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1 Introduction

The radiation of Compton electrons moving in water was observed by Cherenkov in
1934 (see his Doctor of Science dissertation published in [1]). In 1934-1937, Tamm
and ‘Frank associated it with the radiation of electrons moving with the velocity
v greater than the light velocity in medium ¢, (see, e.g., the Frank monography
[2]). The radiation of electric and magnetic dipoles moving uniformly in medium
with v > ¢, was first considered by Frank in [3,4]. The procedure used by him is as
follows. The Maxwell equations are rewritten in terms of electric and magnetic Hertz
vector potentials. The electric and magnetic field strengths are expressed through
them uniquely. In the right-hand sides of these equations enter electric and magnetic
polarizabilities which are expressed through the laboratory frame (LF) electric 7 and
magnetic 4 moments of a moving particle. These moments are related to the electric
7’ and magnetic 4’ moments of the dipole rest frame (RF) via the relations [5]

7 =7 — (1 =y ) (a'i,) iy + B(Ry x '),

=i — (L= ) (W), — B, x ). (L1)
Here 3 = v/e, v =1//1—3, i, = /v, v is the velocity of a dipole realative
to the LF. Let in the RF be only the electric dipole (1 = 0). Then,

F=7"— (1 =y ) (7'R)R,, G=—B(R, x ). (1.2)

Excluding 7', one gets in the LF

i = —B(#, x 7). (1.3)
Similarly, if only the magnetic moment differs from zero in the RF, then, in the LF
7 = B(R, X ). (1.4)

Using these relations, Frank evaluated the electromagnetic field (EMF) strengths and
the energy flux per unit frequency and per unit length of the cylinder surface coaxial
with the motion axis. These quantities depended on the dipole spacial orientation.
For the electric dipole and for the magnetic dipole paralell to the velocity, Frank
obtained expressions which satisfied him. For the magnetic dipole perpendicular to
the velocity, the radiated energy did not disappear for v = ¢,. Its disappearance is
intuitively expected and is satisfied, e.g., for the electric charge and dipole and for
for the magnetic dipole parallel to the velocity. On these grounds, Frank declared
[6] the formula for the radiation intensity of the magnetic dipole perpendicular to
the velocity as to be incorrect. He also admitted that the correct expression for the
above intensity is obtained if (1.4) is changed by

# = n?B(7, x i), (15)

while (1.3) remains to be the same. Here n is the medium refractive index.
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Equation (1.5) was supported by Ginsburg in [7] who pointed out that the internal
structure of a moving magnetic dipole and the polarization induced inside it are
essential. This idea was further elaborated in [8]. After many years, Frank returned
in [9,10] to the original transformation law (1.4). In particular, in [10], the rectilinear
current frame moving uniformly in medium was considered. The evaluated electric
moment of the moving current distribution was in agreement with (1.4).

Another transformation law for the magnetic moment, grounding on the propor-
tionality between the magnetic and mechanical moments was suggested in [11]. This
proportionality taking place, e.g., for an electron, was confirmed experimentally with
a great accuracy in g — 2 experiments. In them, the electron precession is described
by the Bargmann-Michel- Telegdi equation of motion for the spin. In this theory, the
spin is a three-vector §in its rest frame. In another inertial frame (and, in particular,
in the laboratory frame relative to which a particle with spin moves with the velocity
), the spin has four components (5, S;) defined by

- 2 - - -
§=5+ 27595, So=5-9).

A nice exposition of these questions may be found in [12].

The goal of this consideration is to obtain EMF potentials and strengths for
the point-like electric and magnetic dipoles and elementary toroidal dipole moving
in medium with arbitrary velocity v greater or smaller than the light velocity in
medium ¢,. In the reference frame attached to a moving source we have finite static
distribution of charge and current densities. We postulate that charge and current
densities in the laboratory frame, relative to which the source moves with a constant
velocity, can be obtained from the rest frame densities via the Lorentz transforma-
tions, the same as in vacuum. The further procedure is in decreasing the dimensions
of the LF charge-current sources to zero, in a straghtforward solution of the Maxwell
equations for the EMF potentials with the LF point-like charge-current densities in
their r.h.s., and in a subsequent evaluation of the EMF strengths. Formerly, in the
time representation, this was done in [13]. The present consideration is just the
translation of {13] into the frequency language which is extensively used by experi-
mentalists. Another reason for using the spectral representation is to make possible
to compare our results with ones of [1-10] written in the frequency representation.

The plan of this exposition is as follows. In section 2, radiation intensities are
evaluated for the electric, magnetic and toroidal dipoles moving uniformly in an
unbounded medium. A lot of misprints in previous publications is recovered. It is
not our aim to recover these misprints, but we need reliable working formulae which
can be applied to concrete physical problems. In section 3, radiation intensities
are evaluated for electric, magnetic and toroidal dipoles moving uniformly on the
finite medium interval (the Tamm problem for dipoles). In section 4, the EMF
of a precessing magnetic dipole is obtained. This can be applied to astrophysical
problems. A brief discussion of the results obtained and their summary is given in
section 5.



2 Unbounded motion of magnetic, toroidal and
electric dipoles in medium
2.1 Pedagogical example: Uniform unbounded charge mo-
tion in medium

Consider at first the uniform unbounded charge motion in medium along the z axis.
Charge and current densities are given by

pon = ed(z — vt)8(z)é(y), Jj. = epcn.

Their Fourier components are given by

1 . e tkz . w
Po= 5 / penexp(iwt)dt = 5—5(2)6(y) exp(f), Ju =vpu, k=—.
Electromagnetic potentials corresponding to these densities are

1 -4 dz’
o= m/exp[zk(b— + nR)]f, A; = pep?. (2.1)

Here R = [22 + y? + (2 — 2)?]"/?, € and p are the electric and magnetic constants of
medium, n = ,/ep is refractive index. Making the change of the integration variable
2’ = z + psinh x, we rewrite (2.1) in the form

1
b = T A, = neB®, where
. 7 ., ,sinhx kz
a=exp(ip)], I= / exp[zkp(T +ncoshx)ldxy and ¢ = R (2.2)
The integral I can be evaluated in a closed form [14]. It is given by
I=2K, for v<c¢, and [= inél) for v>c,, (2.3)

where the arguments of all Bessel functions are kp/B7,, . = |1 — 82|72, B, = fn
and ¢, = ¢/n is the light velocity in medium. The scalar electric potential is given
by

o= iexp(iz/))Ko for v<e¢, and @ = —Ziexp(iz/))Hél) for v > cp.
TVE 2ve

The magnetic potential is A, = feu®. Correspondingly, the electromagnetic field
strengths are equal to
ek

- wves

p

exp(i¥)K1, E,= (1- ,32n2)exp(i1/))Ko,

TVELYn



H, =

k
67 exp(iyp)K; for B,<1 and

_ ., ¢k ) ek 2.2 ()
E, = Z2v€,8'yn exp(ip)H,’, E,= 50 ﬁ(l B*n?)exp(iv)Hy ',
Hy=1 ek exp(z'z/))Hl(l) for G,>1.

2vyn

The radial energy flux per unit length and per unit frequency through the cylinder
surface of the radius p coaxial with the motion axis is given by
&€

Op= g = —mpc(E.Hy + E;Hy).

It is equal to zero for 8, < 1 and

2w

0'p=

(1— [—iél-n—z) for fu>1, (2.4)

c?

which coincides with the frequency distribution of radiation given by Tamm and
Frank.

2.2 Radiation of magnetic dipole uniformly moving in medium
2.2.1 Lorentz transformations of charge-current densities

In what follows, we need the Lorentz transformation formulae for the charge-current
densities. They ma.y be found in any textbook on electrodynamics (see, e.g., [12,
15]). Let p’ and 7’ be charge and current densities in the rest frame S’ which moves
with a constant velocity ¥ relative to the laboratory frame (LF) S. Then,

= B0, F=F+ 1L EB) + v, (2.5).

ﬂz
Here v = (1 — 8%)~Y/2, = #/c. If there is no charge density in S, then
P= FYB’;,/C’ .;II = 73|,|7 jJ. = .71’ (26)

where _}"” and j, are the components of ; parallel and perpendicular to ¥. If there is
no current density in S’, then

p=7p, J=p. (2.7)

In what follows, we assume that charge-current densities in two inertial reference
frames placed in medium are connected by the Lorentz transformation, the same as
in vacuum.



2.2.2 The magnetic dipole is parallel to the velocity

Consider a conducting loop £ moving uniformly in a medium with the velocity v
directed along the loop symmetry axis (coinciding with the z axis). Let in this loop
a constant current I flows. In the reference frame S’ attached to the moving loop,
the current density is equal to

F= I - 3(), o = o2 +y? (2.8)

(2',y', 2’ are the coordinates in S’.) In accordance with (2.4), one gets in the LF
. . I,
7 =1Iigé(p — d)o(v(z — vt)) = ;n‘ﬁé(p —d)§(z — vt). (2.9)

Here iy = fiycos¢p — fiysing, v = 1/4/1— 2. Since the current direction is
perpendicular to the velocity, no charge density arises in the LF. The current density
J can be expressed through the magnetization

f: curlM

which is perpendicular to the plane of a current loop:
M, = ée(d — p)é(z — vt).
v

Now, let the loop radius d tends to zero. Then,

Ind?

O(d — p) = 7d*§(z)é(y), M, — " 8(2)6(y)é(z — vt),

Jz = 0OM,/0y, j,=—-0M,[/0z, j,=0.

The Fourier components of the current density are

Jo(w) = M (w) /By,  jy(w) = —OM.(w)/0z, j.(w)=0,

where
M) = 2L 5()s(0) expliv)
W)= -—
o y)exp(t
and % is the same as in (2.2). The vector magnetic potential satisfies the equation
AA, + k2 A, = -3B3 k= kn
c

Its non-vanishing components are given by

_ pmy Oa pmg Oa
T 2ryw dy’ Y 2myv Oz’



where « is the same as in (2.2) and my = Ind?/c is the magnetic moment of the
current loop in its rest frame. It is seen that only the ¢ component of A, differs
from zero:

_ mgp Oa
YT 2rywdp’
The electromagnetic field strengths are
zkmdy da tkmy Oa 2
= = 492 g, —1a
¢ 2mqv Bp’ T ° 2myPvdp’ 271'7 ,82 KA (B = Dex
In a manifest form, they are equal to
ik?mgp ) ik2
= K H, = K,
(] 71_‘37"7,0 exp(zz,b) 1y P S Bg EXp(Z¢) 1)
mdkz .
H, = T B exp(iy) Ko
for 8, <1 and
Kmgu ), k*mq m
Ey = S €XP 1) Hy H =——expzz/)H
* = 2y “PY) * = Ty “PY)
H, = 52 —— exp(ipp) HS)

for 8, > 1. The energy emitted in the radial direction per unit length and per unit
frequency

d*e * *
Op = m = —7I'pC(E¢Hz + HZE¢)
equals zero for v < ¢, and
wimip

for v > c,. Formerly, this equation was obtained by Frank in [6, 9], but without
the factor 42 in the denominator. It is due to the factor  in the denominator of
(2.9). On the other hand, this factor presents in [3,14,16]. When obtaining (2.10), we
suggested that the current density is equal to (2.8) in the reference frame attached
to a moving current loop. The current density in the LF is obtained from (2.8) by
the Lorentz transformation. It follows from (2.10) that the intensity of radiation
produced by the magnetic dipole parallel to the velocity differs from zero in the
velocity window ¢, < v < c¢. Therefore, v should not be too close either to ¢, or
c. For this, n should appreciably differ from unity. Probably, the best candidate to
observe this radiation is a neutron moving in medium with large n. By comparing
(2.10) with the radiation intensity of a moving charge (o, = e?wp/c?y?), we see that
there is a chance to observe the radiation from a neutron moving in medium only
for very high frequencies.



2.2.3 The magnetic dipole is perpendicular to the velocity

Let the current loop lies in the z = 0 plane with its velocity alomg the z axis
(magnetic dipole is along the z axis). Then, in the rest frame 5,

. Iy ., Iz .
Jo = —3;5(2')5(/)' —d), j,= 3;5(5)5(1)’ —d), J.=0, por=0.
Here p’ = /22 4+ y"2. According to (2.6), in the laboratory frame
. vt
o =~ 18 a0 —d), 5, = 180 E= 50— ), pon = 1552250 - o).

Here p = [(z — vt)*y? + y?]'/2. The charge density arises because on a part of the
loop, the current has a non-zero projection on the direction of motion. It is easy to
check that

9\
Jz = I78(2) 5-M, -1 5(z) M;, pch—I 6()
dy Oz oy

where M, = ©(d — p;). In the limit of an infinitesimal loop (d — 0),

M, =0(d - p) = §(z — vt)é(y)md*/y and

o = Ind8()3(a = o) -6(0), Gy = —%de"’é(z)é(y)%«s(x —t),

pcn = Ird® 5(z)5(:1: - vt) 5(y)
The Fourier components of these densmes are

ot exp()3(:) 00, o) = 5 D 5(2)5(0) explih)

Jo(w) = 2w 3

pon(s) = 45 exp(iv) 5-3(0).

Here ¢; = kz /3. The electromagnetic potentials are equal to

_ my day _ Map aal _ Mgy a (2 11)
" 2mce Oy’ ® 7 2mv 8y v 27r'y vz ’
Here
T .. sioh
ay = exp(iy) / explikps( 3 Xt ncoshy)ldy, p1=/y?+ 22



This integral is evaluated along the same lines as « in (2.2). It equals 2K, for v < ¢,
and iWH(()l) for v > ¢,. The arguments of these Bessel functions are kp,/3v,. The
electromagnetic field strengths are

B -1) K
/82 2/32

imgk cos ¢ day ™mg

2
= -1)—, E
E (n l)i ) Y

{cos2¢6a1
2mce - p1 Opy

(,@2 ) 2 8(11

+[cos® ¢ Jou},

2mwve

E, = 2 sm ¢ cos @[ 57 a + Za—pl],

0 - ikmysin ¢ o _ _mdsmqﬁcosd)[kz(ﬂ,f—l) 2 60(1]
T 29%B dp YT 2mv B? p10p1”
_ mq kKo cos2¢ 0 os? k2B —1)

= molgm T o o T P ok

The angle ¢ (cos¢ = y/p1, sin¢ = z/p;) defines the asimuthal position of the
observation point in the yz plane. It is counted from the y axis. In a manifest form,
the field strengths are equal to

E, = %7"’( — 1)exp(itn)Ki,
B L i
E, = *%(%m + %Ko)] exp(ity), H, = —%Iﬁ exp (i),
H, = ﬂ‘i:ij‘ﬂﬁ—:ﬂ’( ﬁ’;n Ko+ 3Kl)exp(iz/n),
H. = Pkl - ¢)K0 - c;,szl] exp(iv) (2.12)
for v < ¢, and
E, = _—m;]:;ﬂ(:;:,s¢( —1)HV exp(iy), H, = mdf;:;ij(l)eXP(W’l)’
B =50 - L D exp(i),
B, = TN ) - L) explivn),
H, = PRl B - 2 B ex(it),
1= PRl L - SR ey )



for v > ¢,. To evaluate the energy flux in the radial direction (that is, perpendicular
to the motion axis), one should find the components of field strengths tangential to
the surface of a cylinder coaxial with the motion axis and perpendicular it. They
are given by

Ey=E,cos¢p— Eysing, Hy= H,cos¢— Hysin¢.
We rewrite them in a manifest form. It is easy to check that

mgksing , 1

E¢ = _7r—ve(p1 nK] + ﬂ 2K0)exp(zz/)1)
Hy = km::ﬁos¢[kﬁ( -1 nKl]exp(iz,Z)l) (2.14)

for v < ¢, and

zmdk sin ¢ kn?

Ey=—""-—
¢ 2ve [ﬂ7

H(l) + H(l)] exp(ty1),

zmdk cos ¢

Hy = +2045 0852 1)H5”—%H}”1exp(wl) (2.15)
1'/n

for v > ¢,. The energy ﬂux through the cylindrical surface of the radius p; per unit
length and per unit frequency is equal to

({28 2w
ded = | 7918
(o]
where e
o(w,¢) = Tododd = 2p1(E'¢H + E4H; — H}E, — HyEy). (2.16)

Substituting here field strengths, one obtains that the differential intensity is zero
for v < ¢, and

m2k3 | n?

m[’74ﬂ2 sin? ¢ + (n? — 1)? cos? ¢] (2.17)

o(w,¢) =

for v > ¢,. The integration over ¢ gives

2k3

Equations (2.17) and (2.18) coincide with ones obtained by Frank [3,4,16] who noted
that in the limit 3 — 1/n, these intensities do no vanish as it is intuitively expected.
On these grounds, Frank declared them as to be incorrect [6]. 30 years later, Frank
returned to the same problem [9]. He attributed the non-vanishing of intensities
(2.17) and (2.18) to the specific polarization of medium.

+ (n? = 1)3). (2.18)
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We analyse this question in some detail. Intensity (2.16) is non-zero for 8 =1/n +¢
and zero for § = 1/n — ¢, where € << 1. Since it consists of EMF strengths (see
(2.16), the latter should exhibit jump at 8 = 1/n too. Turning to Egs. (2.12)
and (2.13) defining EMF strengths, we observe that E, and H, are continuous at
B = 1/n, while E, and H, entering into (2.16) exhibit jump. Further examination
shows that this jump is due to the fact that first terms in the definition of Ey and
Hy in (2.14) and (2.15) are not transformed into each other when 8 changes from
1/n—eto 1/n+e. Further reflection shows that this is due to Egs. (2.3). Separating
in them real and imaginary parts, one gets

I = /cos(lfﬂ£ sinh x) cos(kpncosh x) = Ky for B <1/n and
0

I = —%No for B> 1/n, (2.19)
T kp . .
I, = /cos(ﬁ sinh x)sin(kpncoshx) =0 for B<1/n and
0

L= gJo for > 1/n, (2.20)

where the arguments of all Bessel functions are kp/B7,. Now, I is continuous at
B = 1/n, while I, is zero for § < 1/n and tends to /2 as 8 — 1/n.
For # = 1/n, I, looks like (y = kpn):

I, = /cos(y sinh x) sin(y cosh x)dx = % / cos(y sinh x) sin(y cosh x)dx =
0 —o0
| 17
= 5Im / expliy(sinh x + cosh x)]dx = §Im / expliy exp x]dx.
Putting ¢t = exp(x), one gets
o0 ) [o/e] ) dt
/ expliyexp(x)]dx = /exp(zyt)T.
—00 0

and

T ot T dt =
Im/exp(zyt)T = /sm(yt)7 =3
0 0
Therefore, I, equals

Ig:% for B=1/n+e¢, 12=§ for fg=1/n and
I=0 for f=1/n—¢ e<<]l.
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As a result, radiation intensities equal one half of (2.17) or (2.18) for 8 = 1/n.

Again, neutron moving in dielectric medium with n appreciably different from
unity, is the best candidate to observe this radiation. The absence of the overall 1/
factor in (2.17) and (2.18) makes easier to observe radiation from the neutron with
the spin perpendicular to the velocity than from the neutron with the spin directed
along it.

2.3 Electromagnetic field of the point-like toroidal solenoid
uniformly moving in unbounded medium

The exposition of this subsection and the subsection (3.3) is grounded on the for-
malism of elementary toroidal sources treated in [17]. Consider the poloidal current
flowing on the surface of a torus equation of which in the rest frame is

(¢ —df 42" = R

(Ro and d are the minor and large radii of torus). It is convenient to introduce
coordinates p’ = d + R'costy, 2’ = R’'sin®. In these coordinates, the poloidal
current flowing on the torus surface is given by

o BB R)
7= d+Rocos¢

Here 7y = 7, cos ¢ — 7i, sin ¢ is the vector lying on the torus surface in a particular

¢ = const. plane and defining the current direction, R’ = /(p’ — d)? + 2’2. The
cylindrical components of j are
. . 6(Ro—R) —d
ey cosp = job(Ro — R’) Fop

. 6(Ro — R)

Jo= —Jom siny = —jod(Ro — R’)

Rop’”
2.3.1 The velocity is along the torus symmetry axis

Let this current distribution move uniformly along the z axis (directed along the
torus symmetry axis) with the velocity v. According to (2.6), in the laboratory
frame, the nonvanishing charge and current components are

. —d .
poh = Jovﬁ;—Ro5(Ro —-R), j,=—jor> R (Ro R),

. . p—d
L = §(Ro — R).
J ]o’pro (0 )

11



Here R = \/ (p—d)? + (2 — vt)>y2. These components can be represented in the

form
10 n 1 M,

(oMy), Gp= -~ =59 u,,
papp ¢ JP"‘ 72 BZ’ pCh_cpapp ¢

Je =
where 1
M, = —jo”Y;@(Ro - R).
The Cartesian components of M are
. .z
M, = m/%@(Ro ~R), M, =—j1;0(Ro ~ ).

Then,
. 10M, . _10M,
Jz = 72 Bz’ -7?/—72 az .

Let the minor torus radius Ry tend to zero. Then,

O(Ro— R) - R°6<p d)5(z — vt)

and
M, = R2--@(d p)o(z —vt), M, = J" mRZ aa 0(d — p)é(z — vt).
Therefore, e
o= =y gt = =20 26— e - o),
o= 2 = I T ed - p)s(e - w),

oM, oM, _jorR} & &

o= Gt = G = TR (4 8 = (s — o),
pon =200 _ ]‘Z’) - "]‘;’;R"(—a; N —~)e(d 0)8(z — vt).

Let the major torus radius also tend to zero. Then,

0(d - p) = nd*§(z)(y)
and

cmy

o= = S = o0,y =~ D 8()s )5z — o),

b = e + 5 )@ — ),

12



o o
on = B 53 + 53)6(@))8(— v1).

Here m; = n%jodR2/c is the toroidal moment. Fourier transforms of these densities

are
P L m P
pon(w) = ?E(ax +(§?)D, Jz(w)—ﬁ(WﬂLa—gﬂ)D,
m; 82 . my 82

o= 0D, =m0 p,
J 2n3v? 020z Iy 2732 020y
where D = §(z)é(y) exp(iy) and ¢ = kz/B. Electromagnetic potentials are given by

52 52 _ pmy . 2 &
27rec(3x2 Jdy g% A= éﬂ_—v-exp(nﬁ)(w + 3_312)0[’

pm; 0 _ pmy 0%«

o2ry2w 820z’ Y 2my2v D20y’

where a is the same as in (2.2). Electromagnetic field strengths are

_ omk? da _omk? da
. 27rcv,3(n I)E’ v 27revﬁ(n h l)ay’

mtk

(= 1)1 = B)a, Ho= =Tt = 1),

mtk2
27w

ik3m¢

T nev3?

y=

(n® - I)Z—Z, H,=0.

Or, explicitly,

k3 N k3m, .
By = oo, " = Dexali) K, B = T = 1)exp(i)(1 = A)Ko
&3
Hy = = o (n = Dexp(ip) K,

for 8, < 1 and

. mkS® (1) k3m, 2 (1)
E, = —zm(n2 — Dexp(i)H,’, E,= 5 ,32( — Dexp(iv)(B; — D Hy ',
.mkd . (1)
= - -1
Hy =~ (o — ) explip) ]

for B, > 1. The energy loss through the cylinder surface of the radius p coaxial with
the motion axis per unit frequency and per unit length is

&€ . e
o,(w) = o = ~mep(E.Hy + E7Hy).
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It equals zero for v < ¢, and

km,

o) = (52 1)(n? — 1)? (2.21)
for v > ¢,. Formerly, this equation was obtained in [18]. The absence of overall 1/
factor in (2.21) and its proportionality to w® show that the radiation intensity for
the toroidal dipole directed along the velocity is maximal for large frequencies and
v~eC

2.3.2 The velocity is perpendicular to the torus axis

Let a toroidal solenoid move in medium with the velocity perpendicular to the torus
symmetry axis coinciding with the z axis. For definiteness, let the TS move along
the = axis. Then, in the LF

7 2z

_Jovy 2(z —vt) ”t)é(Rl Ro), j» = ~jog- p—zvt)é(& —~ Ro),
1

Pch = @R,

. . zyd(Ri—Ro) . . pr—d(Bi— Ro)
Jy"‘ ]pl RO bl Jz = Jo 1 RO -

=4/(z —vt)7y2 + 3%, Ri=+/(p —d)? + 2%

It is easy to check that
oM, . oM, . 1 0M, _ oM, B oM,

o= WT g0 I T 42 9z Oy’ POR ==,

Here

where

M, = —jo* =2 0(Ry — Ry), Mz=jo%®(Ro—Rl), M, =0.
1

1

Let the minor radius Ry of a torus tend to zero. Then,

O(Ro — R) = mR38(p1 — d)8(2)

and
. TR2
M, = Jo”—d-‘l-—e(d p)S(), M, = 10”50——@(01 £1)6(z).
Therefore,
_ Bjon R} 0° . JomRZ &7
Poh = """cd Bxaze(d p1)8(2), == d 920z (@ =p0)i(2),
. _em e o
o= T 0 - p)i), = PR+ Dt p)ile)
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Now we let the major radius d also tend to zero. Then,

04— p1) = "8(a = w30), pon = =22 05w ws (o)

cm; 6?2 cm; 0?

Je = ——;—mé(:c —vt)é(y)d(z), jy = —Tmé(z —vt)é(y)é(2),
_ cmy 1 62 82
= et g
The Fourier transforms of these densities are

0? )
Sre 5ags PIBDIW))

z — vt)é(y)d(z).

pPch = —

m; 0% . m

. ¢ 0 .
5oy 9207 exp(iy1)8(y)d(z), Jy = ~ Sy 9902 exp(i%1)8(y)d(2),

my 1 82 62

[?W + 53/7] exp(i1h1)8(y)d(z).

jr=“

- 2umy
Here 3, = kz/B. As a result, we arrive at the following electromagnetic potentials:
ﬂ'mt 62 mypt 62
= - g, z = — a a0,

2¢mye 00z 2umy Ozdz

my 02 mp 1 8% 92

y = s A 5.0, Az s [_2_2 + 2]01,
2umy Jy0z 2v1rfy ~v20z2 Oy

where o; is the same as in (2.11). We give without derivation EMF strengths

= 27]::;;6(1;2 ~1)sin ¢g—(;l,
y = %( — 1) sin ¢ cos p[——2—= 2('32 )al + p%%;ill_]’
B, = _2"7’:%(7;2 - 1)[[75(1 + (82 — 1) cos? $)ay + C°;12¢g—2’—1‘],
E, = ——2117]:%(712 — 1) cos p[k*n*ey + lg_::],
H, = 2v7r'yk2(n — 1) cos ¢gp—ll H, = %(nz - Doy, H,=0,
Hy = -;;ki‘; (n” = 1)sin g,
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where ¢ is the angle defining the observation point in the yz plane. It is counted from
the y axis and is defined by (2.12) and (2.13). In a manifest form, EMF strengths

are given by

Fo= ——E (02 1) sin 6K, exp(it),
B2y Y€
By = B0 — 1)sin cos 8 5 (03 — D)Ko — oK explith),
B = = 0 - 1)1+ cos (57 — 1)Ko — —— cos 20K explit),
E, = —;ﬁ;%(n2 — 1) cos p[k*n’ Ky — p;% K] exp(ith),
= (o~ 1) cos K expliv), Hy = T — 1)K expli),
H,=0Hy = _Zrmvfykﬂ (n? — 1) sin Ky exp(ith;)
for v < ¢, and
E, = —%"ﬂ;—’“g—sm $(n? — 1) H{ exp(ithy),
E, = —;::te(n — 1) sin ¢ cos ¢[ (,32 - I)H(l) PZI; Hl(l)] exp(i¢1),
= B 1) (1 + cos” 6682 — D)AS" - i cos2H{ ] exp(i),
B, = Z:Q(n = 1)cos ok HSY — ——Hlexplit),
= 2:;1673" (n® — 1) cos qSHl(l)exp(idJl), H, = —Zf;(nz - l)H,_-(,l) exp(ith),
H,=0, Hy= ;:}f;(‘nz — 1) sin oHSV exp(ithy)

for v > c,. Again, E, and Hy are tangential to the torus surface and perpendicular
to torus velocity directed along the z axis. The energy flux through the cylindrical
surface of the radius p; per unit length and per unit frequency is equal to

27

e~ [ oo
0

dzdw

where
&BE

¢ * * _ Ir* _ *
o(w,$) = Trdodg = 3P\ EsHe + ByH; — HIE, — HyEy).
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Substituting here field strengths , one obtains that the differential intensity is zero
for v < ¢, and
k*m? 1
o(w,d) = Wrr:’ﬂ(ﬁ ~ 1)} (n®cos® ¢+ 7 sin? ¢). (2.22)

for v > ¢,. The integration over ¢ gives

km?

1
U(w) = 2evﬂ72 vy

B
As far as we know, radiation intensities (2.22) and (2.23) are obtained here for
the first time. They are discontinuous: in fact, they fall from (2.22) or (2.23) for
Bn > 1 to their one-half for § = 1/n and to zero for # < 1/n. Also, we observe the
appearance of the velocity window ¢, < v < ¢ where the radiation differs from zero.
Following to the Frank terminology, we conclude that the magnetic dipole parallel
(perpendicular) to the velocity polarizes the medium in the same way as the toroidal
dipole perpendicular (parallel) to the velocity.

(n® = 1)*(n® + (2.23)

2.4 Unbounded motion of a point-like electric dipole

Consider an electric dipole consisting of point-like electric charges:
pa = €[83(F + ait) — 83(F — aft)]. (2.24)

Here 7 defines the dipole center-of-mass, 2a is the distance between charges and
vector 7 = (sin fp cos ¢y, sin g sin ¢, cos y) defines the dipole orientation. Let the
dipole move uniformly along the z axis. Then, in the laboratory frame

pa = ev{b(z+ang)é(y+any)d[(z—vt)y+an,]|—8(z—an,)6(y—an,)8[(z—vt)y—an,]},

Je = vpa.

Let the distance between charges tend to zero. Then,
pa = 2ea(iiV)8(2)8(y)d(z — vt), j. = vpa.

Here

- 1
(79) = Vet 8y Vy + Vs, Vi= 5.

Fourier components of these densities are
ea, = tkz .
pule) = @) expl( ), i) = vpu(o).

The electromagnetic potentials are equal to
eap

ea — —
o= L (7iV)a, A,=LE#T)a,
nve(n )a, — (AV)a

17



where o is the same as in (2.2). The nonvanishing components of EMF strengths
are

ea a ea a = _ ea 2 a i
E,; = —E—;(NV)Q Ey = —ﬁa—y(nV)a, Ez - _7I"U6(1 - ﬁn)az(nv)a’
ea 0 ea 0

In a manifest form, we write out only those components of field strengths which are
needed for the evaluation of the radial cylindric energy flux. They are equal to

B = 200 - (2 Ko +iZ2 K explin),
Hy = 2R 502 1)Ko = —Ki] + 5 Ko exp(iv)
for v < ¢, and
B. = S0 - (AP — i) expliv),
Hy = i, [5(62 — DHE - B - e H}expliv)

for v > ¢,. Here ¢p = kz/ﬂ, fi, = sinfpcos(¢d — ¢y); O is the angle between the
symmetry axis of the electric dipole and its velocity; ¢ is the asimuthal position of
the observation point on the cylinder surface and ¢y defines the orientation of the
electric dipole in the plane perpendicular to the motion axis.

The radiation intensity per unit length of the cylindrical surface coaxial with the
motion axis, per unit asimuthal angle and per unit frequency is

L3 cp -
o(¢,w) = b do = — 5 (E-H + E;Hy).
It equals
_ 4€2a®kn. i, N7 2\/ 12 2 1
op(p,w) = W(l - ﬂn)[‘ﬂ*(l - B)(Ks + Ki) + ;;KOKJ (2.25)
for v < ¢, and
2e%a%k3 .
UP(¢7w) = 7['6,637) (/BT2A - 1){"/2)(16121 - 1) + n:(l - /82)+
+n,,nz2 5 (ﬂ2 —I)WJE+ N2+ J?+ N2 — —(NONI + Jo 1)} (2.26)

18



for v > c¢,. Integrating over the asimuthal angle ¢ one finds that o,(w) = 0 for
v < ¢, and

2e?a’k?
0'p( ) < ;3,”

for v > ¢,. For the symmetry axis along the velocity (6p = 0) and perpendicular to
it (6o = 7/2) one gets

(B2 —1)[(B2 — 1) sin By + 2(1 — B5?) cos? Oy (2.27)

4e*a’k®

73(e, 00 = 0) = =5 (62 = 1)(1 = B7) (2.28)
and 002213
0 ,(w, 00 = 0/2) = e; (82— 1), (2.29)

resp. Again, the same confusion with (2.28) and (2.29) takes place in the physical
literature. In Refs. [6,9,19], the factor (1 — %) in (2.28) is absent. Yet, it presents in
[3,4,16]. In Ref.[16], (82 — 1), instead of (82 —1)?, enters into (2.29). The expression
given in [19] is two times larger than (2.29). The correct expession for (2.29) is given
in [3,4,6,9].

It is rather surprising that for 8, < 1, the non-averaged radiation intensities
are equal to zero when the symmetry axis is either parallel or perpendicular to the
velocity, but differs from zero for the intermediate inclination of the symmetry axis
(see (2.25)). Integration over the asimuthal angle gives o,(w,8) = 0 for 8, < 1.

Again, it should be mentioned that we did not intend to recover misprints in
the papers of other authors. What we need are the reliable formulae suitable for
practical applications.

3 The Tamm problem for electric charge, mag-
netic, electric and toroidal dipoles

3.1 Pedagogical example: the Tamm problem for the elec-
tric charge

Tamm considered the following problem [20]. A point charge is at rest at the point
z = —zp of the z axis up to a moment ¢ = —#y and at the point z = 2, after the
moment ¢ = ¢o. In the time interval —fp < ¢t < tp, it uniformly moves along the =
axis with the velocity v greater than the light velocity in medium ¢, = ¢/n. The
nonvanishing z Fourier component of the vector potential (VP) is given by

A ( 7y72) TuaTa (31)
where

. ’ ’
ar = / ° £iiexp [zk(z— +nR)], R=[p*+(z—2)"% p?=z22+4~
—-20 R ﬁ
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Tamm presents R in the form R = r — 2/ cos 8, thus, disregarding the second order
terms relative to z’. Imposing the conditions:

i) R >> zo (this means that the observation distance is much larger than the motion
interval); ii) knRo >> 1, k., = w/c, (this means that the observations are made
in the wave zone); iii) nz3/2RoX << 1, X = 2mc/w (this this means that the
second-order terms in the expansion of R should be small compared with 7 since
is a phase in (3.1); A is the observed wavelength), Tamm obtained the following
expression for ar

2 .
ar = . exp(ik,r)q
and for the vector magnetic potential

eu .
.= expliknr)q. .
A p— exp(iknr)q (3.2)

Here

1 . 1
q= m Sm[kzo(ﬁ — ncos §)].

In the limit k2 — oo,

g md(l/8—ncosf) and A, — (‘%exp(iknr)é'(coso —1/p6n).

Using (3.2), Tamm evaluated the EMF strengths and the energy flux through the
sphere of the radius Ry for the whole time of observation

e c
— R? = —_— = si = —
&= RO/S,det = | S dQdw, dQ =sinbd0de, S, yp EsH,
where 2 ) in ko(1/8 )
_€e’un, . sinkz —ncos8)., _
dQdw w2 [sin 6 ncosf —1/8 Py Bo=pm (33)

is the energy emitted into the solid angle df?, in the frequency interval dw. This
famous formula obtained by Tamm is frequently used by experimentalists for the
identification of the Cherenkov radiation. When k2, is large,
d?E  ukz
dQdw
Integrating this equation over the solid angle, one gets
df  2e’ukzo
dw c
Correspondingly, the energy radiated per unit frequency and per unit length (it is
obtained by dividing (3.5) by the motion interval L = 22) is

&
dwdl ~

(1 —1/B2)8(cos 6 — 1/Bn). (3.4)

1=1/8). (3.5)

Y] (36)
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The typical experimental situations described by the Tamm formula are:

i) B decay of a nucleus at one space point accompanied by a subsequent absorption
of the emitted electron at another point;

ii) A high energy electron consequently moves in vacuum, enters into the dielectric
slab, leaves the slab and propagates again in vacuum. Since the electron moving
uniformly in vacuum does not radiate (apart from the transition radiation arising
at the boundaries of the dielectric slab), the experimentalists describe this situation
via the Tamm formula, assuming that the electron is created at one side of the slab
and is absorbed at the other.

3.2 The Tamm problem for the magnetic dipole
3.2.1 The magnetic dipole is parallel to the velocity

In this case the Fourier components of the current density differ from zero only on the
motion interval (—zo, 20). Correspondingly, magnetic potential and field strengths

are given by
4 :_,umdf%ﬂ =_6A¢~cot0A
¢ 2rvy Bp’ pHe or r %

where ag is the same as in (3.1). Using approximations 1)-iii), one gets

Hy = — mgk?n? sin 00!T-
2myv

The electric field strengths are obtained from the relation
curlH = —ikeE
valid outside the motion interval. This gives

k2
Ey, = MQT sin §.
2myv
When evaluating field strengths, we dropped the terms which decrease at infinity
faster than 1/r and which do not contribute to the radiation flux. The distribution
of the radial energy flux on the sphere of the radius r is given by

d*E c m2k®n3usin? @
(0,0) = ——— = ——r¥E H; + EXHy) = —4—— "~ "4 .
or(0,8) = Goaw = 3" (BsHi + E3Ho) m22Bv (3.7)
In the limit kzo — 00, one gets
P2 272 2
£ _mdknikzo ) 0sicos0 - 1/8,). (3.8)

dQdw ~  Ty2Pv
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Integration over the solid angle gives the frequency distribution of the emitted radi-
ation per unit frequency and per unit length
de 2 3
oo _ MWk (3.9)
dLdw  viy2y2
This coincides with (2.10).

3.2.2 The magnetic dipole is perpendicular to the velocity

Let the magnetic dipole directed along the z axis move on the interval (—zo, zo) of the
z axis with the constant velocity v. We write out without derivation electromagnetic
field strengths contributing to the radial energy flux

magkiun mak?un
E; = - (1 — f2cos’O)cosp, Ey4=— Ey— aT cos fsin ¢,
k*n? k?
g = Ti————-aT cosfsing, Hy= mak’n® (1 — 8% cos? §) cos .
2mvy 2rv
where

oy = (2/kr)gexp(itkar), q=(1/B8 —ncos8) ' sin[kzo(1/8 — ncosd)).

The 6 is the angle between the radius-vector of the observation point and the motion
axis (which is the z axis). The ¢ is the observation asimuthal angle in the yz plane.
The value ¢ = 0 corresponds to the y axis, the magnetic moment is along the z axis.
The distribution of the radial energy flux on the sphere of the radius r is given by

&€

or(0, $,w) = —o-- 27~2(131,11L; + E;Hy — E4H; — E3Hy) =

m2kin3p
T w2Bv

In the limit k2 — oo this gives

[cos® ¢(1 — B2 cos® 8)% + v~ * sin’ ¢ cos® 0] ¢%. (3.10)

d?8  mikPzon’u
dQdw wfv

[cos? (1 — 1/n?)? + —— sin® $]§(cos O — 1/5,). (3.11)

“ﬁ
Integration over the solid angle gives

d*€ mik*n?y 1

(3.12)

This coincides with (2.18).
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3.3 The Tamm problem for the toroidal dipole
3.3.1 The toroidal dipole is parallel to the velocity

The direction of the toroidal dipole coincides with the direction of its symmetry axis.
The electromagnetic vector potential and field strengths contributing to the radial
energy flux are given by

im.k3n®

27v

imakPnly
Ey = ;.Tsm 0(1 — B cos®O)ar, Hy=

sin (1 — B cos® 9)ar,

where ar is the same as above. The distribution of the radial energy flux on the
sphere of the radius r is given by

&€

mZkinSy
dQdw

m*Bv

Here @ is the polar angle of the observation point. In the limit kzo — oo, (3.13) goes
into

oy = sin? §(1 — 3% cos? 0)2¢* (3.13)

= —;rz(EgH; +EjHy) =

Tl _miReonh gy 1t s(cos 0~ /8. (3.14)

dQdw ~—  mBv
Integration over the solid angle gives
&2 mPkSnty 5 2\a
T = T - 1/m - 1) (3.15)

This coincides with (2.21).

3.3.2 The symmetry axis is perpendicular to the velocity

In this case, the electromagnetic field strengths contributing to the radial energy flux
are given by

; E3n2a ; k3n2a/
E; = —%(1—ﬂ2 cos’ @) cosfsing, E4= —in;;—ﬂ_gy—a—T(1—,62 cos? §) cos ¢,
thk3n 2 2 thk' n aT 2 2 .
Hy = —(1 —B%cos*@)cosp, Hy=———F—(1— B?cos’8)cosfsin¢.
2umy 2umy

Correspondingly, the radial energy flux is

d2€ * *
or(0,6,0) = o—o 26r2(E9H¢ + E;Hy — E4H; — E}Hy) =
_ mlk'ndu
- 22
Again, § is the polar angle of the observation point; the toroidal dipole is along the
z axis, the angle ¢ defining the position of the observation point in the (yz) plane

(1 — B%cos? 0)*(cos® Osin® ¢ + cos® $)q°. (3.16)
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perpendicular to the velocity, is counted from the y axis.
In the limit k2o — oo, (3.16) goes into

d2E _ mik®zoniy

dodf —  Pmop (1 —1/n?)? ( sin® ¢ + cos® ¢)d(cos § — 1/3,). (3.17)

The integration over the solid angle ¢ gives

d?&  mlkinip avay 1
dodl = 2970p L) (G +1)

(3.18)
This coincides with (2.23).

3.4 Tamm’s problem for the electric dipole with arbitrary
orientation of the symmetry axis

Let the electric dipole move along the z axis and let it be directed along the vector
fi = (ng,ny,n.) defining the direction of its symmetry axis in the laboratory ref-
erence frame. In this case, the vector potential and electromagnetic field strengths
contributing to the radial energy flux are given by

teap

A, =

(nV)aT,

k‘2 kz 2
25 Gin #(7t, sin 0+ —n,cosar, Hy= cak m
v

By =

sin 0(#, sin 0+lnz cosf)ar,
7 ¥

where 7, = sin g cos(¢ — ¢o) and n, = cosbp; 6 and ¢ define the position of the ob-
servation point; 6y and ¢g define the orientation of electric dipole. Correspondingly,
the radial energy flux is

d28 1 2 * *
(0, $,w) = o~ = ser(EoHy + EjHy) =
4e?a’k*n3u ) 1 )
T(np sin @ + ;nz cos 0)?sin® 6¢°. (3.19)

For the electric dipole oriented along the velocity (7, = 0,n, = 1), (3.19) is reduced
to
4e2a2kn3
o9, ¢,w) = % cos® B sin® 0¢. (3.20)
Correspondingly, for the electric dipole orientation perpendicular to the motion axis
(72, = cos(¢ — o), n, = 0), one gets

4e’a’kny

(8, ¢,w) = ¢*sin® 0 cos*(¢ — o). (3.21)
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In the limit kzo — oo one gets

d?E 4e2a21:r3czon2u(ﬁp\/i—_—1/—ﬁ—g+ 1 n.)2(1 —1/B2%)(cos 6 — 1/8,). (3.22)

dwdY VB
4e2a2kB zon? 1
I - on H —
all(8,¢,w) - i 8(cos 8 —1/8,), (3.23)
4 2 2k3 2
ol (0, $,w) = % cos® (¢ — ho)8(cos B — 1/8,). (3.24)

The integration over the solid angle gives

$2E  2e2a’k3n?y . 2
= B (sin?6o(1 — 1/82) + oy cos? 0o)(1 — 1/2). (3.25)
d2€ 4e?ak3n2p 1 1
(Goat =" g (329
42 2e2a?k3n?p 1
Gar == 0" @21

These equations coincide with (2.27)-(2.29).

Concluding remarks to this section. As expected, the integral Tamm intensi-
ties (that is, integrated over the solid angle), in the limit kzp — oo (large motion
interval) coincide with the radiation intensities correponding to the unbounded mo-
tion treated in section 2. The radiation intensities obtained in subsections (3.2)-(3.4)
differ considerably from those given by Frank in [3,4]. There is essential difference
between our derivation and that of [3,4]. The method used by Frank is rather com-
plicated. He writes Maxwell equations in terms of electric and magnetic vector Hertz
potentials which are related to the electromagnetic field strengths. In the right-hand
sides of Maxwell equations there are electric and magnetic polarizations proportional
to the LF electric and magnetic moments, resp. Electric and magnetic moments in
the LF are connected with ones in the the dipole RF through the well-known linear
relations (see, e.g. [5]). When in the dipole RF there is only electric or magnetic
dipole, one may exclude from these relations the non-zero magnetic moment of the
RF, thus, obtaining the relation between the electric and magnetic moments of the
LF. On the other hand, we define the charge-current densities in the RF. Using
the Lorentz transformation, the same as in vacuum, we recalculate them to the LF.
Then, we tend the dimensions of these distributions to zero, thus obtaining infinites-
imal charge-current distributions corresponding to the electric, magnetic or toroidal
dipoles. With these infinitesimal charge-current distributions we solve Maxwell equa-
tions finding electromagnetic potentials and field strengths. Using them, we evaluate
the radiated energy flux.
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4 Electromagnetic field of the precessing magnetic
dipole

Consider an infinitely thin circular turn with the constant current flowing in it. Let
the centre of this current loop coincdes with the origin, while its symmetry axis
precesses around the z axis with a constant angular velocity wp. We chose the rest
frame (RF) of this loop as follows. Let fi,, 7, and 7, be the orthogonal basis vectors
of the laboratory frame (LF). The €, vector of RF we align along the loop symmetry
axis 7i. Being expressed in terms of the LF basis vectors, it is given by

it = €, = cos fofi, + sin bofi, = i,,

where 7, = cos wotfi,; +sinwpt, and 6 is the inclination angle of the loop symmetry
axis towards the laboratory z axis. Other two basis vectors of RF lying in the plane
of loop, we choose in the following way

- |

€ = — (7 x 7i,) = coswptfly — sinwptit, = Ry,
sin 00

-

€y =

sin g (7t x (7 x 7)) = coswotii, — sinwotii, = 7y,

that is, €, €, and €, coincide with the spherical basis vectors.
Let z,y,z and 2’,y’, 2’ be the coordinates of the same point in the laboratory and
proper reference frames, resp. They are related as follows

¢’ = zsinwgt —ycoswot, Yy =pcosy—zsinfy, 2z’ =psinby+zcosby, (4.1)
where p = & coswot + ysinwgt. The current density in the RF is given by
7' = &1é()é(p' — d),
where p' = /22 + Y72, ey = €,c0s¢ — &,sin® is the vector lying in the plane of
loop and defining the direction of current and ¢ is the asimuthal angle in the plane

of loop defined by cosy = z’/d, siny = y'/d. In the LF, the components of the
current density are given by

Jz = (cos 6’082 — sinwpt sin 0056;)M, Jy = (—cos 00—8— + coswept sin o) M,
Yy

oz Oz

. . ) a 7]
Jz = sin fp(sin w()tg:; — COos wota—y)M, (4.2)

M = 1I,6(2")0(d — /22 + y?).

where
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z',y" and 2’ should be expressed through the coordinates (z,y, z,t) of the LF via the
relations (4.1). We are interested to study the point-like (d — 0) current loop,which
is equivalent to the magnetic dipole. In this limit,

M = nd*Iyé(z)d(y)d(2).

The vector magnetic potential is given by

A== / — 57, )6t — t + R/c)dV'dt'.

After integration, one gets for the spherical components of A:

A, =0, A9=_7Td210 . 0oasm¢)
c r r
4?1 F)
Ay = I . 0(—cos0(,sm0+81nGOCOSGaTSII;¢), (4.3)
Here % = wgt — kor — ¢. The non-vanishing components of the field strengths are
2
E. =0, E,= nd? loko sin 0y cos 02 7] sml/)’ E, = nd? Ioko sinooﬁcosz/)’
c or r ¢ or r
H, = 2md” Io(— cos 0y cos 6 — sin 0y sin 6 -— 0 cos z/))’
cr or r
_ond’ly . 19 9siny
Hy =— smoo;a— i
= 7rd2[0 0 cosy
Hy = e (~— cos by sin 8 + r sin 8y cos 067‘ " ). (4.4)

To evaluate the radiation field, one should leave in (4.4) the terms which decrease
not faster than 1/r for r — oo:

2
E.=0, Ep=-Hy~ dkslo o 8o sin b,
r
K2
H =0, E,=Hy= il cro 9 sin 8 cos 6 cos . (4.5)

The radial energy flux per unit time through the surface element r2d{} is

d& 2
I8 = %T—(Eng, —~ HgEy) = i(({lkglo sin 0p)%(sin® 4 + cos® 0 cos® ) (4.6)

However, experimentalists usually measure not the time distribution of the energy
flux flowing through the observation sphere, but the photons with definite frequency.
For this, we evaluate the Fourier transforms of the field strengths

S, =

Ew) = % /exp(iwt)E(t)dt, Hw) = % / exp(iwt) H(t)dt
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In the wave zone where kr >> 1 one gets

iﬂk310d2 . . .
Fy(w) = Hy(w) = g Sin Oolexp(—iPo)d(w + wp) — exp(iPo)d(w — wo)],
Wk(z)lodz . . .
E4(w) = —Hp(w) = — o il B cos Blexp(—i®o)d(w + wo) + exp(iPg)d(w — wp)],

(4.7)
where ®¢ = kor+¢. The energy radiated into the unit solid angle, per unit frequency
is

&€
dwd}

This means that only the photons with the energy wp should be observed.

A question arises, why we did not use the instantaneous Lorentz transformation
when transforming charge-current densities from the dipole non-inertial RF to the
inertial LF. The reason for this may be illustrated using the circular loop with the
current density j = foé(p —a)é(z)/2ma as an example. Let this loop rotate with a
constant angular velocity w around its symmetry axis. Then, in the LF the charge
density o = awjv/c? and the charge

nkiI2d*

_CTZ(EH* H*E + )_
T g e T HeBeT o) =g,

sin? f(1 + cos? 0)[§(w — wp)]?). (4.8)

q= /adV = awjoy/c

arise. Here a is the loop radius, ¥ = 1/y/1 — 3?2, B = aw/c. This absurd result
is due to the fact that it is not always possible to apply the instantaneous Lorentz
transformation for the transformation between the inertial and non-inertial reference
frames. The correct approach is as follows. In the inertial reference frame (that is,
in the laboratory one) there is only the static current density. In the non-inertial
reference frame (attached to a rotating current loop), both charge and current den-
sities differ from zero. There is no charge in this reference frame since a charge is
no longer space integral over the charge density, but includes integration over other
hypersurfaces [21].

The content of this section may be applied to the explanation of radiation observed
from neutron stars (magnetars) with superstrong magnetic fields (see e.g., [22]).

5 Discussion and Conclusion

In previous sections we evaluated the electromagnetic fields of electric, magnetic and
toroidal dipoles moving im medium. We use the following procedure. At first, in
the rest dipole reference frame we consider finite charge-current densities which in
the infinitesimal limit are reduced to electric, magnetic and toroidal dipoles. Then,
we transform these finite charge-current densities to the laboratory frame using the
Lorentz transformation, the same as in vacuum. Then, we tend the dimensions of
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these densities to zero, thus obtaining ones describing moving electric, magnetic and
toroidal dipoles. With these densities, we solve Maxwell equations, find electro-
magnetic potentials, field strengths and the radiated energy flux. This procedure is
straightforward, without any ambiguities. On the other hand, complications arise
when one formulates the same problem in terms of electric and magnetic polariza-
tions (see Introduction). The ambiguity is due to the transformation laws between
electric and magnetic moments in two inertial reference frames. Since these two
approaches should be equivalent, the question arises, whether the same ambiguity
takes place for the charge-current densities. Or, more exactly: Is it true that charge-
current densities in two inertial reference frames placed in medium are related via
the vacuum Lorentz transformation ? It should be noted that a standard treatment
of a moving bodies electrodynamics (see, e.g., [23-25]) definitely supports the same
transformation law for the charge-current densities both in medium and vacuum.

Another ambiguity is that there is another formulation of relativistic spin theory.
We mean the so-called Bargmann-Michel-Telegdi theory. In it, there are three spin
components in the spin rest frame, four components in any other reference frame
and there is no electric moment in this reference frame.

We briefly enumerate the main results obtained:
1. Representing electric, magnetic and toroidal dipoles as an infinitesimal limit of
corresponding charge-current densities, we study how they radiate when moving
uniformly in an unbounded medium. The frequency and velocity domains where
radiation intensities are maximal are defined. The behaviour of radiation intensities
near the Cherenkov threshold is investigated in some detail.
2. Radiation intensities are obtained for electric, magnetic and toroidal dipoles
moving uniformly in a medium finite space interval (Tamm problem).
3. It is investigated how radiates the precessing magnetic dipole.
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Adpanacses I'. H., Crenanosckuit 10. I1. E2-2002-142
O6 u3nmy4eHHH IEKTPHYECKMX, MATHUTHBIX U TOPOMAAIBHBIX
JHIIoNein

PaccMmaTpuBaeTcsd H3Ny4Y€HHE 3MEeKTPHYECKHX, MAarHUTHBIX H TOPOMIOAIbHBIX
AHUIIOJIEH, PABHOMEPHO ABHXYIMXCA B HEOrPAaHHYEHHOH cpele (3TO COOTBETCTBYET
3agaue Tamma—®panka). IINOTHOCTH 3THX JUNOJIEH ITONTYYAIOTCS H3 COOTBETCTBYIO-
LIMX [UTOTHOCTEH 3apsa H TOKa MEPEeXofoM K TOUYedHOMY npeaeny. M3ydaercs mo-
BEICHHE HHTEHCUBHOCTH H3y4eHHA BOIN3H YepEeHKOBCKOro nopora f=1/n. Omnpe-
IEJICHbl UHTEPBATHI CKOPOCTEH M 4YaCTOT, B KOTOPHIX HHTEHCHBHOCTH HITyYEHHMS
MakcuMaibHa, J[laHO cpaBHeHHe C npeabiaymumMu pabotamu. PaccmaTpuBaeTcs Tak-
X€ HITy4EHHE TEKTPHYECKUX, MATHUTHBIX M TOPOUIJANBHBIX JHIONEH, paBHOMEp-
HO ABHXYUIMXCS B Cpelle Ha KOHEYHOM HHTepBane (3T0 COOTBETCTBYET 3aiaye TaM-
Ma). U3yuaioTcs cBoicTBa UATYYeHHs, BO3HHKAIOIIETO NPH NPELECCHH MarHHTHOTO
IUIONA.

PaGora BbimonHeHa B Jlaboparopun teoperndeckoit ¢usuku uM. H. H. Boro-
mob6osa OHSIN.

IMpenpunr OGbeaMHEHHOTO HHCTHTYTa AAEPHBIX HccaenoBaHuit. ybra, 2002

Afanasiev G. N., Stepanovsky Yu. P. E2-2002-142
On the Radiation of Electric, Magnetic and Toroidal Dipoles

We consider the radiation of electric, magnetic and toroidal dipoles uniformly
moving in unbounded medium (this corresponds to the Tamm-Frank problem).
The densities of these dipoles are obtained from the corresponding charge-current
densities in an infinitesimal limit. The behaviour of radiation intensities
in the neighbourhood of the Cherenkov threshold B=1/n"is investigated. The fre-
quency and velocity regions are defined where radiation intensities are maximal.
The comparison with previous attempts is given. We consider also the radiation
of electric, magnetic and toroidal dipoles uniformly moving in medium, in a finite
space interval (this corresponds to the Tamm problem). The properties of radiation
arising from the precession of a magnetic dipole are studied.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2002




Maker T, E. Ilonexo

JIP Ne 020579 ot 23.06.97.
IToxnucasno B eyats 16.07.2002.
®opmar 60 X 90/16. Bymara odcetnas. ITeuars odceTHas.
Ven. new. 1. 2,18. Vu.-u3n. 1. 2,55. Tupax 425 3x3. 3aka3 Ne 53423.

Hanatenscknit otaen OObeMHEHHOTO HHCTHTYTa AICPHBIX HCCIEXOBaHHIT
141980, r. ly6Ha, Mockosckas 06:1., yn. JKomno-KiopH, 6.



