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1. INTRODUCTION

Stress analysis by means of diffraction methods has been developed fast during last
years. This is due to the fact that diffraction is the only nondestructive method for
internal stress testing of the engineering designs. Moreover, neutron diffraction is the
only available method which makes it possible to receive information from the interrior
of an object. In diffraction experiments the strain is measured directly by analysing
peak shift (macro-strains) or peak profiles. To determine the macroscopic stress from
mean strain data it is necessary to know the polycrystalline elastic properties. In
practice, the texture of a material very often has an influence on the elastic properties
and consequently on the resulting stress [1]. In this paper an example of the texture
influence on the result of a neutron diffraction stress analysis carried out for the
technological sample with cubic crystal symmetry is presented. The diffraction elastic
constants (DEC) were calculated by using the geometric mean model [2, 3, 4] taking
into account the determined texture [5]. The elastic constants could also be estimated
by the self-consistent model [6], which gives the realistic results for isotropic and
anisotropic (textured) materials. However, in many cases the bulk means of the elastic
constants, determined by self-consistent model or Hill model, are practically identical
with those derived by the geometric mean approximation [4]. The advantage of the
geometric mean is that the condition for symmetry of “inverse properties” (S =C™) is
valid on the macroscopic level for this approximation. Besides, it requires much more
simpler calculations than the self-consistent schema, and can be performed for any
crystal symmetry and orientation distribution [4]. Therefore it is interesting to compare
the results calculated by geometric mean approximations recently developed for stress

analysis (“pathgeo”, “bulkpathgeo”) [5] with experimental data.

2. APPROXIMATIONS USED IN STRESS ANALYSIS

2.1 Reuss approximation

In the diffraction stress analysis mean strain is measured for special subset of grains in



a polycrystalline sample. This subset p = p( ﬁ,,j/) is determined by the following
condition: ﬁ, | ¥, where 3 is the direction given in the sample coordinate system
K ,(Fig. 1) and coinciding with the scattering vector and %, is the normal to the
scattering plane given in the crystal coordinate system K ,. So the measured strain in a
laboratory system K, (Fig. 1) depends on the strains of the grains with orientations
g, = {/7,,5}“ {,0}, 0 <@ <27 [5] which belong to a path p in the three-dimensional

orientation space G and weighted by orientation distribution function (ODF) f{g) [5]:

2

e, (h,3) = [ e (8, @)/ (2, @)d | [ £(g,@)p. (1)

0

Fig. 1. Definition of the laboratory coordinate system K, , sample coordinate system K 4 and the

angles ¢ and y.

Using Hooke’s law of elasticity we can express the local strain “¢,,(g »(®)) by the
local stress 0(g,(®)). From the other hand, in order to determine the macroscopic

stresses in K, from the measured strain the compliances Lg (p) = Ls (ﬁ,,)‘/) -

diffraction elastic constants (DEC) must be known [7]:
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To determine macroscopic stress it is necessary to involve some assumptions which
make the solution simpler. The simplest Reuss assumption rather often used in stress
analysis states that stress in each grain is equal to stress applied to the polycrystal. It
means that o does not depend on g,. The expression for DEC of textured sample in
Reuss approximation was obtained in [7]. Matthies rewrote this expression reducing

the complicate f(g)-related part to the “moment pole figures” J, 71
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where M, =1,M, =cos®, M, =sin@, M, =cos2¢¥,M, =sin2® ; P is reduced pole

figure [8], U, (h,) is the part depending on single crystal compliances %Sy, given in

KB [7]
Uk[ (Ex )=0S33kl (Ex ) = {Hl ’O}Sr {EI ’0} 3u {EI ’0} kv {EI ?0} Iw 0Sruvw ’ (5)
T, =0, 9+ T,k /2,7, =1J,(k,9) =T, (~h, 9)]/2. (6)

The introduction of the “moment pole figures” clarifies some properties of

" S13m (B, ¥) . For example, the term “S.,,, (%, ) (Eq. 3(c)) does not depend on texture
because of J, =[J,(k,,y)+J,(=h,,)]/2 =1 [7]. Beside it is shown in [7] that J,=0

and as a consequence J, =0, .7q= 0 for g #0, h,=(001) and &= (111) in case of cubic
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materials. That’s why all terms “S,;,, (%, ) do not depend on texture for these cases.

So there are situations when it is not possible to take texture into account using Reuss
approximation for calculation DEC. The problem connected to disappearance of the
texture related terms in expressions for DEC in mentioned cases can arise because
Reuss approximation uses too simple arithmethic mean scheme in averaging of DEC ~§
along orientation path p. The arithmethic mean over all orientations is the simplest

approximation to calculate the elastic constants (compliances S or stiffnesses C) of
polycrystal with texture described by ODF f{g) and single crystal properties °S [1]:

g, f(g)dg’s ™

iy @ iy 'y ’

S’l’z!llz = J‘gl;l,g' g;
G
where g, are direction cosines of crystal axis j respect to the axis i of sample

coordinate system. However, the arithmetic mean does not provide the equality of
“inverse properties” (S = C™') on the macroscopic level [2]:

S=()". (8)

2.2 Geometric mean

The condition (8) is exactly realized on the macroscopic level in the frame of geometric
mean [2]. The method to calculate elastic properties of textured polycrystals within the

frame of geometric mean approach was proposed in [4]:
SO = exp{(WW " : Ln’S}, where )
WW iy, o o3z 15) = [W Gy i1 @0 (s 13 8).f (8)dg. (10)
G
In Eq. 10 W(ii,,iiy;g)= g,.8, (Eqa. 7), fig) is ODF and S are single crystal
properties. In stress analysis the geometric mean (“pathgeo”) was introduced in [5]:

LSPGO — exp{WW" : Ln’S}, where (11)
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In Eq. 11 S are single crystal compliances. The “pathgeo” have the limitation because
it takes into account only the influence of grains belonging to a given path. The bulk
path geometric mean “bulkpathgeo” “S” also introduced in [5] not only obeys
S =(C)™" but also takes into account the influence of all grains, represented by
bulkgeo-values S ““’ (Eq. 9):

L§ P _LgGEO [LS—[J II.Sp,(iI:'(), (13)
where “S%° is the S’ (Eq. 9) described in K, Eq. 13 can be resolved iteratively

with Reuss approximation as a starting point.

3. EXPERIMENTAL

The aim of the realized experiment is the examination of different approximations
introduced in stress analysis. As a model sample it was chosen the extruded pure Cu
rod. The loading and the texture experiments were carried out using neutron diffraction
at the spectrometer TEX-2, GKSS, Germany [9]. The orientation distribution function
was reconstructed from the three measured complete pole figures (111), (200), (220) by
means of three different methods: iterative series expansion method [10], WIMV
(Williams-Imhof-Matthies-Vinel) method [11] and texture component method [12, 13].
These results had been already reported [14]. WIMV method gave the best ODF in this
case [14]. The sample has rather strong axial texture (Fig.2).

The sample for the loading experiment had cylindrical shape (diameter < 7 mm, height
< 36 mm). The loading experiment was practiced according to uniaxial tensile scheme
and the condition Z, Il Z, was valid. It means that tensile was carried out along with
extrusion direction. Moreover, the neutron scattering vector coincided with the applied

stress. A volume size analysed by neutrons was about 400 mm”. It was considered the
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Fig. 2. Experimental pole figures for extruded Cu rod measured by neutron diffraction at TEX-2. Pole
figure (111), norm = 6309, contours are 1.5, 3.0, 4.5, 6.0, 7.5 mrd; pole figure (200), norm =
3311, contours are 1.2, 1.8, 2.4, 3.0, 3.6 mrd, pole figure (220), norm = 3052, contours are 0.5,
1.0, 1.5, 2.0, 2.5 mrd

deformation of crystal planes (111) and (200). The sample was subjected to a previous
plastic strain (extrusion) so in second loading (tensile test after extrusion) it revealed
the strain-stress curve with elastic region up to approximately 380 MPa. That is why
there was the possibility to load this sample in the tensile experiment up to 300 MPa in
elastic region. The experiment described in this paper is devoted to testing of “‘pathgeo”
and “bulkpathgeo” approximations. Therefore it was chosen for this experiment the
strongly elastically anisotropic (pure copper) and strongly textured material with large

elastic region in stress-strain curve.
4. RESULTS AND DISCUSSION

The experimental stress-strain curves for the planes (111) and (200) are shown on Fig.
3. On this figure the curves calculated according to Reuss approximation for the planes
(111) and (200), according to “pathgeo” approximation and “bulkpathgeo”
approximation for the planes (111), (200) and (311) are presented as well. The Reuss
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Fig.3. The stress-strain curves for extruded Cu rod in the elastic region measured by neutron diffraction
at TEX-2 and calculated in Reuss approximation for the planes (111), (200), and. in
approximation of textured material (“pathgeo” and “bulkpathgeo” models) for the planes (111),

(200), (311).
approximation does not take texture into account for the described experiment. Strain
measured along the applied stress in uniaxial tension can be expressed through the only
term “S,;,(h,,7) for Z Il Zs. However, as it has already emphasized, “S,,,;(%,,7) in
Reuss approximation does not depend on texture. The experimental curves shown on
Fig. 3 are in bad conformity with the ones calculated without taking texture into
account (Reuss approximation) and according to “pathgeo” approximation. The
calculations according to Reuss, “pathgeo” and “bulkpathgeo” approximations were

carried out for three different orientations of laboratory K, and sample coordinate
system K ,: 1) ZLI1Z4 (@ = 0°, y = 0°), 2) Z1|1¥4 (9 = 90°, y = 90°), 3) Z;|| R, where R
is the direction in the plane perpendicular to the extrusion direction, Z(RY ) =45 (p=

45°, y = 90°). These calculations aimed at quantitative evaluating of the texture

influence on elastic constant in the frame of different approximations. The density of



the plane normals (pole density) coinciding with Z, in the cases enumerated above is

different because of texture (Table 1 and Fig.2). In Table 1 the numerical results for the
"Sy353(h,,7) calculated according to three different approximations for the planes

(111), (200), (311) and three orientations K, with regard to K, are presented.

Table 1. Diffraction elastic constant “S;;;; obtained from the experiment and calculated

according to different models.

(hkl) | K, relative Pole LS3533, 10°GPa’’
to K density Reuss “pathgeo” | “bulkpath- | experiment
A geO”
(111) | =0y =0° 8.85 0.523 0.523 0.622 0.63+0.02
¢ =45° 0.414 0.523 0.523 0.636
y =90°
¢ =90° 0.295 0.523 0.523 0.631
Y =90°
(200) | @=0°y=0° 3.69 1.499 1.499 1.050 1.06%0.01
@ =45° 1.172 1.499 1.499 1.074
v = 90°
¢ =90° 0.655 1.499 1.499 1.065
v = 90°
(311) | @=0°y=0° 1.083 1.039 0.899 0.817
@ =45° 0.896 1.039 0.902 0.837
v = 90°
¢ =90° 0.894 1.039 0.903 0.830
y =90°

The table shows that there are limitation not only for Reuss approximation but also for

“pathgeo” model which is not able to take texture into account properly for cubic
crystal symmetry and I;,. = (200), li: (111) in the case of uniaxial test and coinciding
of the scattering vector with applied stress. Besides, in the Table 1 the values for
“S,553(h;,7) obtained from the experiment are presented. As can be seen from this

Table, the “bulkpathgeo” approximation considering the influence of all grains gives
results the most close to the experimental ones. However, the “bulkpathgeo” model

does not take into account the role of grain boundaries, which have an influence on the



properties of the real material. Besides, the model works properly only for the
approximately spherical grains. So it can be the reason for some difference between

experimental values and results calculated according to “bulkpathgeo” model.

5. SUMMARY

It is shown that Reuss approximation for calculation of diffraction elastic constants can
not properly takes texture into account for the particular arrangement of deformation
diffraction experiment carried out for cubic material: uniaxial tensile (compression)
and coinciding of the scattering vector with applied stress. Besides, it is shown that the
“bulkpathgeo” model the more accurate takes texture into account than the “pathgeo”
approximation and, as a consequence, describes the elastic behaviour of real material
better than the “pathgeo” approximation. This fact is also confirmed by experimental
stress-strain curves. These curves measured by neutron diffraction in elastic region for
the textured cubic material are in good agreement with the ones calculated with taking
texture into account by bulk path geometric mean “bulkpathgeo” model. This is the
most real-founded model from those considered in this work because it not only obeys
reciprocity condition for matrices of compliance and stiffness in macroscopic level but

also takes into account the influence of all grains in material.
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JIpryaruna T. A., Bpykmaitep X.-T. E14-2002-50
IIpumep BIMAHMSA TEKCTYphI B «CTPECC»-aHATM3E

IMoka3aHo BIMSHHE TEKCTYPBI Ha KPUBbIE 1e(hOPMUPOBAHMUS, DKCIIEPUMEHTAIIb-
HO M3MEpEeHHbIE B YNPYroi o6/1acTH METONOM Iu(PaKIMH HEHTPOHOB IS MEXHOTO
CTepXHd, MOOBEPTHYTOro 3KCTPY3uH. MHdopManus o TekcType HojydeHa U3 Io-
JIOCHBIX (PUTYp, M3MEPEHHBIX TaKXe METONOM Judpakuuyu HeiTpoHoB. Kpusrie
IetOpMHUPOBaHHUs BBIYHCIICHBI C YYETOM M 6e3 yyeTa TeKCTypbl Matepuaia. Pacue-
Thl YIIPYTMX CBOHCTB MaTe€pHaIa C yYETOM TEKCTYpbI IPOBEACHBI B PaMKaX CXEMBI
TeOMETPHYECKOIO ycpenHeHHus. IoaTBepXaeHbl NpeHMYLIECTBA BTOM CXEMBI, He-
JaBHO MPETOXEHHOH Ul pacyeToB «IU(PAKLIMOHHBIX» YIIPYTHX IMOCTOSHHBIX.
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Lychagina T. A., Brokmeier H.-G. E14-2002-50
The Example of Texture Influence in Stress Analysis

Influence of texture on the stress-strain curves experimentally measured
in the elastic region by neutron diffraction of an extruded Cu rod is shown. Tex-
ture information is obtained from the pole figures measured by neutron diffraction
as well. Stress-strain curves are computed with elastic polycrystalline properties
calculated with and without taking texture into account. Calculations of elastic
polycrystalline properties with texture are carried out according to geometric mean
model. The advantage of geometric mean averaging recently developed for dif-
fraction elastic constant calculation is experimentally confirmed.

The investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR and at the GKSS — Research Center (Germany).
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