E2-2002-56

V. V. Bytev, E. A. Kuraev, B. G. Shaikhatdenov!

(QUASDELASTIC ELECTRON-MUON LARGE-ANGLE
SCATTERING TO A TWO-LOOP APPROXIMATION:
VERTEX CONTRIBUTIONS?

Submitted to «XKDTD»

1On leave of absence from IPT, Almaty-82, Kazakhstan
Supported in part by RFBR 01-02-17437



1 Introduction

Certain interest to the physics envisaged at electron-muon colliders is now surging up. The
main attention will be paid to the investigation of rare processes, for instance to those
which violate the lepton number conservation law. Another motivation is a test of the
models alternative to the SM [1]. The problems of calibration and precise determination
of luminosity will be important. To this end the process of quasi-elastic electron-muon
scattering could be used.

Processes of quasi-elastic and inelastic large-angle ey scattering (EMS) play an im-
portant role in the luminosity calibration at electron-positron colliders. Indeed they have
a clear signature: scattered leptons moving almost back-to-back (in the center-of-mass
(cms) reference frame) and sufficiently large cross section (- cms scattering angle ),
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For completeness we put the differential cross section of large-angle radiative ey scat-
tering process for the case of hard photon emission (see App. C).

The modern experimental requirements to the theoretical accuracy are at the level
of per mille or even less whereby demanding for a detailed knowledge of the nonleading
terms in two-loop approximation. Some of them have been recently calculated in a series
of papers [2] devoted to the study of large-angle Bhabha scattering. The contribution of
elastic genuine two-loop virtual correction to the Bhabha amplitude has been recently
performed [3] using the prescription developed in [4] how to handle singular terms in QCD
at two-loop level.

In this paper we consider the EMS process to a two-loop approximation. We are
interested in the contribution to the cross section at this level which is given by the
interference of Born amplitude and those that take into account the two-loop virtual
corrections to the former. An attempt to this problem was done in a series of papers [5]
where a direct calculation was performed, but unfortunately their result is incorrect even in
the part containing infrared (IR) divergence. Another set of papers (see for example [6])
was devoted to the calculation of two-loop Feynman amplitudes within a dimensional
regularization scheme. Once again their results cannot be straightforwardly applied to
the real amplitudes of ey large-angle scattering. One of the reasons is the requirement of
distinguishing different masses of interacting particles.

Here we will consider only virtual and real soft photon contributions to the cross
section of ey scattering. To a third order of PT there exist three sets of contributions,
each of which is free of IR singularities. They include the contribution coming from the
one-loop virtual photon emission corrections (see Fig. 1) and the one given by a soft
photon emission (see Fig.3a).

To a fourth order there in overall are four IR-free sets. One of them, dubbed vertex,
contains virtual corrections up to a second order of PT to the lepton vertex function and
relevant inelastic processes with emission and absorption of real soft photons and lepton
pairs by initial and scattered electron (and the same for muons). We use here the known
expression for the lepton vertex function up to a fourth order of PT [7]. These along with
the contribution coming from the emission of two real soft photons and soft charged lepton
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Figure 1: First order contributions.

pair is our primary concern in the present paper. As well we consider a contribution to
the vacuum polarization caused by hadrons and a soft real pion pair production.

Three additional gauge invariant contributions are described by the one photon ex-
change containing lepton vertex functions with account for the vacuum polarization (VP)
and box-type FD with a self-energy insertion into the one of the exchange photons’ Green
function. They are put aside for a separate consideration.

Quasielastic means a process with emission of final particles in a center-of-mass (cms)
reference frame almost back-to-back. Final particle’s energies up to a small value Ae < ¢
coincide with those of initial particles. This disbalance is due to a possible emission of
soft photons and pairs.

We start by giving the results for the Born differential cross section and first order
corrections. The latter contains radiative corrections (RC) due to emission of virtual
photons at one-loop level and emission of an additional soft photon. Those contributions
suffer from IR divergence that mutually cancel out upon summing them up.
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Figure 2: Some of V-type second order contributions.

An outcome of the calculations agrees with the renormalization group (RG) prediction
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in the leading logarithmic approximation (LLA):
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with Dj is the A-part of non-singlet structure function of lepton [9]
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where p; is a so-called large logarithm, ¢ is the kinematical invariant and m,, m, — masses
of the leptons.

Besides we put the explicit form for the nonleading terms and present the result of
lowest order RC calculation to a power accuracy,
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Our calculation of a second order contribution is done in the logarithmic approximation.
We keep all the logarithmically enhanced terms including those containing logarithms of
a mass ratio, and omit the terms of order O(1).

Doing RC in the fourth order of PT we consider three separate gauge-invariant contri-
butions. We label them vertex contributions, decorated boxes and eikonal types. The last
two take into account the amplitudes with exchange between electron and muon enhanced
by additional one or two virtual (or real soft) photons as well as virtual (real soft) pair.
Their contributions will be given elsewhere.

The first set of Feynman diagrams (FD) is that of the vertex type with RC to a second
order (Fig. 2). It produces a contribution containing fourth power large logarithms along
with the IR divergent terms. Combining these with additional contributions coming from
the emission and absorption of one and two soft photons by either of the lepton lines
results in the cancellation of fourth and third power of large logarithms as well as all of
IR divergent terms. The result is found to be in agreement with RG predictions.

Our paper is organized as follows. After some introductory remarks we start with
discussing a first order contribution to the cross section of the process in Sec. 2. In Sec. 3.1
RC coming from the vertex diagrams to a o? order of PT are considered. Section 3.2 is
devoted to the study of the vacuum polarization effects including hadronic contribution
to the vertex FD. In Sec. 3 we give the contribution due to the emission of one and two
soft photons as well as a soft pair for the cases of emitted (absorbed) leptons with equal
and different masses. In conclusion we summarize and recapitulate the results obtained.

In Appendix A we give the details of hadronic vacuum polarization contribution. In
Appendix B we consider the soft hadron pair production. In Appendix C we give the cross
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Figure 3: Some of the soft photon contributions: the diagram (a) corresponds to a first

order RC; in (b) a filled circle denotes vertex one-loop RC; (c,d,e) represent an emission
of two soft photons; (f) a soft pair production.
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section of radiative ey large-angle scattering in Born approximation with mass correction
taken into account.

2 Born cross section and lowest order RC

Let’s remind that here we are concerned with large-angle high-energy ey scattering,

e (p) +p~ (Pz) - e‘(p’l) + 1 (p3), )
P2 12 = m pz P22 = mz

with the kinematical invariants s, ¢, u much larger than the lepton mass squared,
s s
s=(p+p)’, t=@E—-p)= —5(1 —-¢), u=(p-p)’ = “5(1 +¢),

where ¢ = cos(p,, p}) is a cosine of the scatter angle in cms (in what follows this reference
frame is implied). The differential cross section in the Born approximation has a form,
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And then we can write,

doy _ s+l [ (mi) |
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The lowest order RC comes from the emission of virtual (one-loop correction) and real
photons. The one-loop RC is classified out into the three distinct sets. One of them is
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related with a vacuum polarization insertion into the propagator of a photon exchanged
between leptons. It could be taken into account as follows,
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In the above the quantity M? denotes a square of hadron invariant mass in a process
e€ — h,
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is the known ratio of the single-photon annihilation cross sections with hadron and muon
pairs produced.
Another set of one-loop RC contains vertex function (we remind that only the Dirac
form factor of the vertex function works within power accuracy quoted in Eq. (4)):
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with lowest order Dirac form factors of leptons (see [7]):
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Here X is a fictitious photon mass. It’s convenient to present f1(4) ({;) as a sum of two
ingredients

FO =y e (11)

one of which f* contains QED vacuum polarization effects (it will be specified in section
3.2) and the second term,
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A contribution due to the Pauli form factor is neglected for it is proportional to a lepton
mass squared. Remaining one-loop RC is associated with the interference of the Born
amplitude with those containing two virtual photons exchanged between lepton lines.

A real photon emission could as usual be distinguished into a soft (w < Ae < €) and a
hard (w > Ae) regions regarding photon energy. For the quasireal case only a soft region
is of relevance:
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Let’s put some useful formulz for the description of a soft photon emission. We imply
the cms reference frame of initial particles, which means that the values of 3-momenta of
any particles (we consider ey elastic scattering) are equal.

First we give the expression for a single soft photon emission referred to
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with a dilogarithm function

4
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By a proper squaring of this formula one can easily derive the quantity 657 (see formulae
(21) and (22)).

The IR free contributions to lowest order RC from two sets containing Dirac form
factors of the leptons along with the relevant contribution coming from a soft photon
emission could be cast into the following form, which is in agreement with a structure
function approach,

do®
dO'()

I

+ 2[5 + 20 W) + 65 + 24P (L) = (15)
- 1+% [Q(pt—l) (21nA+g) —2¢ — 1+ 2Li (1;‘:)] .

After accounting for a soft photon contribution 6f2, , 5,51, as well as interference of the

Born and box-type FD we obtain (details of lowest order box FD contribution can be




found in [2]):
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The factor K represents a sum of elastic Born-box amplitudes and corresponding inelastic
contributions. The expression for the cross section given above is in agreement with
predictions expected from RG considerations.

The LLA expression for the EMS cross section can be brought to the form of a Drell-
Yan-like process [9] written in terms of structure functions:

oo () P ()]

with the non-singlet structure functions Da,

1 1
DA(Z) =14 2Pa + §z2P2A +...+ JZ" mA T+ ... (18)

Here P, is the n* iteration A-part of the kernel of evolution equations:

1
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Explicit expressions for Pa, Paa are given above in (2). Parameter A (A < 1) can be
interpreted as energy fraction carried by soft real photons and pairs escaping detectors.
a(t) is the running QED coupling constant o) = a/(1 — &t).

3 Second order RC

These can be represented as a sum of several sets each of which depending on a choice of
gauge with respect to virtual as well as real photons. We consider FD describing elastic
scattering with vacuum polarization effects included and furthermore with account for a
soft pair production. They are related with the one photon exchange FD both for elastic
and quasi-elastic processes and could be specified by the emission of two more (either
virtual or real) photons out of the same lepton lines.



A keystone to this classification is a soft photon radiator cross section. In case of only
one soft photon emitted it gets the form,

1 df. 3k
A0sogt = -7 e (6 S IMPsose 5
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For the two soft photon emission (for instance by electron block) we have ,
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For the case of emission of two soft photons provided that their total energy does not
exceed Ae < € we have,
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In the above the following integrals are defined,
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The general structure of all the above contributions to the differential cross section
reveals a presence of large logarithms up to a fourth power. However in overall sum one
observes only their second powers. Such a cancellation is characteristic of each gauge
invariant set of corrections.

3.1 Vertex graphs
Three gauge invariant groups of FD containing one photon exchange contribute

do® o? ~
d—o‘o = F[al +a + GQ]. (23)

The quantity @; is related with the emission of two (virtual and real) photons out of a
muon line: &1 =a (lt — Lt)

Using results given in Eq. (12) for the electron Dirac form factor up to a fourth order
of PT 1, the following IR singularities free contributions to the matrix element squared
from one photon exchange amplitudes could be constructed,

a = (FO2 425 + 2965, 4555, (24)
ay = AfP O +2(fP65y, + FP65.] + 65,65y,

We exclude a contribution due to the vacuum polarization, which will be taken into account in what
follows.

8



where flm corresponds to a muon form factor identical to an electron one with electron
mass replaced by that of a muon. The quantities &;; and &;° correspond to the emission
of one and two soft real photons (their energy are restrlcted by condition Aw; + Aw; < €)
off fermion lines 7, j. The corresponding expression is given in Eq. (14). One should take
note of the factor 1/2! in front of the latter quantities that is due to the identity of the
soft photons emitted.

The relevant contribution to the differential cross section in logarithmic approximation

then appears to be,

45
m+d = piPam+p [—g +Y +2¢+ 6C3] +0O(1), (25)
a; = p?PzA + p: [-“6 +Y 4+ 5(2] -+ 0(1),
1
Y = 2P1ALi2( ;c> (4G +14)InA — 8In? A,

quantities P; oa are defined in (2). This result is in agreement with RG form of large-angle
cross section.

3.2 Hadronic vacuum polarization

We study vacuum polarization effects occurring while considering vertex FD (see Fig. 2b,c).
To this end, the known expression for hadronic vacuum contribution to the photon Green
function is used by doing the following substitution,
o0
1 o dM? ’R(M 3
k2 3m M? k2 = M2’

4m2

(26)

where k is the four-momentum of the virtual photon, M? is a hadron invariant mass
squared and the ratio R(M?) is given in Eq. (8).

In the next order of PT we must consider the three gauge invariant classes of FD for
elastic and quasi-elastic processes with a soft photon and a soft pion pair production. At
first the vertex class is examined. They could be written as

99 b a e, gt = O iR g+ F(m2, ) (27)
do-o s v 9 ] 671_2 er w H
i 2
Fomt,t) = [ B2 RM?) Byt m?, M),

Mz
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where F} is the vertex (with hadronic vacuum polarization of virtual photon) contribution
to the Dirac form factor of a lepton having mass m. The contribution of the Pauli form
factor F; is suppressed by a factor of {m?/t|. 624" corresponds to soft hadron’s emission
of soft pion pairs.

A standard calculation with the regularization at ¢t = 0 leads to (for details see App.
A):
1

1
Fi(t,m? M?) :2/dx/ydy[ln— %—Z—z] (28)
0 0



with

a=a +tl-y+z(1-2)y%, d=d—y*z(l- ), (29)
ag=-m*(2—y%), do=y*m*+(1-y)M>

It can be seen that the condition Fj|;—o = 0 is satisfied. Here we put two limiting cases
for F. In the case of large hadron invariant mass squared, as compared to —t, it’s found
to be: o w2 1
t
Fi(t,m? M? In—+=[, M*>-t 30
(8, m?, M?) = M2[3 _t+9] > -, (30)
and for the case of small invariant mass squared:
—t M2 -t -t 72 1
2 ar2y _ 2 2 2
Fl(t,m ,M ) =—In W—2lnﬁln;n—5——5ln—ﬂ;2—+—3——§, —t> M > mu. (31)
Taking into account the emission of soft pairs (see App. B) we have for hadronic contri-

bution radiative correction:

—t
o? dM? M?
(6 + 5)hedr = ) e R(M?) [ In W [8 In p— —-2lnA+ 10} (32)
am2
M? M2 m 2
—61n? —10In —61n2———’i+—7r2—1].
My My, me 3

3.3 Leptonic vacuum polarization, soft lepton pairs

Next we do a VP-type contribution to the lepton vertex function. Obviously, there are
two possibilities for a VP blob to be inserted into the lepton vertex function. Then the
contribution to elastic cross section could be written as,

dO'()

(dﬂ”)e _ 2;;. [zl(me,me) + zz(me,mﬂ)], (33)

where

1 1 /19 1 265 )
Zy (e, me) = —%pf t3 (g - L) f - (642 += 3L% - 19L) p: = fF,

is a contribution of the electron blob inserted into the electron vertex function (for defin-
ition f*? see (11)) and
1 1 /19 265
Zy(me,my,) = 36p§ +3 ( 5 +L) P~ % <6C2+ - +3L? +63L> e,
is a muon blob contribution to the electron vertex respectively.
The similar expression holds for muon vertex function (electron blob contribution for
muon vertex):

1 1 /19 265
Zg(m“,me) = —égpf + E (F - L) Py — % (6(2 + —6— +3L7 - 25L) Pt
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Now turn to inelastic process of a soft lepton-antilepton {of mass p obeying 2u <
A€ < ¢) pair production. For the differential cross section we obtain:

do*? a® |1, 5
= — |z L?{2lnA -2

dog 62 [31‘ + ( . 3) (34)
+ L<4ln2A—?lnA+5—§—4g‘2+2Liz(1;—0)> ,

with L defined as L = In(—t/u?). We assume a muon or an electron to be a scattered
lepton, consequently the quantity u stands for the corresponding mass.

The sum of contributions (33) and (34) doesn’t contain cubic powers of large loga-
rithms and for the “electron line corrections” is found to be (see [11]):

dogy a\? 2 1
vp _ had z ) 2
(52), = ©{(Gmasri)a

2 1 1
+ 2pt[_l_z_EL+—1H2A“];;—OIHA—C2+'3‘Li2< +C>]} (35)

12 9 3 2
In case of a muon it appears to be,

dogy a2 | (/2 1
__vr hd z — )2
(45) - |

_£+_1.1_L+zln2A—19—OlnA—Cg+%Li2 (1“)”. (36)

2
Tt tgits 2

It’s seen that the leading terms are in agreement with RG predictions.

4 Summary

In this paper we evaluate the Born cross section and the first order RC to it of a process of
ep scattering in the quasi-elastic kinematical situation. The relevant formulae are given
in LLA in (2,3) and with power accuracy in (16).

Among second order contributions we consider gauge-invariant contributions from FD
with radiative corrections to vertex function of either leptons. Here we also include soft
photon and pairs emission with energies less than Ae.

In LLA the results are in agreement with RG.

The explicit results for virtual and soft real photon emission are given in formulae
(23,25). For emission of virtual and soft real lepton pairs the relevant formulae are given
in (34,35).

Section 3.2 in this paper is devoted to the determination of the contributions coming
from the hadronic vacuum polarization, where RC is expressed in terms of explicit integral
from the experimentally measured quantity R(M?). Also we consider a soft pion pair
production (see App.B). We calculate the hadronic vacuum polarization contribution to
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the vertex functions of electron or muon explicitly. The relevant formulae for RC are
given in (32).

In the forthcoming papers we will consider contributions coming from the last gauge-
invariant types of contributions, which are eikonal and decorated types of box FD.

Appendix A. Hadronic vacuum polarization, details

Let’s consider here details of vertex hadron’s function calculation. For the vertex function
we can write down:

Vu = P1’7u + F2([I\’Yu - 7}1[1\)7 (37)

where ¢ = p; — p'2 and I'y 5 are Dirac and Pauli form-factor. Let’s write down vertex
function as follows,

Vi = ull1 4 4mT2] — 2(p2 + py) T2 = 1,4 + (P2 + py)uB, (38)
where
A = /ydy[dx [21"%?—/2- + 4—Zi(m2 +papy) — 2yIn % (39)
+ VD WD o),
B = / ydy / de [%(—m) + 2yyzm+ 23’3’”(; - ’”)zm].

Quantities d, dp are defined in Eq. (29). After a regularization at t = 0 we have:

Fu(t,m?, M?) = Ty — Ty} = 2/dx/ydy [m b o —]. (40)
0 0

The contribution of the Pauli form factor I'; is proportional to B and therefore is sup-
pressed by a factor of |m?/t|.

Appendix B. Soft pion pair production

The general expression for a soft pion pair production,

2 3 3
4 d d°q_
MP o, - (wa) / Q+/ q 27)6*(qs + ¢_ — q)
2€+

‘Mo
X g+ — 9 )ulgs — a-)ududyy, Ju= (Qzlpl)m

with
m, K< V@R K AeLe, ¢ > ¢

Here gy, €4 is four-momentum and energy of 7%, ¢ and ¢o is 4-momenta and energy of
soft pair.
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Rewriting

Ae
47 d§2
/d4q = 7/dq24—;/dqm/q§— 2,
Ve

/d3‘1+ /d &= (2m) 7064 (qr + 4= — @) g+ — 0 )

2e, 2e_
_1 99 ~Tp—5 2 2 4m?
X(q+_Q——)u—§(guu_ Z )2 (4m* - ¢%) 1—;2—,
one gets,
M? o? (g% —4m?)¥2 [ dQ,
| dr M 7 — g2 J?
IMo += 4 PP P / /qu\/q ¢*J7,
where

J=J,J, (gw, - q‘;g") .

Separate contributions,

[t o).

4r (p1g)? g

/qu P1D2 _ /qu pllpl2 _ 11 9 2A€
—_—— = ————=-In"| —= | —In2,
4m p1gpagq dm piaphq 2 N

Master integral,

Ae
dQ, pip 2Ae 2Ae 1-c¢
d 2_g2 [ 2 771 2 =) 4+mhh{Z= ] - Ga-
\//_ OVETE | an prapha Ve Ve 7))
q2

Soft pion pair production contribution to the invariant mass distribution (both from
electron and muon blocks emission) has the form:
M? do a? t. Ae

M- do _ o" fy et Tt A
o I 30 [ln M2+lnM2 In - +(9(1)J.

5 Appendix C
Let’s consider radiative large-angle high-energy ey scattering process:

e (p1) + ™ (p2) = e~ (py) + 1 (py) + (k). (41)

It’s convenient to introduce symmetrical set of kinematical invariants:

S =21y, $1=2Py, G =—2papy, t=-2pipy, u=—2pipy, (42)
up = =2popt’, k1 =kpy, Ky =kp), Ka=kps, Kky=kp,
t+t1+s+si+u+u =0.
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For the case s~ s; & —t =~ —t; &~ —u =~ —u; > mf‘ we have for cross section:

b en o® d’p d®p,d®k —
do 7t 2t = 228 (Re+ R, + Reu)%64(pl +p2—p —p,— k), (43)
1€2
R—IZIMI2—R_t1+m‘2‘A (44)
T MU TRy 2 M
1 -t m?
R, = — M, =R 7 —5Aee,
16 Z | Ml K1Kg * t ¢

1 —Uy u s 81
Rey = =R MM | =R I s e S R Y
# 16 Z( € M) (KJIKZQ K1Kq K1K2 I'CIKZ2)

where
2 a2 4 2 &2
u® +uy + s° + 87
R=—ini—r— 45
4tt,y (45)
A :_u%+s2 _ul+s]
H 2K 2k% 7
A = u?+s2  s24u?
T 2K? 262

In the case when all kinematical invariants including x; ~ n; are large compared with
muon mass square the expression which given above is coincide with one obtained in
paper [12].
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BrrreeB B. B., Kypaes E. A., IlaiixataeHos b. I'. E2-2002-56
KBazuynpyroe ep-paccesHue Ha GONbLIHE YIIbI
B IBYXINET/IEBOM NPHOIMXEHHUH: BEePIIHHHbIH BKJ1aj

PaccMoTpeH 1mpoliecc KBa3MYIIPYTOrO el-paccesHus Ha OOoJblIHe YIibl
npH GONBIIKX IHEPTUAX C YIETOM PaiHALMOHHBIX OMPABOK BILUTIOTH O ABYXIETIIE-
BOro ypoBHsi. Hapsamy ¢ BHpPTYalbHBIMH IONIPAaBKaMH YYTEHBI TaKXe HEyNpyrue
HPOLECCHl ¢ H3TydeHHeM MATKHX ¢otoHOB M map. IlonpaBka B mepBoM mopsaxe
BBIYUCIIEHA CO CTENEHHOH TOYHOCTHIO. [IByXmeT/ieBble MONpaBKH pa3OUThl Ha TpH
KaTHOpOBOYHO-MHBapHAHTHBIX Kilacca. Bknaj oqHOro U3 HUX (KJ1acc BEPLIMHHOTO
THIIa) BHIYUCIIEH C JTOrapuMUYecKoil TOYHOCTh10. Pe3ynpraT B MaupyiomeM npu-
GNUXEHHUH COITIACYeTCs C MPEeACKa3aHUIMH PEHOPM-TPYIIIIBL.

Pa6ota BbmonHeHa B Jlaboparopuu teoperudeckoii ¢usmuku uM. H. H. Boro-
mo6osa OMAH.

INpenpuatT O6BeNMHEHHOTO MHCTHTYTA SAEPHBIX HccienoBanui. [lyGHa, 2002

Bytev V. V., Kuraev E. A., Shaikhatdenov B. G. : E2-2002-56
(Quasi)Elastic Electron-Muon Large-Angle Scattering
to a Two-Loop Approximation: Vertex Contributions

We consider a process of quasielastic ep large-angle scattering at high ener-
gies with radiative corrections up to a two-loop level. The lowest order radiative
correction arising both from one-loop virtual photon emission and a real soft emis-
sion are presented to a power accuracy. Two-loop level corrections are supposed
to be of three gauge-invariant classes. One of them, so-called vertex contribution,
is given in logarithmic approximation. Relation with the renormalization group
approach is discussed.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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