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AHATUTHYECKOE PacCMOTPEHUE CIIIaXeHHOH 3amauu Tamma

PaccmarpuBaeTcs ABMXKEHME 3apsjia B Cpele Ha KOHEYHOM HMHTepBaie. Ui ABUXEHUS,
OIMHCHIBAEMOTO aGCOMOTHO HENpPEPHIBHBIMU (DYHKIUSIMH BPEMEHH (3TO O3HAYaeT, YTO CKO-
POCTb 3apsfa M BCE €€ NPOU3BOAHbIE M0 BPEMEHH SBIAIOTCH HENPEPHIBHBIMU (DYHKLUSAMH),
WHTEHCHBHOCTD ‘M3ITyYeHHs MPU CKOPOCTH 3apsna v, Oorblueil CKOPOCTH CBETa B BEILECTBE
¢y » NPOMOPUHOHANBHA YaCTOTE B ONPEAETICHHOM HHTEpPBAIE YIVIOB U yOBIBa€T 3KCIIOHEHLIM-
arlbHO BHE TOro MHTepBala. [UIs ABIXEHH 3apsaaa cO CKayKaMH YCKOpeHHUs, HO 6e3 CKauKoB
CKOPOCTH DKCIIOHEHLIMaTbHOE YObIBaHHE cMeHseTcs 1/ -yOpiBaHueM. JIJ1d 3aMeyIeHHOTO IBU-
KeHUs!, Kora HayarbHasd U KOHeYHas CKOPOCTH 3apsjia NPEBBIAIOT C,,, YIVIOBas HHTEHCHB-
HOCTB M3JTyYeHHUs CONEPXKUT IUIaTo. B MpakTH4ecKH BaXXHOM Cllydae, COOTBETCTBYIOLIEM ITOJI-
HOUM OCTaHOBKE 3apsia, HHTEHCUBHOCTh U3Iy4EHMS MaKCHMalIbHa NPH YEPEHKOBCKOM yIie
6., COOTBETCTBYIOLIEM HadalnbHOH CKOPOCTH, H ObICTpO yObIBaeT mpu 6>6 .. HHTerpansHas
MHTEHCUBHOCTD (IIOJIy4eHHAs! HHTETPHPOBAHHEM IT0 TEJIECHOMY YEITY), COOTBETCTBYIOIIAd 9TO-
My ABUXEHHIO, SBIISETCS JIUHEHHOM (yHKIMeN 4acTOTH (HECMOTPs Ha CIIBHOE HapylICHHE
ycioBus TaMMa), eciii CKOPOCTh 3apsiia MPEBBIIIAET Cj, .
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Analytical Treatment of the Smoothed Tamm Problem

The charge motion in medium in a finite space interval is considered. For the motion
described by absolutely continuous functions of time (this means that the charge velocity
and all its time derivatives are also continuous), the radiation intensity, for the charge veloci-
ty v greater than the light velocity in medium c,,, is proportional to frequency in some angu-
lar region and exponentially decreases outside it. For the motion without velocity jumps, but
with acceleration ones, the exponential decrease changes by the 1/w one. For the pure decel-
erated motion, when both initial and final velocities are greater than ¢, , the radiation intensi-
ty contains a plato. In a practically important case corresponding to the zero final charge ve-
locity, the radiation intensity is maximal at the Cherenkov angle 8. corresponding to the ini-
tial charge velocity and sharply decreases for 6>6.. The integral intensity (obtained
by integration of the angular radiation intensity over the solid angle) corresponding to this
motion is a linear function of the frequency (despite the strong violation of the Tamm condi-
tion) when the charge velocity exceeds c,,. ,

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1 Introduction

The aim of this consideration is to study the properties of the so-called smoothed
Tamm problem. The original Tamm problem [1] deals with a charge instantly ac-
celerated at the start of motion, uniformly moving on a finite space interval and
instantly decelerated at the end of motion. Under some approximations (see below),
Tamm obtained the remarkably simple formula describing the intensity of radiation:

e?sin’ 0 sin k,zo(cos § — 1/8,)
or(d,w) = minc [ cosf —1/3,

2. (1.1)

Here 6 is the observation angle counted from the motion axis, n is the medium
refractive index (n = \/en), B, = fBn, B = v/c, v is the charge velocity, k, = kn,
k =w/c=2m/)\ is the wave number, and z, = L/2 (L is the motion interval).
There are two different interpretations of this formula. Tamm and Frank associated
it with the radiation of a charge moving uniformly on a finite space interval. On the
other hand, Vavilov [2] attributed the radiation observed in Cherenkov experiments
to the charge deceleration arising from the ionization energy losses. Later, Ruzicka
and Zrelov [3,4], associated (1.1) with the interference of two bremsstrahlung (BS)
shock waves arising at the start and end of motion. In order not to be involved into
this dispute, we consider analytically and numerically the so-called smoothed Tamm
problem in which the charge velocity varies smoothly, without jumps. Since there
are no infinite accelerations in nature, the smoothed Tamm problem may be viewed
as a suitable, quite useful for experimentalists, idealization.

The plan of our exposition is as follows. The treated motion laws are discussed
in Section 2. The necessary mathematical formulae and the approximations used
are presented in Section 3. In Section 4, we give without derivation the analytical
radiation intensities corresponding to a charge moving in medium with the motion
laws treated in Section 2. Various limiting cases are also considered. Numerical
calculations supporting analytic results of the previous section are collected in Section
5. Finally, in Section 6, we give a short discussion of the results obtained.

2 Treated motion laws

The following charge motions in medium will be considered:

1. A charge, being initially (¢ < —to) at the state of rest at the point z = — 2o,
in the space-time interval (mto<t<—t;, —20<2z< —2z1) moves with a constant
acceleration up to acquiring the velocity vy with which it moves in the space-time
interval (—#; <t <t, —z <z <z). Afterthat (t; <t <ty, 2 <z < 20), &
charge is uniformly decelerated up to reaching the state of rest at the point z = 2p

(Fig. 1).



2. A charge moves according to the law (Fig. 2)

v(t) =

Vo

cosh?(t/to) 21)

Obviously, v(t) = v for t = 0 and v(¢) — 0 for ¢ — 4-co. The charge position at the
moment ¢ is given by z(t) = voto tanh(¢/to). Therefore, the charge motion is confined
to —L/2 < z < L2, where L = 2uotp is the motion interval. The velocity, being
expressed through the current charge position, is

v(z) = vo(l — 42%/L?) (2.2)

The drawback of this motion is that one can not change ¢, without changing the
motion interval L.

3. A charge moves according to the law (Fig. 3)

t—To
T )

The maximal velocity (at ¢t = 0) is ¥ = votanh(Tp/T). Equation (2.3) is slightly
inconvenient. When we change either T' or Tj, the maximal velocity, the interval to
which the motion is confined, and the behaviour of the velocity inside this interval are
also changed. We rewrite this expression in a slightly different form, more suitable
for applications

— tanh

1 t+ Tt
v = §vo(tanh T °

(2.3)

1 + cosh(27,/T)
%cosh(2t/T) + cosh(2Ty/T)’

The charge position at the moment ¢ is given by

v(t) =19

(2.4)

LT . cosh(t+ To)/T
2(t) = 4T, In cosh(t — To)/T’ (2:5)
where

L= 2’00T0 = 2730T0 COth(To/T) (26)

is the motion interval. We reverse this expression, thus obtaining

Ty 1, 1+2Tuio/L

T = 3 T 2hyn/ L

= 2.7)

It is seen that the fixing of @y and L leaves only one free parameter. If we identify
it with Ty, then (2.7) defines T' as a function of Ty (for the fixed L and ). For
To << T, the r.h.s. of (2.7) should also be small. This is possible if 2Tyd/L << 1.
Then, r.h.s. of (2.7) tends to 2T400/L. Equating both sides of (2.7), we find that
T = L/2%; in this limit. For To — L/27, the r.h.s. of (2.7) tends to co. Therefore,
T/To — 0. It follows from this that the available interval for 7' and Ty is (0, L/24)



(for the fixed L and ). We express the charge velocity through its current position
z. For this, we at first express cosh(2t/7') through z:

2t sinh[To(1 4 22/L)/T] sinh{To(1 — 2z/L)/T]

“OSh 5 = 3 b [To(T — 22/L)/T] T Zsinh[To(1 5 22/ L)/T] (2.8)
Substituting this into (2.4), we obtain v(z). For Ty << T, v(z) reduces to
" 422
v(z) = Bo(1 — f{), (2.9)

which coincides with (2.2) if we identify @ with vo. In the opposite case (T << Tp),

o

1+ exp(—2T5/T") cosh(2¢/T)

v(z) = (2.10)

If z is so close to (L/2), that
2z T

1-22 il
T <<
then (2.8) gives

2t 2T, 2z 2To
sh— T(l f)exp(T) and v(z) =

On the other hand, if

27)0 TO

(1- —) (2.11)

SE
L To’
then
cosh(2t/T)=1 and v = to. (2.12)

Since, according to our assumption, T'/Tp << 1, the transition from (2.11) to (2.12)
is realized in a very narrow z interval. For example, for T/Tp = 1078, it takes place
in the interval (1 —107%) < 2z/L < (1 — 1077). The same considerations are valid
in the neigbourhood of another boundary point z = —L/2.

We conclude: the horizontal part (where v & @) of the charge trajectory exists
if T << To (see (2.12)) and does not exist if Ty << T' (see (2.9)). However, in both
cases (T' << Tp and T >> Tp), v(z) decreases linearly when z approaches boundary
points. The motion law (2.4) is much richer than (2.1). It is extensively used in
nuclear physics to parametrize the nuclear densities [5,6].

4. Let a charge move in the (21, 2;) interval according to the motion law (Fig. 4):
1
zZ=z + ’Ul(t - tl) + Ea(t - t1)2. (213)

The motion begins at the moment ¢, at the space point z; and terminates at the
moment ¢, at the space point z;. A charge is at rest for ¢, < 0 and ¢, > 0. The



charge velocity varies linearly with time from the value v = v; at ¢ = ¢; up (or down)
to value v = vy at t = #5: v = vy +a(t —¢;). The acceleration a and the time motion
interval can be expressed through 21, 23, vy, vy:
2,2
vy —v 2(zy — 2
gz, UAn—a)

2(z1 — ) vy + U1
A particular interesting case having numerous practical applications corresponds to
the complete termination of motion (3, = 0).

5. Let a charge moves according to the law (Fig. 5)

v=v+—|—v»_tanhti, vy = UL:%:—EZ, —o0 <t < 0. (2.14)
0

The current charge position is z = vyt + v_toIncosh(¢/tg). For t — o0, v — vy
and z — vy ot.

Formerly, exact radiation intensities for the motion laws (2.1),(2.2) and (2.14) were
obtained in Refs. [7-10] for a charge moving in vacuum. It was shown there that
angular-frequency radiation intensities are exponentially small at large frequencies.
It will be shown below that, in the presence of matter, the asymptotic behaviour
changes dramaticaly: their exponential decrease disappears in some interval of ve-
locities and angles changing by the linear rise with w.

3 Necessary mathematical formulae and approxi-
mations

Consider a point-like charge moving in medium with parameters ¢ and y. Let the
charge velocity and trajectory be ¢(¢) and §( ). For the definiteness, let it move
along the z axis. The magnetic vector potential (only its z component differs from
sero) corresponding to this motion is

= L2 [ S explio(t' + R/e,) i)' (3.1)

where R = [p? 4 (2 — £)%]Y/2,¢ = 2(#), and ¢, = ¢/n is the light velocity in medium.
Differentiating this expression, one finds electromagnetic field strengths and the en-
ergy flux through the observation sphere S of the radius r per unit frequency and
per unit solid angle

d?€  e’unk?sin® 0

a— ! !
o.(0,w) = o0 = i (LI + LI, (3.2)
where av i & .
v sin v
I.= i (costp — knrR)’ I, = / e ( R cos 9),



vdt’ £ sin cos 1
(1-= - cos 0)(cos ¢ — 3 b Rr k2R2T2)

c = R3
wdt! ¢ . cos sin 1
fi= [ S = Pty + 375 -850,

2
Y =wt' + k,r(R - 1), R=[1+§—2—2§c030]1/2, kn, = kn,
T

r and § define radial and angular positions of the observation point, and n = /e
is the medium refractive index. When obtaining (3.2), it is implicitly suggested that
the charge motion interval lies entirely inside the observation sphere S.

However, Eq. (3.2) is not suitable for practical applications and the qualitative
analysis of radiation intensities. Therefore, some approximations are needed. We
briefly enumerate them:

1. In the wave zone, where kr >> 1, one can disregard terms of the order 1/kr and
higher, thus obtaining

d /
Ic: vdt COS’QZ)7 .[ —/ R? SIH'QZ),
! vdt § vdt’ é'
I = I8 (1- . cos 0)costp, I = 7 —(1-= = cos 0) sin .

Usually, this approximation is satisfied with a great accuracy. For the observation
sphere radius » = 1m and the wavelength A = 4 - 10~5cm, kr is about 107.

2. When the observation sphere radius r is much larger than the motion interval,
one can disregard the ratio {/r everywhere except for the ¢ function. Then,

[C=Ié=/vdt'cosv,b, IS=I;:/vdt'sin¢ and

d*¢  e’unk?sin®0
o(0,0) = 8 I e (1, (53)

4r?c

Usually, this condition is fulfilled in a majority of experiments.
3. The most serious approximation is kL?/r << 1 (L is the motion interval). It
arises from the fact that the development of the k,r(R — 1) term entering in % has
the form
k,€%sin? 0
—+

2r
The Tamm approximation is obtained when the last term in this expression is ne-
glected. This is possible, if it is much smaller than 7 (since 1 enters into sines and
cosines). Then, 1 takes the form

kor(R—1) = —kn€cos 0 +

Y = wt’ — kné(t') cos 0. (3.4)



In realistic conditions, this approximation is not satisfied. For example, for A\ =
4-107%cm, L = lem and r = 1m, the discussed condition reduces to 400 << 1,
that is, it is greatly violated. The complications arising from the radiation inten-
sity measurements at finite distances and the analytic formulae removing the above
drawbacks were discussed in [11,12]. When the conditions 1-3 are fulfilled, the vector
potential (3.1) reduces to

A, =

pe ,
1 .
Do exp(tknr)l, (3.5)

where

I= /v(t’) expli(wt’ — kn cos 0z(t'))]dt'.

Electromagnetic field strengths contributing to the radial energy flux are

tenksin 8 . 1emksin 6 .
Hy = S exp(tknr)l, Ep= ——Wexp(zknr)ﬂ
The radiation intensity is given by
d*& ekinpu 5,0
o, (8,w) = Tod = Tanza Sin o|1)°. (3.6)

This means that all information on the radiation intensity is contained in I. In the
quasiclassical approximation,

2

I = ’U(tc) We){p(itﬁ/@ exp(m/zc), (37)
where . = wt. — knz.cosf, z. = z(t.) and i, is found from the equation
1 —np(t.)cosd = 0. (3.8)

The + signs in (3.7) coincide with the the sign of v(¢,)kn cos §. Under the conditions
(1-3), the charge uniformly moving in the interval (—zo, 20) radiates with the intensity
given by the famous Tamm formula (1.1). As an example, in Fig. 6 we present
the Tamm radiation intensity and the one corresponding to the finite observation
distance and evaluated via (3.2). We see in this figure a plato in the neighbourhood
of the Cherenkov angle 6, (cosf, = 1/8n). Its origin is due to the fact that, in
the Tamm problem, a charge moving in a finite space interval L, emits Cherenkov
radiation from each point of its path. These particular radiations, being combined,
form the Cherenkov shock wave of a finite extension propagating at the angle 6,
towards the motion axis and intersecting the observation sphere S of the radius R
in the angle interval A = 4/1 —1/82n2L/r & 4.2° for the observation parameters
the same as in Fig. 1. These questions were considered in detail in [13].

The aim of this consideration is to investigate the deviation from the Tamm
formula (corresponding to the instantaneous acceleration and deceleration at the
start and end of motion, resp.) associated with smooth acceleration and deceleration
of a charged particle. Although the evaluation via (3.2) takes into account finite
distances effects, but it obscures the acceleration effects, which we intend to study
here. For this reason, we shall deliberately use (3.3) with ¢ given by (3.4).

6



4 Analytic estimates

4.1 Superposition of uniform and accelerated motions

For the motion shown in Fig.1, the exact solution in terms of Fresnel integrals was
found in [14]. We give only the final result. We should evaluate the integrals I, =
Jvdt'costp and I, = [wvdt'siny entering into (3.3). For ¢ in the form (3.4), I,=0

due to the symmetry of the treated problem. Then, I, reduces to
L=T"+I 41" =20+ I" (4.1)

where 12, I¢, and I* are integrals over the accelerated (—zp < z < —2z1), decelerated

c? c?
(21 < z < 20) and uniform (—z; < z < z;) parts of a charge trajectory, respectively.
Again, it was taken into account that I* = I¢ due to the symmetry of the problem.
The integral I?* describing the uniform motion on the interval (—z; < z < z;) is

I 20 . kz

v = m sm[F(l — Bn cosB)]. (4.2)

Then, for § < 7/2, one gets [14]

[ drcos = —{sin(ud — ) — sinu? —
__Z dzcosp = kncosO{sm(uz v) — sin(u] — v)+
aV2m[cos v(Cy — Cy) + sin (S — 51)]}, (4.3)
where we put C; = C(uy), Ca = C(u2), Si=5(u1), S2=S5(uz); C and S are

the Fresnel integrals defined as

S(z):[/dtsth and C(z \/7/dtcost2

For the treated motion, uj, uz, @, and v are given by

1 1
u; = — k(Zo - 21)n COs GW, Ug = k(Zo - zl)n COs 9(1 —_ m),
_ l k'(Zo — Zl) k‘(ZO - 21) _ k(220 - 21)

= 1/2 = 0
3 ncosH] , v =kzncosf +

Consider the limiting cases.

When k(zo — z1) << 1 (the accelerated motion interval is much smaller than the
observed wavelength), I2 = I¢ a~ 0 (despite the infinite acceleration in this limit)
and the radiation intensity coincides with the Tamm one.

B%n cos @ 8

9y



In the opposite case (k(zo — z1) >> 1), one can change Fresnel integrals by their
asymptotic values. Then, for § < 0. (cosf. = 1/8n) one gets

cosy + siny Bn .
= —aV kz (1 — 0)]. .
I av/2m — + H(Breosd =1 sin[kz1(1 — Bn cos 6)] (4.4)

To obtain I, one should double I¢ (since I¢ = I?) and add I* given by (4.2). This
gives

L=20 4 [ = —a/2r 0500 g

kn cos 0
e? sin® .
Op = W’C(Z’Q - Zl)m(l 4+ sin 2’)’) (45)

In this angular region, the oscillations are due to the (1+4sin 2v) factor. The maximal
value of o, is very large (due to the k(zo — z;) >> 1 factor). On the other hand, for
0 > 6., one obtains

I pn

o= M@—_l) sin[kz1(1 — Bn cos 0)]. (4.6)

This expression is valid for all § if n < 1. Inserting (4.2) and (4.6) into (4.1), one
finds
c=2[+1}=0.

We see that for § > 6, the summary contribution of the accelerated and decelerated
parts of the charge trajectory is compensated by the contribution of its uniform part.
The next order terms arising from the asymptotic expansion of the Fresnel integrals
are of the order 1/k(zo — 21) and, therefore, are negligible for k(zo — z;) >> 1.

For 8 > 6., the radiation intensity disappears for arbitrary z; satisfying the
conditon k(zo — z1) >> 1 and, in particular, for z; = 0. In this case, there is no
uniform motion, and accelerated motion in the interval —zy < z < 0 is followed by
the decelerated motion in the interval 0 < z < zo. The radiation intensity is obtained
from (4.3) by putting z; = 0 in it. For kzo >> 1 it reduces to

e?kzosin® 0
o,

=—————(1+sin2 4.
2mn2ccos® 0( +sin27) (47)
for § < 0.. Here y = (1 —1/Bn cos 0)*kzon cos 0. For § > 0., o, is of the order 1/kz.
Due to the (1 + sin2v) factor, o, for 6 < 0, is a fastly oscillating function of § with
a large amplitude (since kzg >> 1). For Bn < 1, the condition § < 6, cannot be
satisfied and radiation intensities are of the order 1/k(zo — 21) << 1 for all angles.
In the opposite case (kzo — 0), the radiation intensity tends to zero:
e2unk?z¢ sin? 0 ’
g, = LT 070 7 (4.8)
m2c
This particular case indicates that the disappearance of radiation intensities for high
frequencies above some critical angle has a more general reason. It will be shown in

,,8,



the next two subsections that radiation intensities describing the absolutely contin-
uous charge motion in medium are exponentially small outside some angular region.
It should be stressed that formulae obtained in this section are not valid near the
angle 6, where the arguments of the Fresnel integrals vanish.

In the time representation, the charge motion shown in Fig. 1 was considered
n [15]. It was shown there that at the moment when the charge velocity coincides
with the light velocity in medium ¢, (in the time interval —ty < ¢t < —t;), the
complex arises consisting of the Cherenkov shock wave and the shock wave closing
the Cherenkov cone and not coinciding with the bremsstrahlung shock wave. As time
goes, the dimensions of this complex grow. At the moment when the charge velocity
again coincides with ¢, (in the time interval ¢; < t < #o), the above complex detaches
from a charge and propagates with the light velocity in medium. The content of this
section may be viewed as a translation of [15] into the frequency language (which is
more frequently used by experimentalists).

4.2 The motion law (2.1)

For the motion law shown in Fig. 2, the amplitude I is given by

Toowt? . . .
I = m exp(iwtofon cos 6)D(1 + twto/2; 2; —2iwtofon cos b)),

where ®(a; §; z) is the confluent hypergeometric function. Correspondingly, the ra-
diation intensity is .

eZnufiwits
F(w) = ———=2—0|B|%. 4.9
or(6,) 4c sinh2(7rwto/2)l | (4.9)
When wty << 1,
I=2vty and o,(,w)= nTl‘cezﬁngtg sin? 6. (4.10)
m

This coincides with (4.8). In the opposite case (wto >> 1), by applying the quasiclas-
sical approximation, one finds that I is exponentially small for all angles if 3y < 1/n.
If Bo > 1/n, I is exponentially small for 6 > 0. (cos 6, = 1/Byn) and

I = wctov/Bo
(n cos 0)3/2k(Bon cos § — 1)1/2

cos? 1, (4.11)
for § < 6,. Here

t. 1
Y =w(t. — %0039) + %, cosh % =/Boncosb, z. = voto(l —

_____)1/2
nBocos®’

When evaluating |I|?, it was taken into account that Eq. (3.8) has two real roots for
5077, > 1:

t, = :l:tg(\/ﬂon cos§ + \/,Bgn cosf —1).

9



The radiation intensity (3.6), with |I|? given by (4.11), is the analogue of the Tamm
formula (1.1) for the motion law (2.1).

Formerly, analytical radiation intensities for the charge motion in vacuum shown
in Fig.2, were obtained in [7]. In this case, (3.8) has no real roots and, at high
frequencies, the quasiclassical radiation intensity is exponentially small for all angles.

4.3 The motion law (2.2)

For the motion law shown in Fig.3, the amplitude I equals

w7TT/2 ) [1 — exp(—4T0/T)] X

1
_— —_— 1 —_— 0 —
I 2voT exp[—iwTo(1 — Bon cos 6)] Sah(wn T2

jwT' jwT'
SRl — Z—‘;—ﬁon cosf,1+ %—; 21 — exp(—4To/T)). (4.12)
Here 3 F (e, 3;7; z) is the usual hypergeometric function. The radiation intensity is

e2unB2wiT*sin’ §
r 97 = 0
or(6,) 64csinh?(rwT/2)

(1 — exp(—4To/T))*|F|*. (4.13)
Consider particular cases:

Let T' be much smaller than Ty (wT is arbitrary). Then,

_ e2uBowT sin® 0 sinh{(mwTnfBcos §)/2]
7" = Bmdccos 0(nfo cos 6 — 1) sinh(mwT'/2) sinh[rwT (Bon cos § — 1)/2]

(4.14)

If, in addition, the frequency is so large that wT >> 1, then (4.14), for Bon < 1, is
exponentially small for all angles:

i e?ufBowT

~ 4m3ccos (1 — nfycos §)

sin? § exp[—7wT' (1 — n By cos §)). (4.15)

r

For Bon > 1 and 6 > 0., (cosf. = 1/Bon), the radiation intensity (4.14) coincides
with (4.15). On the other hand, for 8 < 6,

_ e2uBowT
= Arde cos B(nfycosf — 1)

sin? 6. (4.16)

In this case there is no exponential damping.
Let Tp be much smaller than 7. We should at first express vy through @ and then
take the limit 7o/7 — 0. Then, the hypergeometric function 5 F} entering into (4.12)
is transformed into the confluent hypergeometric function ® entering into (4.8), and
(4.13) is transformed into (4.9) if we identify T and 9, entering into (4.13) (after
expessing vg through %) with ¢y and vo entering into (4.9).
In the limit wT — 0, (4.13) goes into

e’ un 3w Ty

Op = ———————— Sil’l2 0,

m2c

10



which coincides with (4.8) and (4.10). The quasiclassical approximation being ap-

plied to I gives

€?BowT psin? 0
47m2cs, cos

o, (0,w) = cos? 1, (4.17)

for 6 < 0. and o, is exponentially small outside this angular region. Here

7

N - T
Se = (nBcosf — 1)1/2(nﬁ0 cos § — tanh? ?0)1/2, e = wit. — kn cos 0z, + %
t. is found from the equation
2t~ 2T, 27T,
cosh T = Bon cos 6(1 + cosh —T—O) — cosh —TTO,

where 2, = 2(1.), and z is given by (2.5). Unfortunately, we did not succeed to obtain
the Tamm formula (1.1) from the radiation intensity (4.13). It should appear in the
limit T'/Ty — 0 (when the horizontal part of the charge trajectory (where v & %) is
large). Equations (4.15) and (4.16) are infinite at the Cherenkov angle, but do not
oscillate, contrary to the Tamm intensity (1.1). The quasiclassical expression (4.17)
oscillates, but it is also infinite at the Cherenkov angle (again, contrary to the Tamm
intensity).

Formerly, analytical radiation intensities for the charge motion in vacuum shown
in Fig.3, were obtained in [8] and discussed in [9]. In this case, the radiation intensity
at high frequencies is exponentially small for all angles.

4.4 Pure decelerated charge motion

We consider now the pure decelerated motion shown in Fig. 4. When approximations
(1-3) of section 3 are fulfilled (i.e., 1 is of the form (2.3)), the integrals entering into
(3.3) can be taken in a closed form [14]. Using them, we evaluate the intensity of
radiation:

e?k?nsin? @

o.(0) = ——47]_—20——[(/ dz' cospy)? + (/ dz'siny;)?] =

e?sin’? 0 s . ) 5
= St coazg L~ cos(uz — up) + ma®[(C2 — C1)* + (S, — $1)*)+
£V2ma[(Cy — C1)(sinuj —sinuf) — (S — Sy)(cos ul — cos u?)]}, (4.18)

where

_ \' k(zy — 1) = \I k(23 — z1)n| cos 0] 1
[

=\ nlcos 0(8% — BD)|’ =B ' reosd)

u2=Jk(Z2‘Zf"‘2°°Sa'(ﬂ2— ) A=l =l

2 ncos 6 ¢
133 l

Tl -



Plus and minus signs in (4.18) refer to cos @ > 0 and cosd < 0, respectively. Further,
p1 = vi/c and B, = vy/c. When vy — v; = v, the radiation intensity (4.18) goes
into the Tamm formula (1.1) in which one should put zo = (23 — 21)/2. Usually, the
ratio of the motion interval to the observed wavelength is very large. In this case,
one can change the Fresnel integrals by their asymptotic values. For the motion
corresponding to Bin > 1 and fBon > 1, one finds that for k(zp — 2;) >> 1, the
radiation intensity is given by

e?nsin?f 1 B2 — By
e {Z[(l — Bincos §)(1 — Ban cos 0)]2+

B152 )
T Bincos 0)(1 — Byn cos ) sin” ¢} (4.19)

for 0 < 0 < 0; and 0 > 6;. Here 6,, 6, and 1 are defined by

k(22 — 21) B1 + Ba

oy =

0, =1 y 0, =1 y = 0 —1).
cos 0 /Bin, cosb, [Ban, 515 ( 5 ncos )
On the other hand, for 6, < 6 < 6; one has
e?sin? 9 , ancosf cos 2us cos 2u,
o= Ur(4'19)+7rcncos20[a Vor ( 2,3271 cosf—1 lﬂlncosﬂ— 1)] (4.20)

The term proportional to o is much larger than the oscillating first and last ones
everywhere except for the angles close to 6; and 6,. For these angles, the above
expansion of Fresnel integrals fails (since u; and u, vanish at these angles). These
formulae mean that the radiation intensity oscillates with decreasing amplitude for
0 <0 <6y and 6 > 0,, and has a plato

2.2 2
e‘a 511120 (4.21)
men cos? 0

for §; < 0 < 0;. Outside this plato, the radiation intensity is k(z, — 21) times
smaller than (4.21). Yet, it does not decrease for k(z; — 2;) — oo, contrary to
the motions shown in Figs. 1-3. The reason is that motion shown in Fig. 4 is
"more discontinuous” relative to the ones shown in Figs. 1-3. Indeed, Figs. 2 and
3 correspond to the absolutely continuous motions and their radiation intensities
decrease exponentially in the angular region § > 6, for w — co. There are no velocity
jumps for the motion shown in Fig.1, but the accelerations are discontinuous at the
start and end of motion and at the moments when the uniform motion meets the
acelerated (or decelerated) one. Correspondingly, the radiation intensity decreases
like 1/k(z0 — z1) for § > .. For the motion shown in Fig. 4, both velocity and and
acceleration are discontinuous at the start and end of motion. The corresponding
radiation intensity does not decrease outside the plato for k(22 — z;) — co although
it is much smaller than its value at the plato (4.21).
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For B3 = 1/n, the above formulae predict intensity oscillations for § > 6; and
their absence for § < 6;. Experimentally, the charge motion with deceleration is
realized in Cherenkov experiments with heavy ions [17] where the energy losses are
essential due to their large atomic numbers.

A particular interesting case having numerous practical applications corresponds
to the complete termination of motion (8; = 0) . In this case, for 8in > 1 one gets

e’nB? sin® 0

= 42
? 4m2e (1 — Bincos §)? (422)
for # > 6, and
e?sin% 6 Bincos®  cos2uy
= 0,.(4.22 2 _ 4.2
or = 0or )+ Ten cos? 0[(1 V21 Bincosf — 1] (4.23)

for 0 < ;. Here

k(ZQ - 21)

n cos k(z2 — z1)ncos 6(1 —

).
Since o >> 1, the radiation intensity for § > 6; is much smaller than for § < 6,.
There are no intensity oscillations for § > 6, and there are are very small oscillations
for 6 < 0 (they are due to the term proportional « in (4.23) which is much smaller
than the term proportional o? ).
When gin < 1, the same Eq. (4.22) is valid for all angles. In this case, integration
over the solid angle can be done analytically:

2e2 1 | 1+ Bin

a,(w):/a,(a,w)dg = e T

B1n cos 0

—1). (4.24)

This expression is not valid for 3, close to 1/n.
The singularites occurring in (4.19),(4.20),(4.22) and (4.23) are due to the condition
k(z2 — z1) >> 1 used. The initial radiation intensity (4.18) is finite both for cos § =
1/Bin and cos @ = 1/B;n. The above considerations about the decreasing of radiation
intensities at high frequencies are also applicable also to (4.22) and (4.23).
Formerly, in the time representation, the electromagnetic field of a charge moving
non-uniformly in medium was obtained in [16]. Space-time propagation of the shock
wave complex mentioned in the subsection (4.1) was studied there. In the spectral
representation, the decelerated charge motion with the velocity change small com-
pared with the velocity itself was studied in [11, 18]. Radiation intensities evaluated
there had also plato in the neighbourhood of the Cherenkov angle.

4.5 Smooth infinite charge motion

For the motion shown in Fig. 5, one obtains
Cto

[(az)l'(—au)
[fiwton cos 8(82 — B1)/2]’

1.
i w— exp[izwton(ﬁl — B2) cos 0]
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where
ay = iwto(l —nPrcos8)/2, ay = iwte(l — nf; cos 0)/2.

Correspondingly,
" Etor(B — ) )
2wn cos §(1 — nBy cos §)(1 — nfB; cos §)

sinh[mn cos fwito(Bz — 1) /2]
sinh[m(1 — Byn cos 0)wto/2] sinh[m(1 — Ban cos §)wto /2]

and ) 25
_ e“uwtgsin
or(f,w) = “Srecosl F, (4.25)
where
(B2 — 1)

F =

(1 —npBcosb)(1 — npycos b) .
sinh[mn cos Owito(Bz — £1)/2]
sinh[7(1 — fB1n cos 0)wto/2] sinh[r(1 — Ban cos O)wte/2]

We put cos; = 1/8;n and cos @ = 1/B,n. Consider the behaviour of the radiation
intensity for wtq >> 1. Obviously, §; < 0, for the decelerated motion (B2 > ).
Let Bin > 1 and Byn > 1. Then, for § < 6,

2(B2 — B)

F= (Bincos — 1)(Bancosf — 1) exp|—mwio(fyn cos  — 1)]. (4.26)
For 6 > 6,
_ 2(B2 — B1)
= (Bincos — 1)(Boncos§ — 1) exp[—mwto(1 — fyn cos 0)]. (4.27)
Finally, for 6, < 6 < 0,
F= 2P — Br) (4.28)

(1 —pBincosf)(Bancosfd — 1)

We see that two maxima should be observed at Cherenkov angles 6; and 6. Between
these maxima, the radiation intensity is a smooth function of §. For 8 < 6, and
0 > 05, the radiation intensity is exponentially small.
For Bin <1 and fyn > 1, F equals (4.28) for 0 < 8 < 8,, and (4.27) for 6 > 0,.
For fin < 1 and fByn < 1, F has the form (4.27) and the radiation intensity is
exponentially small for all angles.

For wto << 1 (this corresponds either to the sharp change of the charge velocity
near t = 0 or to large observed wavelengths) one finds

e*nu sin® 0 (B2 — B1)?
or(0w) = drc (1 = pBincos0)?(1 — Byn cos )2

(4.29)
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In this case, 0,(6,w) has two maxima at the Cherenkov angles §; and 65, if both
Bin > 1 and fan > 1 and one maximum at 6, if Bin < 1 and Bon > 1.

Strictly speaking, the validity of Eqs. (4.25)-(4.29) is slightly in doubt. When
obtaining them, we used Eq. (3.5) the validity of which implies that a charge motion
takes place on the interval much smaller than the radius of the observation sphere
S. However, Eq. (2.14) describes the unbounded charge motion. For the sufficiently
large time, when a charge will be outside S, the validity of (3.5) will be violated.

Formerly, analytical radiation intensities for the charge motion in vacuum shown
in Fig.5, were obtained in [10] and discussed in [9]. In this case, the radiation
intensity at high frequencies is exponentially small for all angles.

5 Numerical results

In Fig. 7, the radiation intensities o,.(6,w) = d*£/dwdQ corresponding to Fig. 1,
are compared with the Tamm intensities (1.1) evaluated for the same By, L and .
The parameter z, is the ratio of the path on which a charge moves non-uniformly
to the total path. For example, , = 0.01 means that a charge moves non-uniformly
on the 1/100 part of the total path. It is seen that for rather moderate acceleration
paths (z, = 0.1 and z, = .01), the radiation intensities o, fall rapidly for 6 > 4,.
For smaller z,, 0, and o7 approach each other (Fig. 7, c, d). The radiation intensity
(3.3), with analytical I defined by (4.1)-(4.3), covers the whole angular region. The
approximated formula (4.5), valid for kz, >> 1, describes the radiation intensity for
6 < 0. The oscillations of o, are due to the factor (1 + sin2v) in (4.5).

Radiation intensities 0,(6) corresponding to the charge motion of Fig.2 are pre-
sented in Fig. 8 for a number of 8y = vo/c together with the Tamm intensities or
corresponding to the same L,y and A. It is seen that the positions of main max-
ima of o, and or coincide for 8y > ¢, and are at the Cherenkov angle defined by
cos . = 1/fon. For By < ¢y, 0, is much smaller than o7 (d). For 8 > 0., o, falls very
rapidly and o dominates in this angular region (a,b,c). For # < 8., o, is much larger
than or (a,b). This is in complete agreement with analytical results of subsection
(4.2) which predict the exponential decreasing of o, for § > 6. and its oscillations
described by (4.11) for 6 < ..

Radiation intensities o,.(f) corresponding to Fig. 3, for fixed 8y = 1, L = 0.1cm,
A =4-10"%cm and a number of diffuseness parameters 7o = To/T, are shown in
Fig. 9. The positions of main maxima are at the Cherenkov angle f.. The fast
angular oscillations in the § < 6. region are described by the quasiclassical formula
(4.17). Again we observe that o, falls almost instantly for § > 6.. The reason for
this is due to different asymptotics of radiation intensities which fall exponentially
for the absolutely continuous motion presented in Fig. 3 and do not decrease with
frequency (except for cosf = 1/8n) for the original Tamm problem involving two
velocity jumps. Much larger values of 7o, than the ones presented in Fig.9, are needed
to match these angular intensities.
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Radiation intensities for Sin > 1 and fn > 1 corresponding to Fig. 4 are shown
in Fig. 10. In accordance with (4.21), o, is almost constant in the angular interval
0, < 6 < ;. Outside it, the angular asymptotic behaviour of ¢, is the same as the
or one. The reason for this is that the motion corresponding to Fig.4 has the same
discontinuities as the original Tamm problem one (two velocity jumps at the start
and end of motion).

An important case is the decelerated motion with a final zero velocity. Exper-
imentally, it is realized in heavy water reactors where electrons arising in 3 decay
are decelerated up to their complete stopping, in neutrino experiments, in the orig-
inal Cherenkov experiments, etc. Radiation intensities for different initial velocities
are shown in Fig. 11. It is easy to check that their maxima, despite the highly
non-uniform character of this motiom, are always at the Cherenkov angle 6, defined
by cosy = 1/F1n and corresponding to the initial velocity v;. Analytically, these
radiation intensities are described by Eq.(4.18) in the whole angular interval. Its
approximated versions (4.22) and (4.23), valid for kL >> 1, describe radiation in-
tensities in the angular intervals 6 > 6; and 0 < 6 < 0y, resp. For the treated motion,
both the velocity and acceleration exhibit jumps at the beginning of motion and only
the acceleration is discontinuous at its end. Therefore, the decrease of the radiation
intensity is not so pronounced as for absolutely continuous motions shown in Figs.
2 and 3 and for the motion without velocity jumps shown in Fig. 1.

An important quantity is the total energy radiated per unit frequency. It is
obtained by integration of the angular-frequency distribution over the solid angle:

or(w) = % - /a,(w,&)dﬂ. (5.1)

The integration of the Tamm intensity (1.1) over the solid angle gives the frequency
distribution of the radiated energy o(w). Explicitly, it was written out in [12]. Since
it is rather complicated, we do not give it here denoting it by ¢([12]). In the limit
wto — 00, it is transformed into the following expression given by Tamm [1]:

_€’kL 1 4e? 1 146,

Here k = w/c, B, = fBn, and L = 2z, is the motion interval. Equation (5.2) has
a singularity at # = 1/n, while o([12]) is not singular there. To see how they agree
with each other, we present them and their difference (Fig. 12) as a function of the
velocity 3 for the parameters L = 2z = 0.1cm and A = 4 - 10~%cm used above. It is
seen that they coincide with each other everywhere except for the closest vicinity of
B=1/n.

We integrate now angular distributions corresponding to the decelerated motion
with a final zero velocity and shown in Fig. 11, and relate them to the Tamm
integral intensitiy (5.2). Fig. 13 demonstrates that, despite their quite different
angular distributions, the ratio R of these integral intensities does not depend on the

or(w) (5.2)
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frequency except for the neighbourhood of 3 = 1/n where (5.2) is not valid. For the
charge velocity v above the light velocity in medium ¢, (where the Tamm intensity is
approximately proportional to w), this ratio decreases as v approaches ¢,. For v < ¢,
(where the w dependence given by the Tamm formula is logarithmic), R begins to
rise. Since the radiation intensity (4.24) is one half of or(w) for fin < 1, R tends
to 1/2 for small §; (Eq. (4.24) is not valid for 8in &~ 1). We see that the integral
intensities for the decelerated motion, up to a factor independent of w, coincide with
the Tamm one. Therefore, the total energy for the decelerated motion

w2
d&
€ = / dw="
wdw
wq
radiated in the frequency interval (wy,ws) up to the same factor coincides with the
Tamm integral intensity.
Tamm [1] obtained the following condition
2 dv
= << A 3
il (5.9
for the frequency spectrum o(w) to be the linear function of frequency. For the

treated decelerated motion, this condition takes the form

V1 — Vg A
= 5.4
(%) + V2 << L’ ( )

where L = 2z — z; is the motion interval. When the final velocity is zero, (5.4) is
reduced to L << A, which for L = 0.1 and a particular A = 4 - 107° takes the form
1 << 4-107*. Figure 13 demonstrates that the frequency independence of the above
ratio R takes place despite the strong violation of the Tamm condition (5.3).

6 Discussion and Conclusion

We have considered a number of the smoothed Tamm problem versions allowing an-
alytical solutions. They have a common property that for the charge velocity greater
than the light velocity in medium, the angular region exists where the radiation in-
tensity is proportional to the frequency and the one where the radiation intensity is
small for high frequencies.

This investigation is partly inspired by the influential paper [19], where the charge
motion with the velocity linearly decreasing with time was investigated. Numerical
radiation intensities obtained there, strongly resemble our analytical ones (4.19)-
(4.21). In addition, the authors of [19] correctly guessed that the Tamm radiation
intensity (1.1) is related to the velocity jumps at the start and end of motion. Our
understanding of this problem coincides with that given in [7-10] for the charge
motion in vacuum where it was shown that radiation intensities for the absolutely

,,1:/__ -



v(t)

Figure 1: Superposition of accelerated (—to < ¢t < —t;), uniform (—t; < ¢t < ¢;), and
decelerated (¢; < t < o) motions. The drawback of this motion is due to the acceleration
jumps at t = £1g and ¢t = £¢,.

v(t)

Figure 2: The motion corresponding to (2.1). Left and right parts correspond to v(t)
and v(z) where z is the charge position at the time ¢. It is seen that the charge position
is confined to a finite space interval (—L/2, L/2).
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v(t) V(a)

Cp===f=m=m

v K 1 ] 2'./1' L
-120 -60 0 60 120

Figure 3: The motion corresponding to (2.3). Dotted, broken and dotted lines correspond
to 7o = To/T = 0.5, 10 and 25, resp. For large 7o, the interval where a charge moves
with almost constant velocity increases. The charge position is confined to a finite space
interval (—L/2,L/2). This motion is much richer than the one shown in Fig.2.

V()

Figure 4: Charge motion with a constant deceleration treated in the text.
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1 2 L " N 't/t.
5 0

Figure 5: The unbounded charge motion corresponding to (2.14) and describing the

smooth transition from the velocity v, at t = —co to the velocity v at ¢ = co.
T T T
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Figure 6: Angular radiation intensities (in units e?/c) corresponding to the charge motion
in a finite interval (Tamm problem). The solid and dotted lines correspond to the radii
of the observation sphere » = lem and r = co. The latter intensity is described by the
Tamm formula (1.1). The original angular intensities are highly oscillating functions. To
make them more visible, we draw the Tamm intensity (1.1) (dotted curve) through its
maxima. Other intensities, for which the maxima positions are not explicitly known, are
obtained by averaging over three neighbouring points, thus, considerably smoothing the
oscillations. This is valid for the subsequent Figs. 7-10. The charge velocity is 8y = 1,
the motion interval L = 0.1cm, the wavelength A = 4 - 10~%cm, the refractive index
n = 1.5. The last three parameters are the same for all figures.
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Figure 7: Angular radiation intensities (solid curves) corresponding to the charge motion
shown in Fig. 1 for §o = 1 and a number of non-uniform motion lengths z,. Here x, is
the ratio of the path where a charge moves non-uniformly to the total path. It is seen
that angular radiation intensities approach the Tamm one (dotted curves) when z, — 0.
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Figure 8: Angular radiation intensities corresponding to the charge motion shown in Fig.
2 (solid curves) and the Tamm intensities (dotted lines) for a number of vg. For vg > ¢y,
the maximum of intensity is at the Cherenkov angle 6, defined by cosf, = 1/Gon. The
angle 0. decreases with decreasing vo. For 6 > 6, and By > 1/n, the radiation intensity
falls almost instantly. For 8o < 1/n, the radiation intensity is exponentially small for all

angles. This is explained analytically in section 4.
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Figure 9: Angular radiation intensities corresponding to the charge motion shown in Fig.
3 (solid lines) for o = 1 and a number of diffuseness parameters 7o = To/T. Angular
intensities approach the Tamm one (dotted line) rather slowly even for large values of
1o. This is due to their different asymptotic behaviour.
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Figure 10: Angular radiation intensity corresponding to Fig.4 for §; = 1 and 3, = 0.8
greater than 1/n. The plato in the angular region #; < 6 < 6; is described by (4.21).
Outside this plato, the asymptotics of o, and o7 are the same.
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Figure 11: Angular radiation intensities corresponding to the charge motion with com-
plete stopping for a number of initial velocities 8;. It is seen that these intensities do
not oscillate. The angle where they are maximal increases with increase of ;.
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Figure 12: (a) Frequency distributions of the radiated energy (in €?/c units) obtained
in [12] and its simplified version (5.2) as functions of the charge velocity. They are
indistinguishable in this scale; (b) the difference between (5.2) and o,({12]). The regions
where this difference is negative are shown by dotted lines; AB means 8 —1/n.
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Figure 13: The ratio R of the integral intensity for the motion with a zero final velocity
to the Tamm integral intensity (5.2) for a number of initial velocities v;. Although
R does not depend on the frequency (except for the velocity 8; = 0.67 close to the
Cherenkov threshold 1/n), it strongly depends on f; being minimal at the threshold.
Analytical formula (4.24) shows that R — 0.5 for small 3;. To this frequency interval
there corresponds the wavelength interval (5-10~6cm < A < 10~*cm) which encompasses
the visible light interval (4 - 1075cm < A < 8-107%cm). Numbers at curves mean f;.
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continuous motion are the exponentially decreasing functions of w. The modification
for the charge moving in medium looks as follows. The asymptotic behaviour of the
radiation intensity depends on the fact how much the charge motion is discontinuous.
For example, for the absolutely continuous charge motions shown in Figs. 2, 3 and
5, the radiation intensities decrease exponentially with w for # above some critical
angle 0., and are proportional to w for § < §.. For the motion without velocity jumps
(but with the acceleration ones) shown in Fig.1, the radiation intensity falls like 1/w
for # > 6. and is proportional to w for § < 6. For the charge motion with velocity
and acceleration jumps shown in Fig. 4, the radiation intensity does not depend on
the frequency for 6 > 0., although it is much smaller than for 6 < 6, (again, in this
angular region, o, is proportional to w).

A question arises what kind of the radiation fills the angular region § < 6. (see
Figs. 7(a,b), 8(a,b), 9 and 11). For this, we again turn to Refs. [15, 16] where
the exact radiation fields were obtained for the charge accelerated and decelerated
motions. At the start of motion (¢ = 0), the spherically symmetric Bremsstrahlung
shock wave (BSW) arises which propagates with the light velocity in medium. At the
moment ¢o, when the charge velocity coincides with the charge velocity in medium,
a complex arises consisting of the finite Cherenkov shock wave SW1 and the shock
wave SW2 closing the Cherenkov cone. The singularities carried by these two shock
waves are the same and are much stronger than the singularity carried by BSW (for
details see [15, 16]). The SW1, attached to a moving charge, intersects the motion
axis at the angle 7/2 — ¢, where 8¢y, is the Cherenkov angle corresponding to the
current charge velocity (cosfcn, = 1/6n). Obviously, ¢, = 0 at ¢ = g and 0oy, = 0.
at the end of acceleration. Here 6, is the Cherenkov angle corresponding to the
maximal charge velocity. The SW2, detached from a charge and intersecting the
motion axis behind the charge at the right angle, differs from zero in the angular
sector 0 < 6 < Ocp. The angular distribution in the spectral representation (since
transition to it involves integration over all times) fills the angular region 0 < 0 < ..
We conclude: The radiation intensity in the 0 < 6 < 6, angular region consists of the
Cherenkov shock wave, the one closing the Cherenkov cone and the Bremsstrahlung
shock wave.
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