig. 6 a, corresponding
to B2 = 0.8. We see that the Cherenkov maximum ¢, = arccos(1/82n) is shifted
relative to the BS maximum. Like in Figs. 4 and 5, we observe that the Tamm
formula satisfactorily describes bremsstrahlung in the backward part of the angular
spectrum (for 8 = 0.8 this agreement begins from 6 &~ 50°). The total intensity
is satisfactorily reproduced by the BS intensity everywhere in the forward angular
region (0 < 8 < 50°) except for the immediate neighbourhood of the Cherenkov angle.
In this angular region, the Tamm formula disagrees both with total and BS intensities
everywhere except for angles close to the Cherenkov one. An important case is 3; =
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1/n corresponding to the Cherenkov threshold (Fig. 6 b). The total intensity has
two maxima of the same magnitude: one corresponding to the Cherenkov maximum
(at 8 = 0°) and other corresponding to the bremsstrahlung maximum. For 8, below
the Cherenkov threshold, the Cherenkov maximum disappears (Fig. 6 c), while the
Tamm intensity decreases coinciding at large angles with that of BS. In the forward
direction, the total intensity does not differ from the BS one. Finally, for 8, = 0,
the Tamm intensity disappears, while the total intensity coincides with the BS one
(Fig. 6 d).

What can we learn from this section? There are two characteristic velocities
By and B; in Fig. 6. Correspondingly, there are two Cherenkov maxima defined
by cosf = 1/Bin and cosf = 1/B;n when both (8; and fB; are greater than 1/n
(Fig. 6 (a,b)). When S, becomes smaller than 1/n, only one Cherenkov maximum
corresponding to cos @ = 1/8;n survives (Fig. 6 (c,d)).

The formula (3.12) describing the radiation intensity on the charge trajectory
shown in Fig. 1 (c) is obtained here for the first time.

4 Analytic estimates

In this section, the radiation intensities written out in a previous section in terms of
Fresnel integrals, will be expressed through elementary functions. This is possible
when the arguments of Fresnel integrals are large. Physically, this means that the
product kl, is large (k is the wave number and [, is is the space interval where a
charge moves non-uniformly).

For the motion shown in Fig. 1(a) and corresponding to 8in > 1 and Bon > 1,
one finds that for k(z; — 2;) >> 1 the radiation intensity is given by:

6277. sin2 0{1[ ,82 - ﬁ]
4" (1 — Bincos 0)(1 — Ban cos )

ﬁlﬁ'z Il2 'l/)}
(1 — Bincos 6)(1 — Ban cos 0)

for 0 < 8 < 6, and 6 > 6,. Here we put

I+

o, =
mic

+

(4.1)

k(22 —21) B + P2
cosf; =1/Bin, cosby =1/0n, 2 ncosf —1).
1 /,61 2 /132 1/) ,31 + /32 ( 9 )
On the other hand, for #; < 6 < 6, one has
e?sin? @ ancosf_  cosu? — sin u? cosu? — sinu?
=, (4.1)+ o+ 2 2 1 1 _
or = 0op(41)+ 7rcnc0520{ V2or (2 Ban cos 0 — " Bincosf — 1 1}, (42)

where a, u; and uy are the same as in (3.4). The term proportional to o? is much
larger than other ones everywhere except for the angles close to 8; and 6,. For these
angles the above expansion of Fresnel integrals fails (since u; and up vanish at these
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angles). These formulae mean that radiation intensity oscillates with decreasing
amplitude for 0 < 6 < 6, and @ > 6, and decreases rather slowly like
e?a’sin? 6

(4.3)

men cos? 0

for §; < 0 < 6,. The oscillating terms (first term in (4.2) and the term proportional
to a) are much smaller than (4.3). Exactly such behaviour of o, with maxima at 6,
and 0, and a rather flat region between them demonstrates Fig. 2(b).

For 8; = 1/n, above formulae predict intensity oscillations for § > #; and their
absence for 6 < 0; (see Fig. 2 (c)).

A particular interesting case having numerous practical applications corresponds
to the complete termination of motion (3; = 0) . In this case,

e’nf? sin? 4

7= nze (1 = Bincos 9)? (44)
for 8 > 6, and
e?sin?@ ., Piancosf cosu? — sinu?
or = 0r(4:4) men cos? 6 lo” - Vor  Bincosf—1 ] (45)

for 6 < 0,. Here a and u; are the same as in (3.4) if one puts 2 = 0 in them:

k(z2 — z1) _ B 1
g W= k(22 — z1)n cos (1 —————————ﬂlncosa).

There are no intensity oscillations for # > 6, and very small oscillations for < 6,
(they are due to the last term in (4.5)). Figures 2(d) and 3 agree with this prediction.

We clarify now why the radiation intensities disappear for § > 6. for the motion
shown in Fig. 1 (b). For this aim we should evaluate the integrals I, = [ vdt cos

and I, = [vdrsin® entering into (3.6). In terms of Fresnel integrals, they are given

in Appendix. Due to to the symmetry of the treated problem, I,=0 while I, is
reduced to
L=1+I¢41" =21+ 1" (4.6)

Here I2, I¢ and I* are the integrals over the accelerated (—zp < z < —2;), decelerated
(21 < z < 20) and uniform (—z; < z < z;) parts of a charge trajectory, respectively.
Again, it was taken into account that I? = I¢ due to the symmetry of the problem.

The integral I? corresponding to the uniform motion on the interval (—z; < z < z;)
is
Il = 28
¢ k(1 - Bncosb)
Then, for § < 7/2, one gets (see Appendix)

ke

3 (1 — Bncosb)]. (4.7)

sin|

-z
a __ — 1 . 2 H 2
I! = / dzcosyp = = COS‘g{sm(uQ v) — sin(u; — v)+

)
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+av2r[cos y(Cy — Cy) + sin (S, — )]} (4.8)

For the motion shown in Fig.1 (b), u1, uz, o and v are given by

1 _\/__— 1
- k(Zo—Zl)ncosamv uz = \/k(20 — z1)n cos (1 ,Bncos0)’

k( Zl) k(2zo - 21)
B2n cos 0 B )

Changing Fresnel integrals by their asymptotic values, we get for k(zo — 2z1) >> 1
and 0 < 6. (cosf. = 1/6n):

[ ( )]1/2

, v =kzoncosf +
ncos @

. cos 7y + sin~y Bn .
= —aV — . 4.
I aV2r ep— + F(Broosd—1) sin[kz1(1 — Bn cos 0)] (4.9)

To obtain I, one should double I? (since I? = I?) and add I* given by (4.7). This

gives

L=2I° + [' = —ayZr 1YY g

kn cos 0
e? sin? 6 .
Or = W’C(Zo - Zl)m(l + sin 2’7) (410)

We see that for § < . the part of I? is compensated by the Tamm amplitude I*. In
this angular region the oscillations are due to the (1 + sin 2v) factor. For 8 > 0., one
finds

I = E(ﬂ’rl(:(ﬁ):TI)Sin[kZI(l — Bncos9)]. (4.11)

Inserting (4.7) and (4.11) into (4.6), we find
L=2I°+I*=0 and o, =0.

We see that for > 6. the summary contribution of the accelerated and decelerated
parts of the charge trajectory is compensated by the contribution of its uniform
part. The next terms arising from the expansion of Fresnel integrals are of the order
1/k(z0 — 21) and, therefore, are negligible for k(zo — z;) >> 1. This behaviour of
radiation intensities is confirmed by Fig. 4.

The disappearance of the radiation intensity for § > 0. takes place for arbitrary
2z, satisfying conditon zg — z; >> 0 and, particularly, for z; = 0. In this case, there
is no uniform motion and accelerated motion at the interval —zq < z < 0 is followed
by the decelerated motion on the interval 0 < z < zo. Equations (4.10) and (4.11)
with z; = 0 in them qualitatively describe Fig. 5 corresponding to the small length
of uniform motion. It should be stressed again that these estimates are not valid
near the angles 6; and 6, where the arguments of the Fresnel integrals vanish.
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5 Back to the original Tamm problem

5.1 Exact solution

Let a charge be at rest at the point 2 = —zy up to a moment t = —#3. In the
time interval —tg < t < %, it moves with the constant velocity v. Finally, after the
moment to, it is again at rest at the point z = z,. The corresponding charge and
current densities are

p(t) = ed(2)8(y)[8(= +20)O(~t — to) + (2 ~ 20)O(t ~ to) + (=~ v1)O(t +10)O(t0 1),
j=ife, j=vd(z=vH)O(t+1)Oto—1), to= 2.

Their Fourier transforms are
1 . .
pw) = 5= / p(t) exp(—iwt)dt = p1(w) + pa(w) + p3(w), j(w) = vps(w), (5.1)

where

p1(w) = —5——=8(z + 20)8(2)3(y) [exp(iwto) — exp(iwT),

e

pa(w) = —5-—38(z = 20)6(2)3(y)lexp(~iwT) ~ exp(itoto)],

pa(w) = 5=8(2)5(y)O(z + 20)(z0 — 2) exp(—iwz/v), j = vps.

In (5.1), the integration over ¢ is performed from —T' to T', where T' > t,. Later, we
take the limit T — oo. Electromagnetic potentials are equal to

B(o) = Bi(0) + 02(0) + o), AW) = Aw) = ufPl),  (52)
where e . - exp(—ikaRy)
81(0) = ~g—fexpliots) — expliwT)| 22T,
01(0) = — gofexp(—iwT) — exp(ite)) ZEEo),
0a) = 5 [ % exp(- 2 exp(—it ).

—2z0

Here By = [(++20)*+721%, Ry = [(z— ) +04"2, R = [(z— P+, ko=
w/en, ¢n = ¢/n is the light velocity in medium, n is its refractive index.
These potentials satisfy the gauge condition

e 00 =0, while divA+ a<1>3

divA+ = c ot c

£0.
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Thus, ®; and ®; should be taken into account. Another argument for this is to
evaluate )
0P  iw

E,.=———-—A, A, = Acosé.
c

or
It is easy to check that E, decreases like 1/r? for r — oo, while it decreases like
1/r if ® is substituted by ®;. Thus, ®; and ®, are needed to guarantee the correct
asymptotic behaviour of electromagnetic field strengths (if we evaluate E according
to £ =—-V®— iwA/c).
We are primarily interested in the radial energy flux S, ~ EgHy. In the expression

Bo=—192 %4 A= —sinA,
rdd ¢
the first term is the 1/kr part of the second term and, therefore, it can be disregarded
(since in realistic conditions kr is about 107). Thus obtained Ey differs from the exact
E4 by terms of the order 1/kr.
To make clear the physical meaning of electromagnetic potentials (5.2), we rewrite
them in the time representation:

0(t) = [ expliwt)Bw)ds, B(t) = Ba(t) + Bo(t) + Ba(t), A(t) = uhs(),

3,(t) = %@[R, —calt+10)], ®a(t) = ée[cn(t — o) — Ra),

20

O5(t) = % / %S(t - %' —k.R), R=[(z—2")*+p"/% (5.3)

—20

When evaluating ®,(¢) and ®,(t), it was taken into account that
/ exp(iwz)dw/w = irsign(z).

The following notation will be useful: the spheres Ry = [p? + (2 + 20)?]"/? and
Rz = [p? + (2 — 20)*]"/? will be denoted by S; and S;. We say that a particular space
point lies inside or outside Sy if By < ca(t + o) and Ry > et + to), respectively.
And, similarly, for S,.

We see that ®,(t) differs from zero outside the sphere S, i.e., at those points
which are not reached by the information about the beginning of motion. Further,
®,(t) differs from zero inside the sphere S, i.e., at those points which are reached
by the information about the termination of motion. Or, in other words, ®; and
®, describe electrostatic fields of a charge which rests at the point z = —2 up to a
moment t = —to (beginning of motion) and at the point z = z, after the moment
t = to (termination of motion). In what follows, electrostatic fields associated with
®, and @, will be denoted by FE; and E,, respectively.
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To evaluate ®3(t), we use the well-known relation

8(z — z)
8f(2)] =D ——
V=27
where the summation runs over all roots of the equation f (2) =0 and

fa) =L,

The roots of the equation

'
t-2 =B Ry (5.4)

v Cn

Squaring this equation, we obtain quadratic equation relative z’ with the roots

2 =a(vt = 2B, = BuRm), 22=":(vt — 2By + BuRm), 7= (5.5)

1
1-8%
Here R,, = [(z — vt)? + (1 — B2)p?]V/2.

5.1.1 Charge velocity is smaller than the light velocity in medium

Consider first the case when 3, < 1. Then, only 2 root satisfies (5.4) (the appearance
of the second root is due to the fact that the quadratic equation following from
(5.4) can have roots which do not satisfy (5.4)). Now we impose the condition
—Zzo < 21 < 2o which means that the motion takes place on the interval (—zo, zo0).
Then, it follows from (5.4), that ®3(¢) # 0 for the space points lying inside S; and
outside S,:

B4(t) = RLme@[c,,(t +10) — RiJO[R: — calt — to)], o= % (5.6)

Physically, ®3 describes the EMF of a charge moving on the interval (—zq,20). It
differs from zero at those space points which obtained information on the beginning
of motion and did not obtain information on its termination. It is easy to see that for
Bn < 1, the S, sphere lies entirely inside Sy, 1.e., there are no intersections between
them. The positions of S; and S; spheres for two different moments of time are
shown in Fig. 7. The region where ®3 # 0 is between S; and S; belonging to the
same ?. Static fields ®; and @, lie outside S; and inside Ss, respectively.

5.1.2 Charge velocity is greater than the light velocity in medium

Let now B, > 1. Then, ®;, ®, and their physical meanings are the same as for
Bn < 1. We turn now to ®3. It is easy to check that two roots satisfy (4.4) if z < vt,
and there are no roots if z > vt. We need further notation. We denote by L; and L,

20



the straight lines z = —zp + p|yn| and z = 2z + p|ya|, respectively (Fig. 8). We say
that a particular point is to the left or right of Ly if 2 < —z9+p|ya| or 2 > —20+p|Val,
respectively. And similarly, for L,. Correspondingly, a particular point lies between
Ly and L if —20 + p|n| < 2 < 20+ p|¥n]- L1 and L, are inclined toward the motion
axis under the Cherenkov angle 6o, = arccos(1/83,). The Cherenkov shock wave
(CSW) is the straight line z + p/|yn| = vt, perpendicular both to L; and L; straight
lines and enclosed between them. We observe that denominators R,, vanish exactly
for z + p/|ya| = vt, i.e., on the CSW. There are no other zeroes of R,,. We say
also that a particular point lies under or above the Cherenkov shock wave (CSW) if
z+ p/lya| < vt or z + p/|ya| > vt, respectively.

We impose the condition for motion to be on the interval (—zo, 20). Then, the first
root exists in the following space-time domains (Fig. 7, d):

i) To the right of L, it exists only outside S; and inside Sy;

i) Between L) and L,, it exists outside S; and under the CSW.

The contribution of the first root to ®; is:

@) = ——{0(z+ 20 = pnl)O(z0 + phal — 2)0(t - L [l ,
+0(z — 20 = pl7n])O[en(t — to) — R2)|}O[R1 — ca(t + to)]. (5.7)

The first term in (5.7) is singular on the CSW (since R,, = 0 on it) enclosed between
L, and L, straight lines. The second term in (5.7) does not contain singularities.
Now we turn to the second root:

i) To the left of the L, it exists only inside S; and outside S,.

ii) Between L; and L, it exists outside S; and under the CSW.

Correspondingly, the contribution of the second root is

(t-— 2+F1’)/|7n|)

€
o) = 10z + 20 = plm)O(z0 + pl1m| - 2)© +

+0(pl1n| — 2 — 20)Olen(t + to) — R1)]}O[R; — en(t — to)]- (5.8)

Only the first term in this expression is singular on the same CSW.
The contribution of two roots to ®3 is

03 = o) + o). (5.9)

In Fig. 8 (a,b,c) there are shown positions of S}, S; and CSW shock waves at different -
moments of time. In Fig. 7 (d), which is a magnified image of Fig. 7(b), we see five
regions where EMF differs from zero. The region 1 lies outside S; and S; and above
CSW. There is only the electrostatic field E; there. In the region 2 lying inside S,
and S, there is only the electrostatic field E;. In the region 3 lying inside S; and
outside Sz, there is EMF of a moving charge (only the 2-nd root contributes). In
the region 4 lying inside S; and outside S, there is EMF of a moving charge (only
the 1-nd root contributes) and electrostatic fields E; and FE,. Finally, in the region
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5 lying outside S; and S; and under CSW, there is EMF of a moving charge (both
roots contribute) and electrostatic field E;.

So far we suggested that for ¢ < —to and ¢ > g, a charge is at rest at points
z = —2zp and z — z, respectively. However, usually, when dealing with the Tamm
problem, one uses only the vector potential desribing the charge motion on the
interval (—zp < z < 20). It is given by A = pe3®3. Then, one evaluates the magnetic
and electric fields using the relations: uH = curlA and curlH = ickwE valid in the
w representation. In this case, terms ®; and ®, drop out from consideration. Then,
there are nonzero electromagnetic potentials corresponding to the first root in region
4, the second root in region 3 and first and second roots in region 5. In other space
regions, potentials are zero. On the border of regions 3, 4 and 5 with regions 1 and 2,
potentials exhibit jumps, and, therefore, field strengths have delta- type singularities.

In the previous section, the uniform charge motion on a finite interval (corre-
sponding to the Tamm problem) is followed or preceeded by the accelerated motion
(see Fig. 1 (b)). Since there are no jumps of velocities on the borders of the above
regions, the d-type singularities of EMF strengths arising from the beginning (termi-
nation) of the uniform motion are partly compensated by the singularities of EMF
strengths corresponding to the non-uniform motion termination (beginning) at the
point where uniform and non-uniform motions meet. When the deceleration region
diminishes, the contribution from decelerated parts of a trajectrory diminishes also
(Fig. 4 ) and the Tamm intensity becomes closer to the total one.

We conclude: the vector potential A = Sue®; corresponds to the charge motion
on a finite (—zo, 29) interval and does not contain the instantaneous acceleration ef-
fects. They are equal to zero according to the results of section 3.

Experimentalists insist that they measure E (w) and H (w) (in fact, they detect pho-
tons with a definite frequency). It is just the reason that enabled us to operate in
sections 2-3 with the Fourier transforms E(w) and H(w).

5.2 The Tamm approximate solution

The Tamm vector potential in the Fourier representation is

€

mraw(cosd — 1/6,)

Ar(w) = exp(—ikar) sin[k,z0(cos 8 — 1/3,)]. (5.10)

It is obtained from (2.2) when (i)-(iii) conditions of section 2 are fulfilled. Using
(5.10) for the evaluation of field strentghs and the radiation intensity, one gets the
famous Tamm formula (2.5). Going in (5.10) to the time representation, one gets

€

Ar(t) = rn|cos@ — 1/6,| %

x[@(—l-;—cos@)~®(r—r1)-@(rg-—r)-}—@(cosﬁ—E) O(r —13)-O(ry —1)]. (5.11)
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Here ] ]
T1 = Cat + 2o(=— — cosf), and 7y = ¢t — 20(— — cos ).

Bn n
For 3, < 1, (5.11) is transformed into

e

A1) = AT st

-O(r —ry)0O(ry — ), (5.12)
that is, the electromagnetic field differs from zero between two non-intersecting curves
51 and S defined by r = ry and r = r;, respectively. (Fig. 9 (a)).

On the other hand, for 3, > 1,

e

Ar(t) = rn(cos8 — 1/8,)

O(r—ry)-O(ry—r) (5.13)

for cos@ > 1/8, and

e

rn(1/B, — cos0)

for cos@ < 1/8,. For B, > 1, the curves S; and S, are intersected at cos 6 = 1/8,.
The region where Ar(t) # 0 lies between Sy and S; (Fig.9 (b)). By comparing this
figure with Fig. 8, we observe that the Cherenkov shock wave shown in Fig. 8 by
the thick line and enclosed between L; and L, straight lines is degenerated into a
point coinciding with the intersection of curves 1 and 2. These intersection points at
different moments of time lie on the same straight line L inclined towards the motion
axis under the Cherenkov angle cos f¢c, = 1/8n. The electromagnetic potentials and
field strengths are infinite on this line at the distance r = ¢,t from the origin and,
therefore, the major part of the energy flux propagates under the angle 8¢y towards
the motion axis (Fig. 9 (b))

For 3, > 1, the curves S; and S; are always intersected at large distances (where the
Tamm approximation holds). Probably, this fact and the absence of the Cherenkov
cone (similar to that of the previous section) gave rise to a number of attempts [4,5]
to interpret the Tamm intensity (2.5) as the interference between BS shock waves
emitted at the boundary z = £z, points. The standard approach [2] associates
(5.11) with the radiation produced by a charge uniformly moving in medium with the
velocity v > ¢,. We believe that this dilemma cannot be resolved in the framework
of the Tamm approximate solution (5.10).

The question arises: at which stage the Cherenkov shock wave has dropped from the
vector potential (5.10)7 We have shown above that it is present both in (5.3) and
(5.9). But (5.3) is just the Fourier transform of A(w) defined in (5.2). The Tamm
vector potential (5.10) is obtained from the exact (5.2) by changing R — r in the
denominator and R — r — 2’ cos @ in the exponent. The first approximation is not
essential if the observation distance is much larger than the motion interval. It is
the second approximation that is responsible for the disappearance of the Cherenkov
shock wave. Condition for the validity of the (iii) approximation of section 2 is

Ar(t) = O(r—ry)-O(ry— 1) (5.14)
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not fulfilled in realistic cases. Exact analytical and numerical calculations show
that an enormous broadening of the angular intensity spectrum takes place in the
spectral representation [8, 12]. In the time representation, this broadening leads to
the appearance of the Cherenkov shock wave enclosed between L; and L, straight
lines shown in Fig. 8. Formerly, equations similar to (5.6)-(5.9) were obtained in [6]
but without using spectral representation (5.2) as an intermediate step. The latter is
needed to recover at what stage of approximations, the Cherenkov shock wave drops
out from consideration and to make a choice between opposite interpretations of the
Tamm formula for radiation intensity.

6 Discussion

In Fig. 10, there are shown positions of shock waves at the moment ¢ = 0 lying
inside the interval —to < t < to. At this moment, S; shock wave associated with the
beginning of motion has arisen, but S, shock wave associated with the termination
of motion has not still appeared. In this figure, we see the part of a Cherenkov
wave, enclosed between the motion axis and S;, tangential to the latter and having a
normal inclined under the angle f¢), = arccos(1/6n) toward the motion axis. Since
S2 shock wave is absent, the appearance of CSW cannot be attributed to the inter-
ference of S; and S; waves. Therefore, in the time representation, the existence of
the S; shock wave is not needed for the appearance of the Cherenkov shock wave.
In some time interval the Cherenkov shock wave is enclosed between the motion axis
and the shock wave S;. (Figs. 8 (a) and 10 ). As time goes, the S, shock wave
arises. After this moment, the Cherenkov shock wave is tangential to S; and S, and
is enclosed between them (Fig. 8, (b)-(d)).

Since the frequency distribution of the radiation intensity o,(w) involves integration
over all times, all particular configurations shown in Fig. 8 contribute to o,(w).
Thus, it is still possible to associate the Tamm formula (2.5) with the interference of
S and S shock waves (one may argue that, since all times contribute to the radia-
tion intensity in the spectral representation, the large times, when S; and S, shock
waves are intersected, also give contribution to the just mentioned frequency repre-
sentation). However, as it was shown analytically and numerically in the framework
of the spectral representation (see section (3.2)), the contribution of accelerated and
decelerated paths of the charge trajectory tend to zero when the lengths of these
paths tend to zero. In this limit, the total radiation intensity coincides with the
Tamm one (2.5). Therefore, the Tamm formula for the intensity of radiation cannot
be reduced to the interference of BS shock waves (since their contribution tends to
zero in this limit). We see that only the combined treatment of the Tamm problem
in the time and frequency representations permitted us to discriminate between two
above mentioned interpretations of the Tamm formula.

However, the following topics concerning the Tamm problem still remain unclear for
us. We illustrate them using Figs. 2-5 corresponding to the typical experimental
situations.
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a: Charge deceleration on a finite interval; v;,v; and c, are the charge initial and
final velocities and light velocity in medium, respectively.

b: Charge acceleration followed by the uniform motion and deceleration. This case
allows one to estimate contributions to the radiation intensity from the accelerated,
uniform, and decelerated parts of a charge trajectory.

c: This motion permits one to estimate how the radiation intensity changes when
the transition from the velocity greater to the velocity smaller than the light velocity
in medium takes place.

25



P e L e (i T S e [P PP |

B G e o P [ ]

0 60 20 180

10—0 I I

60 120 1
¥(deg) ¥(deg)

Fig. 2. Radiation intensities (in units €?/c) corresponding to Fig. 1 (a) for f; = 1
fixed and various B;. For B; = 0.99 (a), the radiation spectrum is close to that de-
scribed by the Tamm formula (3.4). For smaller 8, (b), a kind of plato appears in
the radiation intensity. Its edges are at the Cherenkov angles corresponding to (3,
and B,. For 3, = 1/n, the distribution of radiation has a specific form (c) without
oscillations to the left of the maximum. This form remains essentially the same for
smaller B, but the tail oscillations are washed out (d). In all these cases, the main
radiation maximum is at cos = 1/B;n. All these results are confirmed analytically
in section 4. These intensities were evaluted for the following parameters: the wave-
length A = 4-10~%cm, the motion length L = 0.5¢m, the refractive index n = 1.392.
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Fig. 3. Radiation intensities corresponding to Fig. 1 (a) for 8; = 0 fixed and
various ;. For §; = 1, the radiation spectrum is shown in Fig. 2(d). For smaller
B1, the intensity maximum shifts to smaller angles (a) reaching zero angle at the
Cherenkov threshold #; = 1/n (b). The maximum is at the Cherenkov angle cor-
responding to ;. Below the Cherenkov threshold, the form of radiation spectrum
remains practically the same, but its amplitude decreases (c,d). Other parameters
are the same as in Fig. 2.
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Fig. 4. Radiation intensities corresponding to Fig. 1 (b) for 8 = 1 and various z.
Here z, = 21/20 is the part of a charge trajectory on which it moves uniformly. Other
parameters are the same as in Fig. 2. Solid and dotted lines refer to the total intensity
and the intensity associated with the charge uniform motion on the interval (—z1, z1),
respectively. Triangles refer to the intensity associated with a charge non-uniform
motion on the intervals (—zo,—2;) and (z1,20). Since these lines are overlapped,
we supplied them with letters ¢ (total), T' (Tamm) and BS (bremsstrahlung). To
make radiation intensities more visible, we averaged them over three neighbouring
points, thus, considerably smoothing the oscillations. The same is true for Figs. 5
and 6. The main maximum of the total radiation intensity is at the Cherenkov angle
defined by cos § = 1/8n. Its sudden drop above this angle is due to the interference
of Cherenkov and bremsstrahlung radiations (see section 4).
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Fig. 5. The same as in Fig. 4, but for smaller z,. It is seen that with the diminish-
ing of the uniform motion interval, the Tamm radiation intensity tends to zero, while
the total intensity approaches the bremsstrahlung one. Again, the main maximum
of the total radiation intensity is at the Cherenkov angle defined by cos § = 1/43n.
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Fig. 6. Total, Tamm and bremsstrahlung radiation intensities corresponding to
Fig. 1 (c) for 8 = 1,z; = 0.99 and various (,. The case #; =1 is considered in Fig.
4 (b). Other parameters are the same as in Fig. 2. For 8, and 3, greater than 1/n
the total intensity has two maxima at the Cherenkov angles defined by cos = 1/81n
and cos@ = 1/B;n (a, b). At the Cherenkov threshold, these maxima have the same
height. For 3, < 1/n, only one maximum corresponding to cosf = 1/Bn survives
(c,d). For B, = 0, the Tamm intensity is zero, and o; = ops.
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Fig. 7. Positions of Bremsstrahlung shock waves for T = 3 and T = 12 in the
exact Tamm problem for the case when the charge velocity (3 = 0.5) is smaller than
the light velocity in medium. Here T' = ct/z. The vector potential differs from zero
between solid lines for T = 3 and between dotted lines for 7' = 12; p and z are in

units 2o. The motion interval and refractive index are: L = 0.5¢cm and n = 1.5,
respectively.
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Fig. 8. Time evolution of shock waves in the exact Tamm problem for the case
when the charge velocity (8 = 1) is greater than the light velocity in medium. S;
and S, are shock waves radiated at the beginning and termination of motion, re-
spectively. CSW is the Cherenkov shock wave. The time T' = 1 corresponds to the
moment when S, wave arises(a) . For larger times, CSW is tangential both to S;
and S; and is confined between straight lines L; and Ly (b,c). Part (d) of the figure
is a magnified version of (b). The vector is zero in region 2 lying inside S; and S,
and in region 2 lying outside S; and S, and above CSW. Ounly one retarded time
contributes in region 3 (lying inside S; and outside S;) and in region 4 (lying inside
S, and outside S;). Two retarded times contribute to region 5 lying ouside S; and
S, and below CSW. Other parameters are the same as in Fig. 7.
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Fig. 9 (a): Time evolution of shock waves corresponding to the Tamm approxi-
mate vector potential (5.12) for the case when the charge velocity is smaller than the
light velocity in medium. The Tamm potential differs from zero between two solid
lines for T = 2, between two dotted lines for T = 5 and between two dashed lines
for T = 10.

(b): The same as in (a), but for the charge velocity greater than the light velocity
in medium. The Tamm potential (5.13) and (5.14) differing from zero between two
solid lines for T' = 4 and between two dotted lines for T' = 10, is singular at the
intersection of lines with the same T'. The straight line passing through these sin-
gular points is shown by a thick line. The energy flux propagates mainly along this
stralght line. Probably, the absence of CSW in this approximate picture has given
rise to associate above singularities with an interference of BS shock waves. Other
parameters are the same as in Fig. 7.
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Fig. 10: A counter-example showing that in the exact Tamm model, the presence
of two bremsstrahlung waves is not needed for the existence of the Cherenkov shock
wave. In the time interval —ty < ¢t < tg, there is a shock wave S; arising at the
beginning of motion and the Cherenkov shock wave CSW. The S, shock wave is not
still appeared. Other parameters are the same as in Fig. 7.
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1. Figure 4, corresponding to the charge trajectory shown in Fig. 1(b), demon-
strates that to the right of the Cherenkov maximum, the Tamm and bremsstrahlung
intensities almost coincide, while the total intensity is very small there. This means
that the Tamm and bremsstrahlung amplitudes enter into (3.7) with opposite signs
and almost compensate each other. Analytic consideration of section 4 aupports this
claim. What is the physical reason for this?

2. Figure 3 and 5, corresponding to charge trajectories shown in Fig. 1 (a) and
(b), repectively, show that the maximum of the bremsstrahlung intensity is always
at the angle cosf = 1/8n coinciding with Cherenkov condition for the radiation.
This takes place even in the absence of uniform motion (Figs. 2, 3, 5(d) and 6(d)).
Again, analytic consideration of section 4 supports this. A possible answer gives
consideration [12] of the accelerated charge motion in the time representation where
the Cherenkov-like shock wave arises when the charge velocity coincides with the
light velocity in medium.

3. The appearance of two Cherenkov maxima (Fig. 2 (b)), corresponding to the
initial and final charge velocity and supported analytically in section 4, is rather
unexpected.

7 Conclusion

We briefly summarize main results obtained:

1. The analytical solution describing accelerated (decelerated) charge motion in
medium (Fig. 1 (a)) is found. The total radiation intensity has one maximum at
the Cherenkov angle corresponding to (3, (see Fig. 2(a,c,d)) or two maxima at the
Cherenkov angles corresponding to 8; and (3, (Fig. 2(b)). This solution may be ap-
plied to study the radiation produced by electrons moving uniformly in heavy-water
reactors (the electron arising from the 3 decay of some nucleus, moves with decel-
eration and, then is absorbed by another nucleus). Another possible application are
experiments with heavy ions moving in medium [13] (due to large atomic numbers,
the energy losses for heavy ions are also large).

2. We have found analytical expressions for the electromagnetic field and the energy
flux radiated by a charge moving along the trajectory which consists of accelerated,
decelerated, and uniform motion parts (Fig. 1 (b)). It is shown that when the
lengths of accelerated and decelerated parts tend to zero, their contribution to the
radiated energy flux also tends to zero despite the infinite value of acceleration along
them. This means, in particular, that the original Tamm problem describing charge
motion on a finite interval does not in fact contain the instantaneous acceleration
and deceleration, as it is usually believed The total radiation intensity has a maxi-
mum at the Cherenkov angle defined by cos§ = 1/8n ( Figs. 4 and 5). The possible
applications of this model are the same as those of the original Tamm problem (see
Introduction).

3. Analytical expressions are obtained for the electromagnetic field and the energy
flux radiated by a charge moving along the trajectory shown in Fig. 1(c). The
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total radiation intensity has two maximuma at the Cherenkov angles defined by
cos = 1/Bin and cos@ = 1/B,n if both B and B, are greater than 1/n (Fig. 6
(a,b)). Only one maximum corresponding to cos§ = 1/8;n survives if B2 < 1/n (
Fig. 6 (c,d)).

4. We have also considered an alternative interpretation [4,5] of the Tamm radia-
tion intensity formula (2.14) as an interference of two instantaneous bremsstrahlungs
arising at the beginning and end of motion. It is shown that in the framework of
the approximate solution found by Tamm, it is very hard to discriminate between
its standard interpretation and one suggested in [4,5]. On the other hand, this dis-
crimination is possible if we treat the Tamm problem simultaneously in the time
and frequency representations. This combined consideration shows that it is impos-
sible associate the Tamm formula (2.5) with the interference of the above-mentioned
instantaneous bremsstrahlungs. This should not be mixed with the Vavilov asser-
tion [3] on the nature of radiation observed by Cherenkov. It follows from Figs.
3 and 4 that angular distributions corresponding to finite accelerations are highly
non-symmetrical relative to the Cherenkov angle, while distributions described by
the Tamm formula are almost symmetrical. The angular distributions observed by
Cherenkov were also highly non-symmetrical (see, e.g., [14]). They strongly resemble
radiation intensities shown in Fig. 2 (d) and Fig. 3 (a) and corresponding to the
zero final energy.

8 Appendix

In this Appendix I, and I, everywhere mean

z2 22
I.(z1,v1; 22,v2) = /coszbldz and (21, v1; 22,v2) :/sint/:ldz,

21 Z1

respectively.. Here
1 = wr(z) — knz cos 6,

while 7(z) is given by (3.2). The motion begins at the point z;, at the moment
t; with the velocity v; and ends at the point 2z, > 2z; with the velocity v,. There
are four possibilities depending on the signs of cos  and (v; — v2). Obviously, v, >
v; and v; > vy correspond to accelerated and decelerated motions, respectively;
cos @ > 0 and cos @ < 0 correspond to the observation angles lying in front and back
semispheres, respectively.

1) v >v;, cosf >0

{sin(u} — ) = sin(u] — ) + av/2mfcos 7(Cz — C1) +siny(S2 = S1)]},

kn cos 8
1 .
o= = cosa{cos(“§ — ) — cos(u? — v) — av/2r[cos 7(Sy — 1) — siny(Cz — C1)]},
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2) vg > vy, cosf <0

L= kn cosé’{Sin(ug +7) —sin(u} + ) — av2r(cos y(C; — C1) —siny(S; — S1)]},
*“kn cosé?{cos(ug +7) = cos(uf +7) + av2r(cos 1(S; — 1) +siny(C; — C1)]},

3) vy > vy, cosf >0

1

I. = —W{Sin(ug +7) = sin(u? + 7) + av2r[cos y(Cz — Cy) — sin (S — S1)]},
I, = —1—{cos(u2 +9) = cos(u? + ) — av2r[cos y(S; — Sy) + siny(C; — C1)]}
*" kncosf 2 ! 2 2o

4) vy > vy, cosf <0

1 . . .
I.= m—é—a{sm(ug — ) =sin(u? — v) — av2r[cos ¥(C; — C1) + sinv(S; — $1)]},

s

~ kncos H{COS(ug — ) — cos(u] — ) + av2r[cos ¥(S; — 1) — siny(Cy — C1)]}.

Here uy,usz, Cy = C(u1),C2 = C(uz2),S1 = S(u1),S2 = S(uz) and a are the same as
in Eq.(3.4) and

_ 2, _ (32 -
—-~——qk(222 a) kn cos Hﬁzz; ﬁ1222 k(? z;).

(B3 = B)ncos § B3 — B (B3 - B})
Obviously, I, and I, are the elements from which the total radiation intensity for

the charge motion consisting of any superposition of accelerated, decelerated and
uniform parts can be constructed.

'y:wt1+ —2,31
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Adanacees I'. H., Illunos B. M. E2-2002-36
YepeHKOBCKOE HITyuYCHHE U M3ITy4EHHE YCKOPEHHs B 3amadye Tamma

PaccmaTpuBaeTCs IBHXCHHE 3apsa B Cpelie Ha KOHEYHOM HHTepBaie. AHATM3UPYIOTCS allb-
TEepHATHBHbIE IIONBITKA HHTEPIIPETHPOBATh HATYdeHHe, OIMChBaeMoe hopMynoi TamMa, Kak HUH-
TepepeHIHIO BOJIH TOPMO3HOTO HITy4eHMs, BOSHHKAIOLIMX B Haja/le H B KOHIe ABHXeHud. Toy-
Hoe pellleHHe 3a0aul TaMMa BO BPEMEHHOM IIPEACTABJIEHHH NOKa3BIBAeT, UTO B ONPENEICHHOM
HHTepBajle BpEMEHH CYLIECTBYIOT TOBKO YEPEHKOBCKas BOJIHA M BOJTHA TOPMO3HOIO HINTyYeHMs,
CB3aHHAd C HAYaJIOM JBHXEHHS, H OTCYTCTBYET BOJIHA TOPMO3HOTO HTY4EHHs, CBA3aHHas C ero
OKOHYaHHEM. JTO IOKa3bIBAET, YTO BO BPEMEHHOM IPENCTARICHHH YEPEHKOBCKOE H3TydeHHE
He 00s3aTeNbHO CBA3aHO C HHTepdepeHIHed BOJIH TOPMO3HOIO H3TyYeHHd. B crexTpaibHOM
NPE/ICTaBICHUH PaCCMATPHBAETCA IBHXECHHE 3apa/ia, COCTOsIee U3 YCKOPEHHOTO, paBHOMEPHOIO
H 3aMeieHHOro. ITomydeHbl aHaTHTHYeCKHE (GOPMYNIBI IS HHTEHCUBHOCTH H3IYYEHHS, COOT-
BETCTBYIOLIIHE 3TOMY ABHXEHHUIO. [IpH cTpeM/ICHHH JUIHHBI HHTEpBa/la, HA KOTOPOM IPOMCXOIUT
YCKOpEHHe, K HyJI0, BKJiaJl yCKOPEHHs B HHTEHCHBHOCTb H3NIyUEHHs TaKXe CTPEMHTCH K HYIIIO,
HECMOTps Ha GECKOHEYHYIO BETHYMHY YCKOPEHHS. DTO MOKA3bIBAET, YTO MCXOAHas 3anaya Tamma
HE CONEPXHT BKJIaa YCKOpeHHd (YTo o6br4HO npenmosnaraerca). COBMECTHOE pelLIeHHE 3alauyd
TamMma BO BpeMEHHOM H CIIEKTPAILHOM IPEACTABICHHAX [I0KA3bIBAET, UTO YIOMSIHYTas albTepHa-
THBHas HHTEpIpEeTaLisi HECOCTOATENbHA.

Pa6ota BemonHeHa B JlaGopaTopuu TeopeTudeckoii pusuxu um. H. H. Boromo6osa OUSIH.

IpenpuaT O6bEAMHEHHOTO MHCTHTYTa MEPHBIX MccrnenoBanuii. Jybna, 2002

Afanasiev G. N., Shilov V. M. E2-2002-36
Cherenkov Radiation Versus Bremsstrahlung in the Tamm Problem

The charge motion in medium on a finite space interval is considered. We analyze recent al-
ternative attempts to interpret the radiation described by the Tamm formula as an interference
of two instantaneous accelerations arising at the beginning and termination of motion. Exact so-
lution of the Tamm problem in the time representation shows that in some time interval. only
the bremsstrahlung shock wave associated with the beginning of motion and the Cherenkov
shock wave exist, and there is no bremsstrahlung shock wave associated with the end of motion.
This proves that in the time representation the Cherenkov radiation is not necessarily related
to the interference of initial and final bremsstrahlung shock waves. In the spectral representation,
we consider the motion consisting of accelerated, decelerated, and uniform parts. Analytic for-
mulae are obtained describing electromagnetic fields and radiation intensities corresponding
to this motion. Approximating the instantaneous acceleration in the original Tamm problem
by the.acceleration on a finite path and then tending its length to zero, we prove that the radiation
intensity produced on the accelerated part of the charge trajectory also tends to zero (despite
the infinite value of acceleration in this limit). This means that in the original Tamm problem
the instantaneous acceleration and deceleration do not contribute to the radiation intensity (as it
is usually believed). It seems that only the combined consideration of the Tamm problem
in the time and spectral representations shows that the above-mentioned alternative interpreta-
tion of the Cherenkov relation fails.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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