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1 General remarks

In this paper, we propose a method for approximate solving well-posed
boundary-value problems for differential equations. In fact, this method
is a variant of the well-known method of quasi-reversibility considered in
[1]. A principal difference between considerations in [1] and ours is that,
unlike in [1], we principally apply it to well-posed problems. Roughly
speaking, it is applicable to certain classes of such problems so that, for
approximate solutions to converge to an exact solution of a differential
equation, one does not need to look for standard questions as a stability
of a finite-difference scheme. Also, though we consider only applications
of the method to linear problems, it‘ can also be exploited in nonlinear
cases.

First, to describe our idea, we consider an abstract construction. So,

let we deal with an abstract equation

Lu=f 1)

where L : X — Y is an isomorphism (i. e. ‘a one-to-one linear map
continuous together with the inverse) of a Banach space X onto another
Banach space Y equipped respectively with norms || - ||x and || - ||y, let
f €Y,and u € X be an unknown element. So, for any f € Y equation
(1) has a unique solution « = L~ f € X and

llellx < L] 1A lly (2)

where, as usually, ||L||] = sup Ji—fx—’l:[“f and ||L7Y|| = sup “%—yll_lyxlfji We
0#zeX 0#£yeY

assume the existence of a sequence { X, }n=1,23,.. of subsets of X such that
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for any u € X one has

lim inf [ju—v||x =0. (3)

n~+00 v€Xn

In a real situation when X is, for example, a Sobolev or Lebesgue space
subsets X,, may be, for example, finite-dimensional subspaces of X spanned
by all splines on a fixed network of the net width n~! or by all algebraic
or trigonometric polynomials of order < n. In a real situation, one often
has an additional information about the unknown wu, such as its addi-
tional smoothness, so that for this concrete element u the convergence in
(3) is more quick than in the general case. So, for a given f € Y let
{an}n=123,. C R be such that a,, = 0 as n — oo and that we have for

our unknown u:
viﬁ_g{fﬂ”v—ullx <a, n=123,.. (4)

We call elements u, € X,,, n = 1,2,3,..., approximate solutions of

problem (1). The method we propose looks as follows. For each n we seek

un € X, so that

ILun—flly < ent inf [ILv~flly < en+ inf |IL(u—v)lly < entl|Lllon
(3)
where €, — +0 as n — co. Then, we obtain a sequence {u,} of approxi-

mate solutions. In view of (2),(4) and (5) we have
llun —ullx < L7 1Zun = flly S NL7HI(en + 11 Lllewm) = 0 as n — co.

If one is able to find u,, so that ¢, < Ca,, for a constant C' > 0 independent
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of n, then he finally gets:
Hu — uallx < IL7YI(C + |LIDon < Cran = +0 as n — oo

where C; = ||L7||(C + ||L||) > 0 is independent of n.

What is considered above is a general description of the method we
propose. One can see that its idea is quite elementary. In the next sections,
we consider several applications of the method to concrete problems of
mathematical physics. With these examples, we try to show that, in a
number of cases, the method works not quite bad or, at least, that it may
be considered as a candidate to be exploited.

Now, we introduce some notation used in what follows. Let d be a
positive integer, R¢ be the standard Euclidian space (we denote R = R?!)
of vectors £ = (4, ..., 24), with the scalar product (z,y) = z1y1 +... + Taya
and the corresponding norm ||z|| = 1/2% + ... + £2. Everywhere @ C R%is
an open bounded domain with a smooth boundary 092, A = %"'"""ai:g is
the Laplace operator, Cg°(2) is the linear space of infinitely differentiable
real-valued functions in  continuous in the closure  of  and equal to
zero on 9. For each nonnegative integer k& C*(£2) denotes the linear
space of real-valued k times continuously differentiable functions in 2, all
derivatives of the order < k of each of which are bounded in 2, equipped

with the norm

6k1+“'+k"g($)
dzkr ..ok

||9||c'=(n)= Z sup

ki kg <k TE2

and C¥(Q) denotes the subspace of C*() that consists of all g € C*(Q)

b

each of which has a continuous extension g onto  such that g = 0 on 99.
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Let L2(f2) be the standard Lebesgue space consisting of real-valued

square integrable functions g, h, ... in 2, with the inner product

(g,h) = / o(e)h(z)dz

Q

and the corresponding norm [|g|| = (g,9)/2. By D we denote the closure
of the operator —A, taken with the domain C§°(Q2), in Ly(Q?). In fact, as
well known, D is a positive self-adjoint (unbounded) operator in Lz(2).
For any s € R, let H*(2) be the Sobolev space being the completion of the
space C$°(€2) taken with the inner product (g, h)gs) = (D*%g, D*/?h);
in fact, H*(2) are Hilbert spaces. Clearly, H°(?) = L,(Q). Also, for a
positive integer s, as well known, the norm || - ||g+() is equivalent to the
norm
g@) )
ol =y 2 (g——p:) dz
;20

(this is a norm because g|,, = 0). We recall the known fact that, for any s,
D is an isomorphism of H*({) onto H*~?(Q). Also, for two Banach spaces
X and Y, the norms in which are denoted || - ||x and || - ||y, respectively,
L(X;Y) denotes the Banach space of linear bounded operators A acting
from X into Y, equipped with the norm

A.’L‘Hy
llAllexyy = sup ] .
ozcex ||Z]|x

Finally, ¢, C, Cy,C,,C’,C", ... denote positive constants.



2 Application of the method to an ODE

Here, we consider the standard problem
&

T dx?

Lu = u+q(z)u = f(z), u=u(z), z€(0,1), (6)

u(0) = u(1) =0, (M)

where g, f € C?([0,1]), g(z) > go > 0 and u is an unknown real-valued
function. It is well known that problem (6),(7) has a unique solution
u(-) € C3([0,1]). Let n be a positive integer and S, be the network
{0,h,2h,...,(n — 1)h,1} where h = n~1. We take X = Ly(0,1) and, for
X, the linear space of all cubic splines v(z) on the network S, satisfying

v(0) = v(1) = 0. Then, as well known [2], we have
Jnf |l = ulloqo) < Ch*
with a C' > 0 independent of n, therefore
an = inf [lo = ullz,0,1) < Crh*. (8)

Further, it is well known that the operator L taken with the conditions
(7) is an isomorphism of Ly(0,1) onto H~2(0,1). The problem of seeking

U, minimizing the expression

ILv = fllf-2¢0,0) = llv + D™ (g(-)v) = D7 flIZ, 0,0)

over v € X, obviously reduces to a linear system of algebraic equations
for coefficients {z} of v (coefficients {2z} may be, for example, {z; =

v(kh), k=1,2,...,n — 1}); in addition, we have |zl|l—r>r(1>o [|Lv — f||§{_,(0,1) =
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+00 because D7'L is an isomorphism of L3(0,1) onto itself and, also,

because ||v||z,(0,1) = +00 as |z| = co. Hence, due to (8), we have
|lun—ullz00) = 1L7" (Lttn = F)llza0,y < LM | Ltt — fllgr-2(0,1) < C:h?*

for a constant C3 > 0 independent of n.
So, the degree of convergence of our method is O(h*). In this con-
nection, it should be noted that the standard three-point finite-difference

approximations

_un((k = 1)h) — 2un(kh) + un((k + 1)h)
h2

+ g(kh)uq(kh) = f(kh),

un(0) = un(1) =0

give only a O(h?)-convergence.

3 Schrodinger-type eigenvalue problems in
higher dimensions

In this section, we propose a method for seeking the minimal eigenvalue
and corresponding eigenfunction of a Schrédinger-type eigenvalue problem
in many spatial dimensions. In fact, for a standard iteration method in-
volving inversions of the operator —A + V/(-) we introduce an approximate
procedure for such inversions. The author hopes that with this, though
estimates of the speed of convergence are not obtained, it may become
possible in some particular cases to make an approximate computation

of the eigenvalues and eigenfunctions of quantum-mechanical Schrédinger
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eigenvalue problems in higher dimensions d > 3 by the use of modern
computers.
So, we accept that a d-dimensional Schrodinger equation is already

approximated by the following problem considered in a cube:
—Au+V(z)u= Ay, u=u(z), =€ KrCR, 9)

“]aKR =0, (10)

where A € R is a spectral parameter, Kg = {z = (21,...,z4) ER?: —R <
z; <R, i=1,2,...,d} is a cube in R and V/(-) is a real-valued potential
to be assumed to be in C§°(K). By the trivial substitution y; = ZitR

problem (9),(10) reduces to the following:
Lu=-Ap+Vigu=du, u=uly), yeK, (1)

uly =0, (12)

where K = {y = (y1,...,4s) € R: 0<y; <1, 1 =1,2,...,d}. In what
follows, for a simplicity of the notation, we rename y by z and V1(y) by

V(z). We also suppose
Viz)>VW >0, z€K.
As well known, problem (11),(12) has a sequence of eigenvalues
O<Xd<M<..<h<..,

where each ), is corresponded by an eigenfunction u, satisfying ||u,|| =1

and such that {u,}n=01,2,.. is an orthonormal basis in L;(K). A standard
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iteration process for seeking A¢ and do is the following (see, for example,
[3]). We take an arbitrary w! positive and continuous in K and satisfying

(12). For each n = 1,2,3, ... we set

where L is the operator —A + V/(-) taken with the boundary condition
(12). It is known [4] that for each continuous f there exists a unique weak
solution u of the equation Lu = f taken with boundary conditions (12)
and that this weak solution is also continuous in K. Thus our iteration

process is well-defined. As well known, one has

(wn-l-l’wn) a1 )\_0 n
A

w"_ ﬁn
mwu‘%+0((h))

which allows to calculate Ag and uo approximately arbitrary closely to the

and

exact ones. A simple modification of this method also allows to find higher
eigenvalues and eigenfunctions of the operator L.

One of the main difficulties when applying this method in higher
dimensions is the problem of inverting the operator L, that is the problem

of solving the equation
Lu=f, u=u(z), z€ K, (13)
ulox =0, (14)

where u is an unknown function, so that one should take v = w™*! and f =

w™ to obtain the above iterations. We assume f|,; = 0. In this section,
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our main aim is to establish a procedure for approximate solving (13),(14)
in higher dimensions (for instance, when d > 3). Here, we apply classical
Korobov’s approximations of smooth functions. To describe them, we
introduce some new notions. Let

€ny,ma(T) = 24/2 gin m(ny + 1)zysinm(ng + 1)zg X ... X sinw(ng + 1)zq,

so that {en,,..n,(€)}ni=0,1,2,... is an orthonormal basis in Ly(K), and let

f = Z fﬂl,.--,ﬂdenh---md € Lz(k)
NY yeeryig=0
Then, for C' > 0 and o > 0 we say that f € E*(C) if
o
< -
lf'nly---sndl — (-ﬁl---ﬁd)a (15)

for all values of indices (here @; = max{1;n;}). One can easily verify
by integrating by parts in the representations for Fourier coefficients of f
that (15) holds for a C > 0 if f € C§2(K) where C$3(K) is the space of
functions infinitely differentiable in K each of which is equal to zero in a
neighborhood of the boundary 0K.

Let also B.(t), wheret € R, By(t) = t—3 and B,(1) = B,(0), B.(t) =
rB,_1(t) for r > 2, be the Bernoulli polynomials. The following result is
due to Korobov [5].

Theorem Let r > 2 be integer, a > 2r be integer, too, and ay,...,aq
be the optimal coefficients by module p an effective computation procedure
of finding which is presented in [5]. Then, for any g € E*(C) one has

-1 . : PTYgeee T alk adk
g(z1,..c,zd) = p Z g [ L —— b —— b ] X
k=1 Tl 0 p p

o Td=
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R ({5 o) o

v=1
where g'M T = %, the constant v > 0 depends only on r and
.1.‘1 e Id
s and {q} is the fractional part of a real q so that {q} = q — [q] with [q]
the mazimal integer that is not larger than q. Thus, in (16) the speed of

convergence does not depend on the dimension d of the space.

Applying this Theorem, we first approximate our functions in
(13),(14) V and f by expressions similar to (16) with some real coefficients
in place of the derivatives g"™"4. It is possible to choose these approxi-
mations V; and f; arbitrary closely to V and f in C(K) because V and f
are continuous and also, because we can approximate them by functions

V. and f, from Cg2(K) arbitrary closely in C(K) and for these new func-
tions V. and f, their approximations similar to (16) converge in C(K) by
Theorem above. So, we assume that problem (13),(14) is changed by the

following:
Iu=-Au+V(z)u=Ff, u=u(z), z€K, (17)
ulox =0, (18)
where V = V5 and 7= f- It is well known that the solution % of problem
(17),(18) converges to the solution u of (13),(14) in L,(K) as V — V and

f — f in C(K), therefore we can accept that ||& — u||z, k) is sufficiently

small. So, applying Theorem above, we set

P 1

uP({z}7 L1y md) = P_l Z Z 21y ak X

k=1 T1,...,7¢=0
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T[S ({5 )

where {z} is the set of indefinite coefficients z,,, % If it would be

u € E*(C), then we would have

) _ In”
inf fup({z}, 21, 26) — We, 20l l2acr) = O ( p,”) as p—+ oo.

To find an approximate solution of problem (17),(18), we, for each p, look

for u, minimizing the expression

1wy = fllf-2z) = llup + D7V (Yup) — D7 |7, 1) = 90(2)

over coeflicients {z}. It is easy to see that g,(z) is a nonnegative quadratic
function of the coefficients {z}. If it becomes zero at some z = 2§, then
u,({z5}, z1,...,4) is an exact solution of problem (17),(18); otherwise
lim g,(2) = 400 so that g,(z) has a unique point of minimum z = 2.

|z| =0
As earlier, we have

pll)m Hup(zo’xla ’wd) _ﬂ(a:la"',xd)“Lz(K) =0

and

Jlim | Lup(28, 1, .. a) = F (1, ooy Ta) | H-2(1) = O,
therefore, we can construct approximate solutions u,(25,z1,...,z4) arbi-
trary closely to the exact solution of (17),(18). Finally, if an approximate
solution u, is chosen, then it is continuous in K by construction so that
the iteration process of seeking (Ao, ug) can be continued.

Now, we observe, first, that, to find the coefficients 25 from the

condition
9p(26) = mingy(2),
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we may differentiate the function g, over z,,, ., r and set these expressions
equal to zero obtaining a linear system of algebraic equations that has a

solution. Second, as well known,

2

||h||§;-2(K)= Z ui_l?-"rid /h(:cl,...,zd)e,-h,_.,;d(zl,...,zd)dzl...da:d

11 yeeeyta=0 K

where p;,,. i, = [m%(31 + 1)...(14 + 1)]? are the eigenvalues of D with the
corresponding eigenfunctions e, . n,. So, we may calculate in this way
coeflicients of our linear system for {2} approximately using similar ex-
pressions, and one can easily verify that the corresponding integrals can be
taken by quadratures in elementary functions. By analogy, coefficients for
9p(2) regarded as a quadratic function of z,,. -, x can be approximately
found analytically. These facts make it possible to calculate 2} effectively
by a computer.

We should now remark the following. Korobov in [5] presents upper
estimates for the differences between approximate and exact functions f
and f when the exact function is in E*(C) with a > 2r that provides
in particular that f is sufficiently smooth. For the iteration procedure
we propose, the functions w™ are only continuous in general. This does
not allow us to obtain upper estimates for the speed of convergence of
our method of seeking w™*! by w™. However, the author hopes that this
method could allow researchers to solve approximately Schrédinger eigen-

value problems in many spatial dimensions in certain particular cases.
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4 Application of the method to a heat equa-
tion

In this section, we consider a method of numerical solving the problem
U = Uge — c(z)u + f(2,t), u=u(z,t), (z,t) €(0,1) x(0,T), (19)

u(0,t) = u(1,t) =0, (20)

u(z,0) = uo(2) € CA(0, 1]). (21)

We assume that ¢(-) € C?*([0,1]), ¢(-) > ¢o > 0, and that f € C?([0,1] x

[0,T1]). Then, problem (19)-(21) has a unique solution u(z,t) that belongs
to Cg([0,1]) for any fixed ¢ and is twice continuously differentiable in ¢.

Let M and N be positive integer, h = N7}, 7 = TM™1, S} =

{0,h,2h,...,(N = 1)h,1} and P, = {0,7,27,...,(M — 1)7,T}. First, we
consider the following semidiscrete approximation of problem (19)-(21):

ur(z, (r+1)7) — u (z,rr)

= Uy gz, (r+1)7)—

—c(z)us(z,(r+1)7) + f(z,(r+ 1)7), r=0,1,2,.. . M—-1, (22)
u(0,r7) = u,(1,r7) =0, r=0,1,2,..., M, (23)
ur(z,0) = uo(z). (24)

Clearly, since ¢1(z) = c(z) + 77! > ¢ > 0, for each r equation (22)
with boundary conditions (23) has a unique solution u(z,(r + 1)7); in
addition, as in Section 2, one has u(-,(r + 1)7) € C§([0,1]) for each

r=0,1,2,..., M — 1. The following result takes place.
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Proposition. There exists Cy > 0 such that

1

_ 2 2
r=0,11n,.?,)1(w—1/d$|u1(x’ (r+1)7) —u(z,(r+ 1)7)]* < Ci7°
0

Proof. Due to our assumptions, the exact solution u(z,t) is twice
continuously differentiable over ¢ and is four times continuously differen-

tiable over z. Thus, we have:

u(z,(r+ 1)7) —u(z,rr) _

O(7) + ugz(z, (r + 1)7)—

—c(z)u(z,(r+ 1)7) + f(z,(r + 1)7), r=0,1,2,.... M — 1. (25)

It easily follows from (22) and (25) that

/dw(u,(w, (r+ D7) —u(z,(r+1)7))? =

= /dw{O('r2)(uT(x,(r +1)r)—
—u(z, (r+ 1)7)) = 7(tr oz, (r + D7) — ug(z, (r + 1)7))*—
—7c(z)(ur(z, (r + 1)7) — u(z, (r + 1)7))? + (u.(z,r7)—

—u(z,r7))(ur(z, (r + 1)7) - u(z, (r + 1)7‘))}

which implies

5 [ dolun(a,(r+ )7) = u(e, (r+ D7) <

. 1/2
< Cyr? {/dw(uT(w, (r+ D7) —u(z,(r+ 1)7—))2} +
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1

1
+§ / dz(u.(z,r7) — u(z,r7))>
0
The latter inequality immediately yields the statement of our Proposition.
1

Indeed, setting y(r7) = [dz(u.(z,r7) — u(z,r7))? so that y(0) = 0, we
0

obtain from it for some C, > 0 independent of 7 and r:

y((r41)7) < Cor®+(147)y(rr) < Cor’+(147)(Car>+(147)y((r—1)7)) <

W< 027'32(1 +7)? < C,r? [(1 +7) 1/"“ ] Cy7?

q=0

where r =0,1,2,...,M — 1.0

As noted above, in fact u(-,r7) € C§([0,1]) for each 7 and each r.
So, we can apply the method described in Section 2 to seek u,(z, (r+1)7)
regarded as a function of z from equation (22). So, for each fixed 7, we
obtain a O(h*)-convergence of approximate solutions of problem (22)-(24)

to the exact one.

5 Conclusion

With this paper, we did not aim to develop in detail the method of quasi-
reversibility we consider. As noted earlier, we only wanted to show that
this method may be considered as a candidate to be exploited for numerical
solving certain differential equations. As for concrete algorithms realizing
it, it seems to be that there are no principal difficulties to construct them.
For example, to solve the typical problem for the ODE considered in Sec-

tion 2, one could chose a h between 10 and 20 obtaining an accuracy of
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the method about 10™*, and with this choice of A, the problem reduces to
a not very large linear system of algebraic equations which seems to be
not difficult so far for its numerical solving. The author hopes that this
method could also be useful for researchers in order to solve many-body

quantum-mechanical problems in certain particular cases.
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XKunxos I1. E. E11-2002-61
Merton pemenns aucdepeHIMATLHBIX ypaBHEHHI
Ha OCHOBE TEOPHH aNNPOKCHMALUH

PaccmarpuBaercs MeTon KBasHOOPAleHHs U1 YHCIICHHOTO PElleH s TpaHHy-
HBIX 3ama4 Wi audrbepeHIMaNbHEIX ypaBHeHuit. Crienguieckoif 0cOGEHHOCTBIO
Ipe1araeMoro IMoaxona sB/IAeTCs KOPPEKTHOCTh M3ydaeMbIX 3amad. [1aBHas uaes
MeTola IPOWLTIOCTPHPOBAaHA Ha HECKOJIBKHX HMPUMEpaX THIMYHBIX 3aJa4y MaTeMa-
TH4eCKON GU3MKH. B 4acCTHOCTH, MpeanoxXeHa HOBas Ujes WIS PelICHUs KBAHTO-
BO-MEXaHMYECCKHX IOPEIHHIEPOBCKUX 3ada4 Ha COOCTBEHHEBIE 3HAYEHHS B MHOIO-
MEpHOM Cily4yae, OCHOBAHHas Ha KJIaCCHYECKHX armpoxcumauusx Kopo6osa.

PaGora Bemonnena B JlaGoparopuu teopetuyeckoit ¢usuxu uM. H. H. Boro-
mo6osa OUSN.
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We consider the method of quasi-reversibility for numerical solving bound-
ary-value problems for differential equations. A specific feature of our approach is
the well-posedness of the problems we study. We illustrate the main idea
| of the method with several examples of typical problems of mathematical physics.
In particular, we propose a new idea for solving quantum-mechanical Shrédinger
eigenvalue problems in many spatial dimensions based on the classical Korobov’s
approximations.
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