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1. INTRODUCTION

One of the widely used methods to calculate physical properties is the averaging of
single crystal properties with an orientation distribution function (ODF) [I, 2].
However, the limitations to apply averaging procedures to real materials are still
unclear. A number of grains do not influence the mathematical definition of the ODF,
nevertheless, intuitively clear that, the averaging procedure implies a "large" number of
grains to make sense. In this paper the influence of the grain statistics and the grain
area distribution on averaging accuracy were considered. For this purpose a grain
microstructure has been simulated. Comparable simulations carried out earlier did not
take into account three-dimensional random rotations distributed according to a known
law [3-4]. In this paper it is proposed to simulate the grain microstructure according to
Voronoi approach and three-dimensional random rotations distributed with known law
simultaneously. From our point of view this model is rather close to a real
polycrystalline aggregate. Using Voronoi method we followed the procedures
described in [5-7].

First, the main definitions of quantitative texture analysis are given and the usual
averaging procedure is described. In the next section we present outlines of the applied
algorithm to generate spatial microstructure. Afterwards, the simulation of random
rotations with known distribution according to Roberts approach [8] is described.
Finally, numeric examples illustrating the influence of grain statistics and grain area
distributions on the elastic constants of cubic and hexagonal textured materials are

presented.

2. FUNDAMENTALS

Denote by dV volume of all crystallites in a sample which possess an orientation g
within orientation region dg, and by V the total sample volume, then the orientation

distribution function f(g) is defined by [1]:



f(g)dg =@' 1)

All rotations form the rotation group SO(3). The ODF is defined on the rotation group
SO(3). The ODF defined by (1) implies infinite number of orientations and we will call
it "continuous” ODF f“(g) with normalization property:
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However, a real sample consists of a finite number of grains. If the number of grains in
specimen is N, then the specimen is described by the "discrete" ODF f“(g,N) in
terms of & - functions on SO(3):
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Let p be the unit vector in the sample coordinate system, / be the unit vector in single
crystal coordinate system, dV (% || p) is the volume fraction of the sample for which the

crystallographic direction % coincides with y in [p,p+dp]. Then the pole figure

B, (») is a function conformed to condition [1]:
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The PFs are defined on the sphere S? with the normalization property [1, 2]:
1
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The connection between the ODF and the PFs is given by the integral [2]:
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If material has crystal symmetry with point group R, ={r,,i=1,...,M,} and sample
symmetry with point group R, ={r,,i=1..,M,}, where G,={g,,i=1,..,N},
G,=1{g4,i=1..,N,} are theirs sub-groups belonged to rotation group SO(3) then

PF and ODF are conformed to the following symmetry conditions:
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To satisfy these conditions, the equation (6) should be rewritten in the form [2]:

My My 2m

T, =3, fo({r»ﬁ,w}'{m,y,o})frp= ¥¥e 0. ®

i=l j=1 ¢ fjll/l

E()=

The approach for calculation of mean physical properties, that does not make any
speculations on the sample internal microstructure, is the arithmetic averaging of the
single crystal properties E with the ODF f{g) as a weighting function [1, 2]:

== J E(r)dV = —§E(g) Jav = JE(g)f(g)dg ©)
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The averaging procedure (9) implies an infinite number of grains. This formula takes
into account the ODF definition (1) and moreover the relations
E(F)=E(g™ -h)=E(g). However, any real sample or product possesses a finite
volume and consequently a limited number of grains. Moreover, grains may be
unevenly distributed in the considered volume. Both these aspects should be taken into
account for the accurate application of (9). Such investigations are the purpose of this

paper.
3. SIMULATION OF GRAIN MICROSTRUCTURE

In order to generate microstructure pattern the cells (Voronoi) model [5, 6] was used.
First, random points P, P,,..., Py are picked in space. Subsequently, space is divided
into cells (grains) Cy, C3, ..., Cy according to the rule: C; contains all points in space
closer to P; than to any P; (j#i). In the Voronoi model C; is a convex polyhedron
called by Voronoi polyhedron if dimension of space D > 3 and C; is a convex polygon
(Voronoi polygon) if D = 2. P; is called the center of C;. Connecting all P; whose
Voronoi cells have common boundaries, a system of tetrahedrons/triangles called by
Delaunay tessellation (triangulation in case D = 2) can be obtained. For application of

the Voronoi model to generate of grain microstructures, P; represents the model
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location of the original nucleus or seed crystal from which the cell (grain) grew. One
assumes for such application the following:

(i) the seeds for all crystals start growing at the same instant;

(i) seeds grow at the same rate in all directions (i.e., as spheres); and

(iii) seeds stay fixed in space without pushing apart as they grow into contact.

Very effective algorithms to simulate planar Voronoi diagram are based on three-
dimensional convex hull [9-10]. The connection between convex hull in space D+1 and
Delaunay tessellation in space D is shown in [9]. We used the "divide-and-conquer"
algorithm [11] improved by K. Sugihara [10] to construct such convex hull. This
algorithm runs optimal O(n log n) time [11] and employs exact arithmetic to avoid
inconsistency caused by numerical errors. The coordinates of the input points P; are
integers. The topology of the microstructure for a number of grains N approximated as
a Voronoi tessellation is presented in Fig. 1.

In Fig. 2, the examples of microstructure or
planar Voronoi diagram constructed for
N = 5000 random uniformly distributed input
points and for N = 5000 input points randomly
distributed  according to normal and
exponential laws are given.

On the basis of planar grain microstructure
grain area distributions can be calculated.

These distributions for microstructures

constructed for N = 5000 input points

Fig. 1. The example of plane
Voronoi tesselation.

randomly distributed according to different
laws are presented in Fig. 3. It has been
calculated by averaging of 20 statistical realizations of the algorithm for Voronoi
diagram construction. The grain area distribution presented in Fig. 3 for input points
distributed according to the exponential law is in good qualitative agreement with the

distribution obtained for microstructure measured by Electron Back Scattered



Diffraction [12]. This confirms the reliability of the Voronoi approach to simulate

grain microstructures.
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as well as lognormal and Maxwell distributions can also be used.
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Fig. 3. Grain-area distributions (histograms) for microstructures represented in Fig. 2.

It should be noted that there are other algorithms (for example Anderson [3, 4] or
Johnson-Mehl model [5, 6]) to generate spatial microstructures, but it turns out, that
qualitatively average characteristics like grain area distributions produced within these

models are similar to those produced by the Voronoi model.
4. SIMULATION OF THREE - DIMENSIONAL ROTATIONS

To investigate the influence of a grain number on the elastic constants an ensemble of

individual orientations g, € SO(3) for N grains was simulated according to the

approach of Roberts et. al. [8]. This approach was already used in [16] to investigate

optimal grid parameters for texture measurements. Following [8], the ensemble g, is

distributed according to the Brownian motion law on SO(3). The orientation:
g=[w.i]=[w,9,9], geSOB), 0<w<2r, 0<v<m, 0<@<2m,

can be presented as a point on the unit hypersphere S® in the four-dimensional

Euclidean space R* with hyperspherical coordinates:



(r.v.9,90)=(y,9,9), r=1, 0<y<m,
where 2y =@. The Euclidean coordinates of this point are 7= (x;,x,,%3,%,),
4
reS’cR, Zx,-z =1. If one considers a sequence of ¢ rotations through a fixed
i=]
angle A about a randomly oriented axis with random direction, and Brownian motion
starts at g ={0°,0",0"} (ge SO(3)), then the distribution density p,(7), 7e §* c R*

after ¢ rotations at special conditions ¢ — oo, A — 0, A%f — const can be written as

follows [8, 16]:

sin((21+ 1)) A2

sin(%) , D=-6—. (13)

The distribution corresponding to (13) on the sphere S>cR? is [16]:

(F) :%i (22 + 1)exp{-(1+1)D}
1=0
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p(3)= 52(21 + l)exp{—l(l + I)D}P,(cosﬂ), y=(B.9)e s2, (14)
1=0
where F(cos ) are Legendre polynomials, D is parameter connected to the strength
of the texture. To generate the ensemble of g, distributed with density (13) choose
Ay<<1 and 1,>>1 so that D=Alt, /6 is valid. Besides, an appropriate
symmetrization (7) is required to obtain the actual ODF and PFs. After subjecting the

initial orientation g ={0°,0°,0°} to a series of rotations through a fixed angle A around
the random axis we obtain the ensemble of g, distributed with density (13), which is
the texture component with sharpness D. The simulated ensemble g, can be
considered as "sample" with N grains described by a "discrete” ODF f“(g, N). Using
formula (6), the corresponding PFs PY(p,N) can be calculated. Including also
information about the experimental conditions an experimental PFs P (y,N) can be

calculated as well [16]. To evaluate the quality of the experimental PFs the R-factor is
introduced by [16]:

R=-3 RPle, 71 (5,) B (5, ) (15)



where B"(p,N) is the m-th independent realization of the simulated experimental PF,
M =10 is the number of independent realizations, P;(p) is the known distribution of

“continuous" PF. The RP factor can be determined as following [17]:
J J
RP = Y'100%0)e, P; (3], /2@[8,1"5 ) (16)
J=1 J=l

x<¢g
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In Fig. 4 the PFs simulated for cubic material with different grain number and a single
component texture model are given. The center of the component is g ={0°,0°,0°} and
width parameter D = 0.042 was determined using A, =0.025 and ¢, = 400. This
corresponds to HWHM = 19.7° of the texture component. As can be seen from Fig. 4,
increasing the number of grains minimizes the R- factor and makes simulated PFs

closer to "continuous" PFs. Fig. 5 shows the dependence between pole figures and

texture sharpness, controlled by the width parameter D.

5. INFLUENCE OF GRAIN NUMBER AND GRAIN AREA
DISTRIBUTION ON THE ELASTIC CONSTANTS OF TEXTURED
MATERIALS

To underline the importance of grain area distributions for the modeling, the results for
models with equal volume grains are presented first.
The properties with "discrete” ODF (3) can be found in the framework of an equal

grain model (V, =V, =V/N , n=1,..., N) as follows:
N Py 1 N
Eu=2Eu@f(gN) = N Y E,.g). (17)
n=1 n=1

where E,,(g,) is the property of grain n. Considering the more realistic case where

the grain volumes are distributed according to some law, the properties with "discrete"
ODF (3) can be found as follows:



N 1 N
Eu =2E1jk[(g)fd(g’N)=;2Eijkl(gn)Vn’ (18)
n=l1 n=1

where V is the sample volume, V,, is the volume of grain n, E, . (g,) is the property of

grain n.

N=10000 N=20000

R =86.2% R =59.5% R =45.0% R = 36.0%

Fig.4. Pole figures of cubic material simulated on grid with step 5° for the texture model
g =1{0°,0°0°} D =0.042 (HWHM = 19.7°): first column is " continuous " PFs, last columns are
"discrete" PFs simulated for samples with different number of grains. Contours are for PE(001)
1, 2, 3, 4 mrd; for PF(011) 1, 1.5, 2 mrd; for PF(111) 1, 1.5, 2, 2.5, 3 mrd.

Ensembles of individual orientations having gaussian distributions with center
g =1{0°,0",0"}, width parameter D=0.042 (HWHM=19.7°, A, =0.025, t,=400) and
g={0°,0°0"}, D=0.0192 (HWHM=13.6°, A,=0.012, ¢,=800) were simulated.

Subsequently, the Young's module was determined assuming equal grain size as

follows:



1 ¥
Em.(N)=ﬁ2E.l..(N), (19)
m=1

m 1 mo_ LY m .
where E}(N)=——, S,“,=WZSW(gn), S,u(g) 1is the component of
n=1

1111
compliance tensor given in single crystal coordinate system, E;,,(N) is the result of
the m-th statistical realization of the algorithm to simulate a set of individual

orientations g, , M is the number of independent realizations of this algorithm.

D=0.0192

(001)

Contours: 1, 1.5, 2 mrd

(111)

Contours: 1, 1.5,2,2.5,3mrd  Contours: 2, 3, 4, 5, 6 mrd

Fig. 5. The "continuous" pole figures of cubic material with different width parameter D. The "discrete"
pole figures reveal the same dependence on texture sharpness.

In case of grain volume distributions Young's module was determined as a averaging
of M independent statistical realizations of the algorithm to simulate a set of individual

orientations, and the algorithm for Voronoi diagram constructing. That is why the



results of Young's module calculations do not depend on statistical realization of these
algorithms. The result of m-th realization in this case was determined as follows:
m 1 m 1 u m
Enn(N):T’ Sllllz_zsykl(gn )E,, (20)
Stin Fia

where F is sample area, F), is the area of grain n.
Relative error of Young's module calculation was determined as a function of a number
of grains in "sample":

5 — | EIIII(N)_EllilI

min(E,,, (N)’Ellin )

21

where E/j,, is Young's module calculated by Reuss approximation (i.e. with

assumption N — oo ):

2

1 1 2nm . )
Ellin =————, <S8 >=‘Tjjjsllll(a:ﬂ,7)f (o, B,7)sin Bdodfdy , (22)
<Syn > 8T 900

where S),,,(@,B,y) is the component of compliance tensor given in single crystal

coordinate system, f“(a, 8,7) is a "continuous" ODF.

The results of Young's module calculation for copper and zinc with different texture
model are presented in Tables 1-2. The calculations were carried out without taking
into account grain area distributions. As can be seen in the Tables 1-2, relative error §
decreases with increasing the number of grains in the "sample". Moreover, the sharper
texture of material the weaker is the dependence of elastic properties from the number
of grains.

Subsequently, we considered the grain area distribution. The grain microstructure was
simulated as described in the section 3. Cases with random uniform distribution of
input points as well as cases with normal and exponential law distributions were
studied. The calculations of Young's module were carried out for the two texture
models already mentioned above. Young's module was determined according to (20)
and also evaluated according to (21). The relative error & of Young's module
calculation as a function of the grain number has been determined with and without

taking the grain area distribution into account. The dependencies 8(N) for copper and
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Table 1. Young's module of the textured polycrystalline, (g = {0°,0°,0°}, D=0.042), M=10

Grain number, N Young's module E(N), GPa 8, %
Copper, Young's module (Reuss) = 85.81GPa
1600 85.47 0.4
5000 85.61 0.2
10000 85.67 0.16
Zinc, Young's module (Reuss) = 121.61GPa
1600 121.53 0.07
5000 121.57 0.03
10000 121.59 0.02

Table 2. Young's module of the textured polycrystalline (g = {0°,0°,0°}, D=0.0192), M=10

Grain number, N

Young's module E(N), GPa S, %
Copper, Young's module (Reuss) = 76.27GPa
1600 76.22 0.07
5000 76.243 0.035
10000 76.241 0.038
Zinc, Young's module (Reuss)= 122.68GPa
1600 122.67 0.012
5000 122.68 2x10°*
10000 122.68 2x10™*

zinc are compared with those calculated without taking the grain area distribution into
account (see Fig. 6). As can be seen from Fig. 6 the influence of the grain area
distribution increases the relative error of Young's module calculation. With increasing
a number of grains N in sample the difference between the calculations with and
without taking into account these distribution decreases and can be neglected for N =
8000 (copper) and N = 10000 (zinc) in case of texture model with D = 0.042. For
sharper texture this difference decreases as well and can be neglected for smaller

number of grains (N = 4000, N = 5000, respectively).
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points (grain seeds).
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6. CONCLUSIONS

Grain number

Fig. 6. The relative error of Young's module calculation evaluated for two texture model g = {0°,0°,0°}
(D=0.042, D=0.0192) as a function of grain number without (calculation N1) and with
(calculation N2) taking the grain area distribution into account for a) copper, b) zinc.

The results of Young's module calculations weakly depend on distribution of input

The used solid state model, which is a combination of three-dimensional random
rotations with known distribution and Voronoi tessellation, is very close to a real

polycrystalline. The obtained results of Young's module calculation do not depend on
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the statistical realization of Voronoi and Roberts algorithms, but depend on the number
of grains and texture appearance. It is established that the grain area distribution does
not depend on the distribution of grain seeds (input points). The algorithm to evaluate
limitations for arithmetic averaging technique is pointed out. These limits were
determined for selected examples. The minimum number of grains for conventional
averaging is about 8000 in the case of copper and about 10000 in the case of zinc.
Taking into account the influence of grain area distributions increases the error of

elastic property calculation.
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JIpiyaruna T. A., Hukonaes II. U. E14-2002-49
MonensHoe uccnenoBaHue MPUMEHUMOCTU YCPEeTHEHH
B KOJIMYECTBEHHOM TEKCTYPHOM aHalIu3e

OmuuM u3 Haubonee BaXHBIX MPUMEHEHMI (DYHKLMM pacrpefesieHds OpUEHTALMi
(®PO) sBnsercs BbIMHCICHHE (DM3HMYECKHUX CBOWCTB MONMKPHCTALUIOB IyTEM YCPEOHEHHs
CBOMCTB COCTaBJIIOLIMX UX KPUCTAJIUTOB. B 1aHHOi paboTe uccnenyeTcs BOpoc O KOJIH-
4ecTBe 3epeH B obpasiie, HeoOXOMMMOM I TpoBefeHus ycpexneHuit ¢ ®PO ¢ Tpebyemoit
TOYHOCTHIO. [ 9TOro cMofenMpoBaHa MUKPOCTPYKTYpa MOJMKPUCTAIIa HAa YPOBHE 3€peH
1 KaXIOMYy 3epHY NPUCBOEHA CilyyakiHas OpHeHTauus. [ MOIenMpoBaHis MUKPOCTPYKTYpPBI
MCIIONIb30BaHO pa3buenue BopoHoro, a /s reHepupoBaHHs CITy4aiHbIX OPHEHTALWMIA, pacripe-
HeJIeHHbIX 10 U3BECTHOMY 3aKOHY, npuMeHsancs noxxon Pobeprca. [Is HaGopoB 3epeH ¢ u3-
BECTHBIMM OOBEMaMHM M OPMEHTALMAMM, C ONHOH CTOPOHBI, U M3BecTHBIMU DPO, ¢ npyroii,
ObLIM BBHIYUCIIEHB! YIIpyrHe Moaymd. OKasanock, YTo 00a MOAXO4a MPHBOIAT K OJMHAKOBBIM
3HAYEHHUAM YIPYIUX MOMyJeH NMpU KOJIMYECTBE 3epeH B 00pasle, cTpeMaLeMcs K OeCKOHeY-
HOCTH. PasHuua Mexny pe3ynbTaTaMu pacyeTa C y4eToM M 6e3 ydera pacrpefeleHus 3epeH
10 [UIOLIAXAM 3HAYMTENbHA MU Yucie 3epeH, MeHbiieM 8000 wis Matepuana ¢ KyOu4yeckoi
cummerpuei ¥ 10000 ans Matepuana ¢ reKCaroHaJIbHOH CUMMETpHeEH.

Pa6ora Bremonnena B Jlaboparopuu HeirpoHHo# ¢usuky um. U. M. ®panka OHSIU.

Ipenpuar O6BENMHEHHOTO HHCTHTYTA SAEPHBIX MccaegoBanuit. Ny6Ha, 2002

Lychagina T. A., Nikolayev D. L E14-2002-49
Model Investigation of the Grain Number
to Apply Quantitative Texture Analysis Averaging

One of the most important applications of an orientation distribution function (ODF) is
the computation of physical property averages. A number of grains in a sample is investi-
gated in order to the averaging with a use of ODF reasonable from the accuracy point
of view. For that, a microstructure pattern has been generated and a random orientation
with known distribution has been assigned to each grain. In order to generate microstructure
patterns, Voronoi cells have been applied and to generate orientations with known distribu-
tion Roberts approach has been used. For such a model elastic modules for discrete sets
of grains with known volumes and orientations from one hand and with known ODFs
from the other hand were computed. It has been found that both these approaches lead
to the same values for the elastic modules, when a number of grains tend to infinity.
The number of grains for which the valuable difference between the results of calculations
with and without taking grain area distribution into account is less than 8000 for cubic sym-
metry and 10000 for hexagonal symmetry.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.
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