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1. Background

Austenitic stainless steels (ASS) are widely used in engineering applications because of their
high corrosion resistance and toughness. A major concern in a number of applications including
nuclear power plants, however, is fatigue damage of ASS components. During fatigue loading mi-
crostructural changes occur in ASS which affect both the mechanical and physical properties of the
steel. The ferromagnetic martensitic phase formed in some ASS due to the plastic deformation oc-
curring during mechanical fatigue presents a particularly interesting phenomenon. In these materials
a metastable austenitic fcc structure twists into a martensite tetragonal distorted lattice, i.e. the aus-
tenite is converted directly, or indirectly over the hexagonal paramagnetic e-martensite, into the fer-
romagnetic o-martensite. The extent of distortion depends strongly on the carbon content. For low
carbon steels the tetragonal structure does not deviate much from the bcc lattice of o-Fe. When in-
duced by plastic deformation, the martensitic phase usually first forms at faults in the initial aus-
tenitic matrix such as carbides, stacking faults, twins, etc., in the form of needles or lathes and later
as blocks or bands. As a result, texture or preferred orientation in the growing martensitic phase
often accompanies this kind of phase transformation. Many investigations have shown the influence
of the martensitic transformation on the fatigue properties of ASS (see, e.g., [1]). Whereas the me-
chanical properties of austenitic steel are well known [2], a transforming or partly transformed ma-
terial is much more difficult to characterise due to the interaction between two phases. For instance,
the elastic mismatch and the plastic misfit between the martensite and austenite, as well as the larger
specific volume of martensite are likely to cause considerable stresses throughout the sample. A
knowledge of the residual stress state of the phases and their relation to the fatigue process is very
important, in order to develop a proper understanding of how the individual phases interact to pro-
duce the bulk mechanical response of the material.

At present perhaps the most comprehensive stress measurements with neutron diffraction can be
performed on dedicated time-of-flight diffractometers at pulsed sources equipped with modern
strain scanners and appropriate loading machines. Such installations provide unique possibilities to
study the mechanical behaviour of the individual phases in a multiphase material. The ENGIN in-
strument [3] at the ISIS neutron pulsed facility has excellent parameters and sample-environment
equipment for such research.

This paper describes in detail a study of a low carbon metastable austenitic stainless steel of type
AISI 321 with varying martensite volume fractions produced by plastic deformation during low cy-
cle fatigue. The work was published previously in brief [4]. Information about the mechanical prop-
erties of the bulk samples, of the austenitic matrix and of the martensitic phase have been obtained
from the experimental mechanical and neutron diffraction data.

Section two of the paper gives information about the material and the samples used for cycling
and monotonic testing. In section three, the experimental set-up is described along with the proce-
dure for processing the time-of-flight neutron diffraction spectra. Section four contains the results of
the experimental determination of lattice parameters, the elastic strains, the elastic constants, the
martensite fractions, the texture index, the residual and anisotropy strains and residual stresses,
which are then discussed in section five before concluding in section six.

2. Material and Samples

The material examined in this work was a low carbon Ti-alloyed austenitic stainless steel
X6CrNiTi1810 with the major components 17.74 % Cr and 9.3 % Ni (German-grade 1.4541, which
is an analogue of the US-grade AISI 321). The steel was delivered as a cold formed bar with a di-
ameter of 20 mm. The yield stress Rpo2 and the tensile strength Ry, were 192 and 580 MPa, respec-
tively. The bars were annealed at 1050 °C and quenched in water. A set of eight samples (Table 1)
were machined from these bars. The central gauge of the sample (Fig. 1) had a diameter of 7.5 mm



and a length of 16 mm. The fatigue loading at DMS was performed on a MTS 100 kN servohydrau-
lic testing machine at room temperature. Seven of the eight samples (A to G in Table 1) were cycled
under uniaxial tensile-compressive loading under total-strain control with a triangular waveform
and an amplitude of 1% (a strain ratio Rg=-1) at a frequency of 0.5 Hz. While sample A was cycled
to failure, six of them (B to G) were each subjected to varying numbers of fatigue cycles. The varia-
tion of the maximum stress amplitude (MSA) for these samples is also shown in Table 1.

In all cases, the fatigue experiment was stopped after a compressive half cycle, therefore the re-
sidual macroscopic plastic strain (RPS) was negative in all the unfractured samples (Table 1).
Sample B was cycled up to about 90 % of the fracture fatigue level determined from Sample A. A
macro-crack in sample B was observed after the subsequent tensile loading of the neutron experi-
ment (Fig. 1). It is possible that the unusual behaviour of this sample, which will be discussed be-
low, but for example includes the dependence of the anisotropy strain on the applied stress, was
caused by this crack which could act to relax the residual stresses accumulated during fatigue cy-
cling. Sample H, which was not cycled, provides a reference sample for the austenitic phase.
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Table 1. LCF-samples: Mechanical data.

Sample N  N/N,% MSA,MPa  RPS,%  Epu, GPa"  Epu, GPa™”

A 1161 100 4529 -0.627 .

B 1053 90.7 472.8 -0.672 171(23) =

C 789 68.0 453.58 -0.689 148(5) 194.7(2.8)
D 521 44.9 426.2 -0.714 183(6)" 179.5(2.4)
E 251 21.6 392.4 -0.744 164(9) 182.2(2.2)
F 115 9.9 373.9 -0.759 165(5) 177.5(2.2)
G 51 4.4 363.8 -0.766 163(16) 179.1(2.6)
H 0 0 = = 151(14) 186.5(1.5)

* In-situ tensile measurements during the neutron experiment.
** Corrected on the extensometer slip.
*** Measurements after the neutron experiment by help of the specialised equipment of DMS.

During the neutron measurements the macrostrain in the axial direction was recorded using a clip
gauge extensometer. In Fig. 2, the applied stress-bulk macrostrain response is shown for all sam-
ples. The macroscopic Young’s modulus Eyyk (i.e. the elastic slope of the bulk stress-strain re-
sponse) obtained by linear fit of the initial part of the curve is presented in Table 1. However during



the processing of the bulk measurements we observed that the knife blades of the extensometer oc-
casionally showed some slip on the surface of the sample before settling in. Thus, there is some un-
certainty in the strain change at low loads. Therefore we have repeated the bulk measurements of
Young’s modulus after the neutron experiment on the specialised equipment of DMS. To stabilise
the extensometer knifes on the sample surface, four tensile-compressive cycles were first performed
with an amplitude of 3.5 kN at a rate of 1.5 kN/s. The beginning linear part of the fifth loop from 0
to 20 MPa is used to determine the slope from which the bulk Young’s modulus presented in Table
1 is calculated.

The samples were tested to determine the martensite volume fraction * f’ before and after the
neutron experiment with help of a commercial FerriteScope device based on the magnetic inductive
method. Results of these measurements will be discussed together with the neutron data below.

3. Set-up of the Experiment and Processing of the Diffraction Spectra

The samples were measured using the in situ Instron servohydraulic stress rig under tensile stress
control on the ENGIN instrument. The stress rig loading axis is horizontal at 45° to the incident
neutron beam, thus providing simultaneous measurements of strains parallel (axial) and perpendicu-
lar (transverse) to the applied stress [5]. A neutron gauge volume of =50 mm® is formed inside the
central part of the sample in a form of the thin rectangular parallelepiped, located at 45° to the
sample axis, with thickness of 2 mm and the incident dimensions of 5X5 mm?> by using two multislit
radial collimators in front of the +90° detectors and a primary slit in front of the sample, respec-
tively.

The collected detector counts are treated to provide a diffraction pattern of intensity versus neu-
tron time of flight or crystalline lattice spacing. The calibration of the detectors was performed by
using a Si standard powder sample from NBS (USA). The result of the calibration is an instrument
parameter file which holds the geometric description of the instrument, characteristic intensity
spectrum and other specific data (e.g. [6]). Processing of the Si-spectra (Fig. 3) using the parameter
file obtained gave the following lattice parameters: 1) a,,=5.430995(48) A for the right (+90°) de-
tector, and 2) a;=5.430970(50) A for the left (-90°) detector. Characterising the symmetry of the
detectors by the pseudostrain £=0.5(a.x-ag)/(2ax+ay) and using a typical value of Young’s modulus
equal to 200 GPa we obtain a nominal detector asymmetry error in the determination of the stress of
1 MPa, assuming that the gauge volume remains submerged, or in the case of a gauge larger than
the sample that the sample remains centred.
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Fig. 3. Diffraction spectrum of the Si standard powder sample: left - the transverse direction, right -
axial direction. The crosses show the measured data and the line connecting them is the Rietveld fit.
The tick marks show the peak positions. The lower graph is the difference curve (to the same scale
as the data).
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The lattice parameters of the austenitic and martensitic phases were determined using both Riet-
veld and Le Bail refinements (RR/LBR) implemented within the GSAS software package [7]. Fit-
ting was carried out in a d-spacing interval from 0.04 to 0.23 nm in which 38 austenite and 32
martensite reflections are observed. An example of LBR is shown in Fig. 4 for sample B.

We performed a test using both refinement methods on the same spectra and obtained coincident
results for lattice parameter within experimental errors. In LBR, a structure-free approach is used,
1.e. the intensities of the reflections are simply adjusted to fit the observed ones. Therefore LBR
does not give a possibility to determinate the martensite fraction and the texture index. For this we
used RR with the spherical harmonic model that can be chosen within the GSAS code [7].

The strains within individual grain families of both phases are determined by single peak fitting
of individual reflections using the RAWPLOT subroutine in the GSAS code.
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Fig. 4. Diffraction spectrum for the sample B (martensite fraction 25 Vol. %) under 5 MPa tensile
load in the axial direction. The crosses show the measured data and the line connecting them is the
Le Bail fit. The tick marks show the peak positions: top - martensite, below - austenite. The lower
graph is the difference curve (to the same scale as the data).

The conventional refinement that we use to obtain elastic lattice parameter strain does not ac-
count for the elastic anisotropy of various crystal planes under loading. For a small uniaxial load the
refinement produces a good fit as illustrated in Fig. 5 (left) for example of sample H (austenite
only). For a higher applied load the difference curve demonstrates shifts of the (111) and (200)
peaks in the opposite directions relative to those obtained with an isotropic model used in the con-
ventional fit shown in Fig. 5 (centre). Note that the (111) and (200) planes represent the extremes of
elastic stiffness in cubic materials. Following [2] we reprocessed the entire experimental data using
the modified LBR accounting for elastic anisotropy, and calculated the anisotropy strains. The fit-
ting results for sample H are shown in Fig. 5 (right). In this case, the quality of the fit is strongly
improved.
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Fig. 5. Part of the spectrum for the sample H (austenite) in the axial direction: left - under 5 MPa
tensile load, centre and right - under 240 MPa. The crosses show the measured data and the line
through them is the result of: left and centre - the conventional Le Bail fit, right - the modified Le
Bail fit.

4. Experimental Results

4.1. Lattice parameters. The direct result from processing the neutron diffraction data is the de-
pendence of the phase lattice parameter a; on the applied stress oy, for directions ‘i’ equal to "11” or
’33’, corresponding to the axial or transverse direction, respectively. An example of the lattice pa-
rameter dependencies of austenite and martensite are shown for sample B in Fig. 6.
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obtained from figures comparable to Fig. 6.

In the Appendix we will show that from the linear fit of the elastic part of the phase curves a;(Gy)
it is possible to obtain the intercepts I;; and Is3 (Figs. 7 and 8), the slopes Sy and S33 which depend
on the phase elastic constants E and v, the stress-free value of the phase lattice parameter ag and the
total phase stress tensor. The calculation of these latter values is the main goal of the following dis-
cussion.

4.2. Elastic strains. A rough approximation for calculating elastic strains g;=(a;-I;)/I; is to use
the intercepts I;; instead of the stress-free value of the phase lattice parameter a,. In this case we ig-
nore the residual stresses created during fatigue cycling, characterising the relative changes in the
sample during loading. The applied stress - elastic strain responses of individual phases obtained
using this approximation is shown for sample B in Fig. 9.

While the martensite strain deviates from linearity quite significantly in the bulk plastic regime,
the austenite strain shows very little deviation. In fact this behaviour was observed in general in the
samples. Any deviation from linearity in the austenite response was much smaller than that seen in
the martensite, and moreover, extremely small compared to that expected based on simple load



sharing arguments, given the large volume fraction ‘ f’ of martensite (for sample B, f =25 vol.%).

A correlation with the onset of the deviation of the martensite strain from linearity with the macro-
scopic yield stress Rpo 2 was observed.
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4.3. Elastic constants. The phase lattice parameter measured for a single diffraction peak is
along a particular crystallographic direction that has its own elastic constants. In general the neutron
elastic constants will differ from the bulk elastic constants and will depend on preferred orientations
of crystallines, i.e. the texture of the material. However, as shown in [2] for a randomly textured
single phase ASS, the lattice parameter obtained from a Rietveld/Le Bail multi-peak refinement
provides elastic constants close to the bulk macroscopic values. A rigorous approach to determining
elastic constants in the presence of applied stress is given in the Appendix, where we have intro-
duced so-called “quasielastic” constants E,=I;1/S;; and Ey=l33/S33 for the axial and transverse di-
rections, respectively. The calculated “quasielastic” constants for both directions, as well as the ratio
of E./Ey are presented in Figs. 10 and 11. Only in the absence of the residual stresses the
“quasielastic constants ” E, and E; turn into the true elastic constants E and -E/v, respectively.
However, for typical values of stress and modulus the effect of the residual stress state on the ob-
served modulus will be very small; typically < 0.1%. Note that both of the austenite elastic constants
in Figure 10 increase slowly with fatigue level, for values of N/N¢ > 10%.
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The ratio Ey/Eyr should be equal to Poisson’s ratio v assuming macroscopic isotropy of the ma-
terial and an absence of residual stresses. In both austenitic and martensitic steels, macroscopic
Poisson’s ratio of about 0.28-0.3 are typical [8]. It is remarkable that the ratio of E,/E,, (Fig. 11) are
very close to this value, in spite of the strong scatter of the experimental points observed for the
martensite phase in the transverse direction.

Note that the pure austenite sample H drops below the common line: its ratio of
Eax/E=0.185(18) is appreciably lower than the austenite phase ratio of the other samples (Fig. 11).
On the other hand as is shown in the Appendix (Eq.(A13)) in the case of the single phase system
Poisson’s ratio may be exactly determined from the linear fits of the experimental curves a;;(GL)
and as3(op) even if residual stresses are present in the sample. We shall return once more to the
problem of determining neutron elastic constants below.

4.4. Martensite fraction. The martensite volume fraction * f > measured without load and at the
maximum value of the applied stress are presented in Table 2 for both axial and transverse direc-
tions. In the same table the results of the martensite fraction determination using the FerriteScope
before and after the neutron experiment are shown too. The variation of martensite volume fraction
under applied stress is shown in Fig. 12. Note that the onset of the increase in the martensite volume
fraction occurs at levels of the applied stress considerably larger than the yield stress Ry, of the
uncycled austenite steel.
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Table 2. Martensite fraction and texture data.

Sample “neutron” f, vol. % (ax/tran) “magnetic” f, vol. % Texture index (ax/tran)
without load max load before after austenite martensite

A 25.2(5)/24.1(7) 48 23.5 1.31/1.11 1.25/1.15
B 24.8(2)/25.9(3) 25.5 (only ax) 41 18.3 1.61/1.25 1.12/1.02
C 20.7(6)/20.5(4) 21.1 31 16.5 1.41/71.10  1.26/1.01
D 14.9(6)/15.1(2) 155 22 14.8 1.52/1.04  1.19/1.04
E 5.9(2)/5.9(2) 75 10.3 6.0 1.42/1.16  1.41/1.08
F 2.0(2)/2.0(2) 59 4.1 9.5 1.43/1.15  2.46/1.12
G 0.68(22)/0.67(20) 0.96 2.3 2.2 1.52/1.40  12.5/4.1
H 1.46/1.16




4.5. Texture. The texture index was determined using a spherical harmonics approach within the
Rietveld refinement. The sample symmetry was chosen as a cylindrical fibre texture. A satisfactory
agreement with the measured diffraction spectra was obtained with two spherical harmonic terms.
The magnitude of the texture can be characterised by the texture index J. If the texture is random
then J=1, otherwise J>1; for a single crystal J=co. The phase texture index (without the load) in both
axial and transverse directions are shown in Table 2. In considering both the martensite volume
fraction results and the texture results it should be noted that since we are obtaining both texture and
volume fractions from only two diffraction spectra, the uncertainty on the results will be quite high
and we should seek to observe only general trends. Nonetheless it was observed that the texture in-
dex of the austenite in the axial direction show a slight increase with increasing fatigue level while
in the transverse direction it is almost constant. In the martensite phase the texture index decreases
in both directions with increasing fatigue. The only strong texture observed is in the martensite at
low volume fractions, which corresponds to the initial transformation of only the most preferentially
oriented austenite crystallites. The texture for low martensite volume fraction was shown particu-
larly clearly in the martensite 110 peak which was relatively strong parallel to the fatigue loading
axis. The texture index of both the austenite and martensite in the axial direction increased during
the neutron loading test at high plastic strains (in Fig. 13, the results from sample F is shown as an
example, where the texture starts to increase at a macroscopic strain of about 2%).

4.6. Residual Strain. In order to trace the evolution of residual strains in the austenitic phase
with fatigue level, the initial austenite residual strain in each direction was calculated, using the lat-
tice parameter a,,(61=0) in the initial unloaded state, i.e. the value of the intercept Ij; or I3; (see
Eqs.(A21-A22)), compared to the equivalent parameter of sample H in the same direction as a
“stress-free” value. Thus, we ignore any residual stress created in sample H during quenching. In
this case, it is found that the austenitic matrix showed a weak expansion in lattice parameter as a
function of cycling (Fig. 14). We can only apply this approach to austenite, since no suitable
martensite reference exists.
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4.7. Residual Stress. To calculate the phase residual stress from the experimental data the stress-
free phase lattice parameter a has to be known. Usually in order to determine this parameter a
sample is made with the same structure, but free from internal stresses. However, in our case such
samples were not available. As shown in the Appendix, the deviatoric components of the residual
stress tensor may be determined without the accurate knowledge of the stress-free phase lattice pa-
rameter ag (see also [9]). While it is desirable to know the entire residual stress tensor the deviatoric
residual stress tensor will be sufficient to track the change of the residual stresses during LCF-
testing.



First of all consider results from the neutron experiment with sample H, as this sample represents
the single phase system (austenite) and, hence, is easier to interpret. In this case any microstresses
o} (e.g. elastic incompatibility (mismatch) stresses) induced by the applied stresses are not present.

Using Eq.(A19) from the Appendix and the intersection o, from Fig. 15 we obtain the deviatoric
residual stresses 7;; =-14.0(1.5) MPa and 7.5=14.0(1.5) MPa, i.e. a small compressive stress in the

axial direction and a small tensile stress in the transverse direction, respectively.

Concerning the origin of observed stresses in sample H, we must first note that the neutron gauge
volume was fully submerged in the sample, and thus did not fully bathe a cross section of the sam-
ple. A sample subjected to very strong cooling during quenching (in our case in water) will experi-
ence plastic flow and hence a residual stress state due to the high thermal gradients. During the
quenching some parts of the samples can reach the yield stress and consequently undergo significant
plastic strains resulting in residual stress fields which vary from compressive close to the sample
surface to tension in the centre. In this case the quenching residual stresses can have both hydro-
static and deviatoric components. Since this sample was machined down from 20 to 7.5 mm in di-
ameter subsequent to the quench, we would expect very little thermal stress in the transverse direc-
tion, which the experimental value of r;‘; seems to confirm.

To calculate the deviatoric phase residual stresses in the other samples which contain both aus-
tenite and martensite phases (see Eq.(A34)) we have neglected the phase microstresses ¢ induced

by the applied stress since, as seen in Fig. 10, the elastic properties of both phases are similar (see
also Section 5), and consequently, any microstresses due to differences in the elastic behaviour of
the two phases are small compared to those due to the different plastic behaviour (see Fig. 9). The
deviatoric phase residual stresses calculated as shown in the Appendix are presented in Fig. 16.
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The deviatoric residual stresses in all the samples have been separated into the austenite and
martensite contributions. The austenite deviatoric residual stress is compressive in the axial direc-
tion and tensile in the transverse direction. At the same time the martensite deviatoric residual stress
in the same directions have the opposite sign and their values are larger then in the austenite matrix
in accordance with the smaller volume fraction. The large martensite residual stress could lead to
the crack initiation that was observed in sample B at 90 % fracture fatigue level.

According to Eq.(A35) the total deviatoric residual stresses in each phase, “z% and "z%, where
the index ‘a” and ‘m” are for austenite and martensite, respectively, may be separated into the mac-
rostresses 7, (Fig. 17) and the microstresses in each phase, “z% and "t/ (Fig. 18). The deviatoric

residual macrostress in all the samples shows a compressive axial component and a tensile trans-
verse component. The austenite microstress is tensile in the axial direction and compressive in the



transverse direction, while the martensite microstresses are of correspondingly opposite sign, with
magnitudes larger then in the austenite matrix in accordance with the smaller volume fraction.

If an entire sample cross section were irradiated in the neutron beam, the average residual mac-
rostress must be zero and only the residual microstresses can be measured. If we made this assump-
tion, it would follow from Eq.(A37) that we can also calculate the hydrostatic macrostress 7}; and

thereby restore the total residual macrostress tensor o

i 2

i.e. in this case the axial component o}/
while the transverse components o =0 due to Eq.(A36). The axial component of the total residual

macrostresses is compressive that correlates with the negative residual plastic strain after the fatigue
cycling. If we do carry out this analysis, recognising its inherent inaccuracy, we obtain the results
shown in Fig 19. The fact that of the axial component of the residual macrostress tensor is not equal
to zero indicates the incomplete averaging of the residual macrostresses in the neutron gauge vol-
ume.

0
o 100 - —@— austenite, axial o |
% E S . s ;+ - austenite, transverse DEi 10 4
g 50 - RREES T @ i
1) i X o
g G 20
o ] e <]
5 027 T o S ]
E 1 £ -30
] ] IR I
2 %0 /’}—““*<}“"/’} 13.40—
2 ] .7 - 2 - martensite, axial F
o 100 4 - 3¢ - martensite, transverse o 1
— 50—
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
N/Nf, % N/Nf, %
Fig. 18. Deviatoric residual microstresses in Fig. 19. Axial residual macrostresses vs
austenite and martensite vs the fatigue level. the fatigue level.

4.8. Strain vs Anisotropy Factor. Single peak analysis using GSAS was carried out for many
reflections of both the austenitic and martensitic phases. It was observed that the elastic strains of
both phases vary linearly with the anisotropy factor G=(h2k2+h212+k212)/(h2+k2+12) up to a stress of
400 - 500 MPa (Figs. 20 and 21). According to Pintschouvius’s criterion [10] this indicates that the
measured elastic strains are of type L.

| Sample B A axial, 250 MPa a
austonite & v, 0P 4000 -| boiiol AN
2000 @  mial400MPa | anensite @  axal 400MPa
8 O ransverse, 400 MPa 8 3000 - O vamsverse, 400 MPa
d g
£ < i
g § % TI\I\
# % 1z 8 :
g 1 o 1000 - & 1 g
7] D 4 B
a8 38
w w 0
I T z Py
| = £
g -1000
-1000 e
0.0 05 1.0 0.0 05 10
3G 3G
Fig. 20. Elastic strain in the austenite phase Fig. 21. Elastic strain in the martensite phase
of sample B vs the anisotropy factor G for an of sample B vs the anisotropy factor G for an

applied stress 250 and 400 MPa, respectively. applied stress 250 and 400 MPa, respectively.
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4.9. Anisotropy Strain. The results of the modified LBR are: 1) the determination of the value
of the lattice parameter which tracks a nominal 400 direction and thus the elastic strains €0 for
(h00) reflections can be calculated, 2) the determination of a new fitting parameter €, (the so-called
anisotropy strain) which shifts the position of each peak from perfect cubic structure by a value pro-
portional to the anisotropy factor G. Concerning the anisotropy strain in the austenite phase the re-
sults obtained for a majority of the samples are close to those reported in [2] (Fig. 22 illustrates the
results for sample D). Note that the initial anisotropy strain observed is non zero in the fatigued
samples due to plasticity induced intergranular strains.

We have also observed the division of the anisotropy strain into two components (the example is
shown in Fig. 23 for sample D). However we have not observed the relatively sharp change in slope
in the dependence of the austenite anisotropy strain with the elastic strain. Instead the transition
from the elastic component to the plastic component takes place fairly smoothly. Note that the
transition region correlates with the onset of macroscopic plasticity (see the macrostrain response in
Fig. 22). The influence of the fatigue level on the anisotropy strain is presented in Fig. 24 (note the
unusual behaviour of the anisotropy strain in sample B). For reasons of legibility, the experimental
points are left out, and only the results of the second degree polynomial fit (excluding the sample B
with a third degree polynomial fit) are shown.

Macrostrain, %

0.0 0.5 1.0
S A 6000
Magrostrain e 4 @  experiment
400 — \ i © 5000 — —— Polynomial it of experimental data
& - f E . — Linear fit of polynom from 0 to 500
= 300 ,J C. 4000 4| —— Linear fit of potynom from 2000 1o 2500
@ / ‘s 1
g 17 % 3000
B2004 ¥ Y i
° / o L]
2 1 Anisotropy Sample D s 2000 —
& strain Austenite @
< 100 | i S Sample D, austenite
/ < 1000 Axial direction
T
0 I T T T T T T T T T 0 I T T T T
1000 2000 3000 4000 5000 6000 0 500 1000 1500 2000 2500

Anisotropy strain, E-06 Elastic strain, E-06

Fig. 22. Austenite anisotropy strain re-
sponse (sample D) and the stress-
macrostrain response.

Fig. 23. Variation of the austenite anisot-
ropy strain with the elastic strain as deter-
mined by the Le Bail fit for the sample D.

The elastic hkl-strains of the austenite phase can be calculated from the modified LBR results by

the formula
Epy = Epop — 4G (1)

and these can be compared with the results of the single peak analysis. The results of the both de-
terminations of the austenite elastic strain response in the axial direction of the (111), (200), (220)
and (311) planes coincide with each other semi-quantitatively even for the sample B (Fig. 25).

A different picture is observed for the martensite phase. Though there is a qualitative similarity
- between the applied stress - anisotropy strain response in the austenite and martensite phases, the
division of the martensite anisotropy strain into two components strongly depends on the fatigue
level (Fig. 26). For example, in the samples with small martensite fraction the dependence of the
martensite anisotropy strain on the martensite elastic strain is practically linear. The elastic anisot-
ropy hkl-strains of the martensite phase agree semi-quantitatively with results of single peak analy-
sis of of the (110), (200) and (310) reflections (Fig. 27).
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5. Discussion

5.1. Elastic constants and residual stresses. The mechanical properties of two phase materials
depend on the properties of the individual phases and their interactions within the material. In the
samples studied we have seen (Fig. 10) that the austenite and martensite “quasielastic” constants are
similar. This gives us the basis to neglect entirely the elastic phase microstress induced by the ap-
plied stress during the calculation of the residual macrostresses and the phase deviatoric residual
microstresses. Similarly we calculate the phase elastic constants using Eqs.(A26-A27). In this case
the ratio of slopes S11/S33 (see Eq.(A26)) yields phase Poisson’s ratio v. From Eq.(A27) we can ob-
tain the difference between the phase axial “quasielastic” constant and the true phase Young’s
modulus:

2

To estimate the difference shown on the left hand side of Eq.(2) we have to know the phase hydro-
static residual stress 7, . Yet a true value cannot be obtained without knowledge of an accurate
value of the stress-free phase lattice parameter. Nevertheless we shall try to understand the extent to

E,-E=(1-2v)1, —%(HV)O'; .
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which the hydrostatic residual stress can influence Eq.(2) by changing the hydrostatic value, for ex-
ample, between limits from O up to 200 MPa. As can be seen from Fig. 28 this influence is very
small, as expected less than 0.1% in the worst case, i.e. less than the experimental errors in the de-
termination of the phase “quasielastic” constants, giving further confidence that the “quasielastic”
constants can be used as equivalent to the true values.

Another approach to estimating the influence of the residual stresses on the determination of the
elastic constants consists in a study of the difference of the elastic strains in the axial and transverse
directions vs the applied stress. From Eq.(A5) we obtain
1+v 1+v

E E

To calculate the strain we exchange a stress-free reference lattice parameter ay with the average

value of (Ij1+I33)/2 where the intercepts I;; and I3z were obtained before. The error of such an ex-

change will be small. Assuming o} — 04, =0 the neutron elastic constant (1+V)/E follows.
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Fig. 28. Variation of the relative difference of Fig. 29. Difference of elastic strains
(Ewx-E)/E . with the fatigue level at the different in the axial and transverse directions
values of the hydrostatic residual stress. vs the applied stress for austenite.

This approach takes advantage of the nominally similar elastic properties of the austenite and
martensite, allowing equal partitioning of the applied stress. Results of the calculations of the differ-
ence of the elastic strains in the axial and transverse directions for the austenite and the martensite
are presented in Figs. 29-30. From the slope of the linear fit of the elastic part of the difference we
can obtain the dependence of E/(1+V) on the fatigue level for the austenite and the martensite shown
in Fig. 31.
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stress for martensite.
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Note that: 1) for both phases, the values of E/(1+Vv) obtained using this approach nearly coincide
with the “quasielastic” constants obtained before; 2) there is no correlation between the martensite
value of E/(1+Vv) and the structural transformation of the martensite phase from the needle like
shape to the block form with higher volume fraction; 3) once again a clear trend in the value of the
austenite constant can be seen, with a clear increase as a function of fatigue level.

5.2. Reuss or Voigt model? In section 5.1 we have calculated the phase strains using the aver-
aged value of (I;;+I33)/2 with the intercepts I;; and I3; (see Eqs. (A28-A29)) instead a stress-free
reference lattice parameter ag. Now we use the results of the calculation of the total phase strains to
estimate the total stresses in the axial direction by help of Hooke’s law:

(C))

The results of the calculation of the total phase stresses in both phases for sample B are shown in
Fig. 33. For better readability of the figure, the austenite and martensite curves are shifted down and
up, respectively.
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Fig. 33. Phase stresses and macrostresses
in the axial direction vs the applied stress
for the sample B.

From the experimental data presented in Fig. 33 we might hope to obtain some information about
the coupling conditions of the phases in the samples using an approach described in [11], however
since the elastic constants of the phases are so similar, there is unlikely to be much separation be-
tween different models of elastic behaviour. According to Reuss’s model [12] the loading stress
must be homogeneously distributed in the both phases. Consequently, the slopes ‘s,, of the i-phase
stress dependencies in Fig. 33 should be equal and their ratio is giving by

m
R —__Su
Reuss — 4
Siy

=1. ©)

In Voigt’s model [13] the strains due to loading are homogeneous in both phases and the ratio of
the slopes should be equal

"sy _ "EN"v+])

RVni@l T, T apgeo N

S E/(v+1)

that gives Ry,ig=0.92(5) using the “quasielastic” constants for the sample B from Figs. 10-11. The

experimental ratio Rmeasured Of the martensite and austenite slopes for the sample B is equal 1.00(8).

Hence the proximity of all three ratios Rreusss Rvoigi and Rineasured dO€S not permit separation of

models for the coupling conditions of the phases. The measurement accuracy with other samples

was worse than the values given for sample B due to the lower martensite fraction, and the subse-
quent reduced statistical precision of the martensite phase measurement.

(6)
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5.3. Principle of a superposition of the elastic constants. Given the weak dependence of this
material on the coupling model used, we may state that from the principle of superposition, the
Young’s modulus E; of the two phase system should approximately follow the equation

E,=E,(~f)+E,,f . 0

The data in Fig. 34 gives a linear dependence of the summed modulus as a function of fatigue
level. In the same figure we show the bulk Young’s modulus from Table 1 that was measured after
the neutron experiments. Though appreciable distinction between two data sets is visible the ten-
dency for an increase in the Young’s module is clearly seen in both cases.

5.4. Macrostresses and microstresses induced by the applied stress. Using the results of the
calculation of the total phase stresses in both phases for sample B shown in Fig. 33 and well-known
formula for the macrostress

ol ="oy,(1- f)+"0}.f ®)
where the phase index ‘a” and ‘m’ designates austenite and martensite, respectively, we have calcu-
lated the dependence of the macrostress on the applied stress (Fig. 33, middle curve). Though the
macrostress dependence is the superposition of the linear (austenite) and nonlinear (martensite)
curves the resulting curve is very close to the linear dependence, due to the small martensite volume
fraction. The dependence is more clear in Fig. 35 where the applied stress is deducted the mac-
rostresses as well as from the total phase stresses. Note that we would expect the ‘macrostress’ re-
sults in Fig. 35 to be zero and constant if the neutron gauge covered a full cross section of the sam-
ple.

J @  austenite

150 —: Sample B %

100 _: O martensite

X macrostress

Axial sress-Applied stress, MPa
g
1

0 100 200 300 400 500
Applied stress, MPa

Fig. 35. Differences of the phase stresses and the macrostresses and the applied stress vs the ap-
plied stress for the sample B.

Considering the microstresses, the results in Fig. 35 show that the applied stress does not induce
additional microstresses in the austenite phase compared to those due to fatigue, whereas apprecia-
ble microstresses are induced in the martensite phase in the plastic region. These microstresses are
the most likely explanation for the nonlinear behaviour of the martensite phase elastic response in
the plastic region under loading. A more detailed understanding of this problem will require addi-
tional microstructural examination for damage, texture and martensite grain shape before definitive
conclusions can be drawn, since they are unlikely to be due to plastic misfit alone.
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6. Conclusions

The main results of this study are:

The application of the time-of-flight neutron diffraction to separate the individual responses of
phases in multiphase materials is demonstrated on the example of a fatigued austenitic stainless
steel AISI 321.

Samples were cycled by the uniaxial tensile-compressive loading under total-strain control with
an amplitude of 1% at a frequency of 0.5 Hz. As plastic deformation occurs during fatigue the
martensite fraction increases. The samples were subsequently measured using the in situ stress
rig under tensile stress control on the ENGIN instrument. The Rietveld and Le Bail refinements
within the GSAS code were applied to process collected neutron diffraction spectra.

The applied stress - elastic strain responses of austenite matrix and martensite volume areas were
determined for both axial and transverse directions relatively the load axis. An unusual phe-
nomenon is observed: nonlinear behaviour of martensite elastic response in the plastic region,
while the austenite elastic response remains linear throughout the measured stress range.

The effect of residual stress on observed diffraction elastic constants was described but found to
be small. The neutron diffraction elastic constants in both phases were calculated from the ex-
perimental data and found to be similar. Comparison with the results from mechanical testing
was made. The elastic constants generally increased with increasing fatigue level.

The deviatoric residual microstresses in all the samples were separated into austenite and
martensite contributions. The austenite microstress is tensile in the axial direction and compres-
sive in the transverse direction. At the same time the martensite microstresses in the same direc-
tions have the opposite sign with magnitudes larger than in the austenite matrix in accordance
with the smaller volume fraction. The large martensite microstress could lead to crack initiation
that it was found in sample B (90 % fracture fatigue level).

Inhomogeneous distributions of the loading stresses in the austenite and martensite phases were
observed during the tensile experiment. The applied stress does not induce additional mi-
crostresses in the austenite phase, however appreciable microstresses are induced in the marten-
site phase in the plastic region, providing the most likely mechanism for the unusual strain re-
sponse of the phases. It will require additional microstructural examination of damage, texture
and martensite grain shape before conclusions can be drawn as to the cause of these mi-
crostresses.

The single peak analysis of many reflections of the austenitic and martensitic phases shows that
the elastic strains of the both phases linearly vary with the anisotropy factor G up to a stress of
400 - 500 MPa indicating that the measured elastic strains are of type L

The modified Le Bail refinement accounting for the elastic anisotropy was used to calculate the
anisotropy strains. We have observed a qualitative similarity between the applied stress - anisot-
ropy strain response for austenite and martensite. The Le Bail predicted elastic anisotropy hkl-
strains of the both phases agree semi-quantitatively with results of single peak analysis of reflec-
tions.
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Appendix: Multiphase system under loading

At first we will discuss stresses only one phase in multiphase system therefore we omit the phase
indicated index. The total phase strain €4, along the neutron scattering vector Q is in terms of the
stresses in the sample coordinate system (Fig. 1A) [1A]:

_1+v
o =——— (04, cos® @+ 0,, sin 29+ 0, sin” @ — 0, ) sin” w +
(Al)
1+v
TO’ Tr(a )+ (0',3cos @+ 0, sin @) sin 2y

where the angles ¢ and y correspond the rotation of the laboratory and sample coordinate systems
with respect to each other.

In our measurements a sample had a cylindrical
X3 form and an applied stress was uniaxial along the
Q /:‘ sample axis which we are noted as the x; direction.
L

Assuming that all the sample coordinate system
v axes are principal we have obtained the axial, hoop
(tangential) and radial (normal) components of the
strain, respectively:
- T x 1+v 4
4 \// 2 & :TUII_ETr(O.ij)3
1+v v
X / &y = E On— ET"(O',;), (A2)
1+v v
€3 =T0'33 —ETr(o'U)
Fig. 1A. Sample coordinate system. Here o is the total phase stress tensor which in-

cludes the applied stress o

i » the phase residual
stresses 0'; and the phase microstresses o induced by the applied stress due to the elastic incom-
patibility (mismatch) of the phases

o7 =S,u0% (A3)
where S, is the fourth rank tensor which depends on the phase morphology. All components of the
tensor 0} can be expressed through the applied stress o, with different coefficients before it which
we are noted as B :

o] =B,0,. (A4)

u g

Separating ¢, on constituents we have

o 1+v 14
& =+ (1+ VB, ~VIr(BI+— =0}, - Tr (@),

£y UL[ ~v+(1+V)B,, ~VIr(B, )]+HTV0'22—%Tr(0'§) (AS)
1+v 14

,933=?L[—1/+(1+1/)B33 VIr(By)l+— £ UQ—ET’(O';)-
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During our neutron experiment we have measured the lattice parameters a;; along the axial di-
rection and a, along the transverse direction vs 6. First of three equations (AS) can be written in
the aji-presentation:

a,o 1+v 14
a, =%{1+ (1+Vv)B, - vrr(B,.j)]+[To,’§ —-ETr(O';)+ 1la,. (A6-1)

where a is the stress-free value of the lattice parameter. The lattice parameter a,, reflects a combi-
nation of the hoop and radial components of the strain. In order to not complicate a calculation we
ignore the hoop component. Then the transverse strain gains a sense of the normal component and
we can write:

a,o i+v v
ay = %[—v +(1+V)By, —VIT(B;)]+ [T 0'3’§ _-E—Tr(o-‘f ) +1]a,. (A6-2)

In Figs. 2A and 3A we have presented schematically both curves a; (L) and az3(oL).

a a an
an
a3z ><\
: as3
* ol T o, ° O
L L
Fig. 2A. o} > of. Fig. 3A. o}, < o5y.

From the linear fits of the experimental data it is possible to obtain the intercepts I;; and L3, the
slopes Si; and S33, the intersection o . To calculate these values we will be considered the single
and two phase systems, in turn.

The single phase system. In our case this corresponds to sample H - the noncycled pure austenite.
Then we obtain

ay =29 (1Y or Y op o8y 1l
E E1 . E (A7)
= “ﬂ‘;"L +[—EKU;§ —%Tr(o‘,.f )+1la,
The intercepts I;; and I, the slopes Si; and S33, the intersection o, are giving by
1+v 1%
I, = [—E of —ETr(O'if) +1]a,, (A8)
AtV v R
133—[TO'33—ETT(Uij)+1]ao, (A9)
a
S, = —é , (A10)
av
Sy = —%, (A11)
* 111 _ 133 R R
o, =———323 =—(g|—03,). Al2
L S“ _S33 ( 11 33) ( )
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Note that the ratio of slopes is
Ss
Sll
Thus, in the case of the single phase system Poisson’s ratio may be exactly determined from the
linear fits of the experimental curves a;i(cy) and asz3(6L) even if the residual stresses are present in
the sample. We introduce the “quasielastic” constants £, and E, in the axial and transverse direc-

_— (A13)

tion, respectively:

E, =% =(1+v)a), -VIr(c})+E,
" (A14)
133 1 R R
E, =2 =——[(+v)o5, ~VIr(o]) +E].
Sy 1% )

Only in the absence of the residual stresses the “quasielastic” constants turn into the true elastic
constants E and -E/v.

From the five equations (A8-A12) we have only four independent equations with the five un-
knowns E, v, ay, o}y and o7y, . To restore the residual stress tensor an accurate value of ap must be
available. In our case this is not so. This problem can be resolved [2A] if we are interesting only a
change of the residual stresses during any process, by separating the residual stress tensor into the

hydrostatic and deviatoric residual stress tensors 7 and 7, respectively:
o) =6,T +1; (A15)
where the hydrostatic stress is
7, =Tr(c})/3, (A16)
at that
Tr(z})=0. (A17)
As before ignoring the hoop component we have from Eq.(A17)
T =7 (A18)
Then we obtain from Eqgs.(A12), (A15) and (A18)
1 .
T, 1’: = "'—2— o,
) (A19)
R = 3 o,.

The two phase system. The intercepts I;; and Iz, the slopes S1; and S, the intersection o, for
each phase are giving by (note once more that we omit the phase indicated index)

I, =[1+T"o,'§ —%Tr(a,f)+l]ao, (A21)
Iy= [HTV ok —%Tr(a,.f )+1la,, (A22)
S, = %[H (1+V)B,, —VI7(B,)], (A23)
Sy = “—g[—v +(1+V)By, —VIT(B,)], (A24)
P /e N (A25)

1+ (B, - By,)



Note that the phase ratio of slopes is
Sy _—V+ (1+V)By, —=VIT(By) (A26)
Si 1+(1+v)B,, —VIr(B;)

and it depends only on the phase morphology. The “quasielastic* constants E,, and E, in the axial
and transverse direction, respectively, are:
I, (4w -vIr(c{)+E

E, == ,
“7S, 1+(1+V)B, —VIr(B,)

. . (A27)
E =1i= (I+v)oy —VIT(o;)+E
" 8y —v+(+V)B,—VIr(B,)

Separating the stress tensor O'if into the hydrostatic and deviatoric tensors and substituting the

results into Eqs.(A21-A25) we obtain
1-2v p 14+v 4

I, = (TTH +—E—-—T“ +1a,, (A28)
I, = (%15 +1+Tvr3'§ +Da,, (A29)
S, = %"[H (1+V)B,, —VIr(B,)l, (A30)
S, = %’[—v +(1+V)B,, —VIr(B,)], (A31)
o, = T (A32)

1+ (B, - By,)

From the five equations (A28-A32) we have only four independent equations with the six un-
knowns E, v, ag, 75, , 7, 73, assuming that B, By, and Tr(B;) can be calculated [3A] if the phase
morphology is known. Using Eq.(A17) we obtain

T =—T). (A33)
Then we obtain from Eqs.(A32-A33):
1 .
' =_EO-L[1+(B” -B,,)l,
| (A34)
75 =50'2[1+(B“ - Byl

The stress equilibrium into the two phase system. Using the results of [2A, 4A] we have the de-
viatoric values of the macrostress 7, and the microstress 7/ in each phase in terms of 7, :

T = (- " S,
Ul __ G R _ m R
7 =Cr =" f, (A35)
" ==("7; ="T)A- f)
where we have introduces the phase index “a” and ‘m’ of austenite and martensite, respectively. Note
that the macrostress 7,

ii

is the same in each phase.



Accordingly [4A] if gradients of the macrostresses on the sample surface are zero, equilibrium

relations require that the normal macrostress component

on=1Tn+Th =0

at all depths in the material. Then we can calculate the hydrostatic macrostress:

™ =-7.
Thus, the full residual macrostress tensor can be restored:
o =674 +1) .
Really, only the axial component is not zero:
ol =i+l =1} —1}.
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Tapan 10. B. u ap. E14-2002-161
HccnenoBatue ¢ MOMOLIBI0 HEHTPOHHOIO CTPECC-aHANH3a MEXaHHYECKHX

CBOMCTB 06pasLoB U3 MerTacTaGHIBHOI aycTenuTHo# cramu AISI 321,

MOABEPTHYTHIX HU3KOYACTOTHOMY YCTAIOCTHOMY LIMKIHPOBAHHIO,

B 3aBUCHMOCTH OT BHEIIHEH Harpy3Ku

Vnpyrue u nmnactH4ecKHe CBOMCTBA ayCTCHHTHOH MATPHULIBI M MapPTEHCHTHBIX BKJIIOYE-
HUH, HHIYIMPOBaHHBIX B HU3KOYITIEPOAHCTON METAaCTaGHIBHOM ayCTCHUTHOH HepXaBeloLlen
CTaNd BO BpeMs LMKIMYECKOTO HArpYXeHHs THIA «PacCTAXEHHE—CXKATHE», HCCIIENOBaHbI
B in situ HeWTPOH-IM(PaKIMOHHOM SKCIIEPUMEHTE C Harpy304YHOH MAlIHHOM HAa YCTaHOBKE
ENGIN Ha UMITYIIbCHOM HCTOYHHKe HedTpoHOoB ISIS. O6pa3ibl GbUTH H3TOTOBNEHBI U3 CTAIM
AISI 321, oroxxeHHoii npu Temneparype 1050 °C u 3akaneHHo# B Boge. Onu Obutn moa-
BEPrHYTHI HH3K04acToTHOMY (0,5 I'Y) ycTanocTHOMy LMKJIHPOBAHHIO C aMILTMTYIoH AedopMa-
wun 1 %. B pesynsrare 06paGoTKu HEHTPOH-IMGPAKIIHOHHBIX CIIEKTPOB METOaMHi PuTBenbaa
u Jle Baita mony4ens! Kpusbie neopMaliii ayCTEHHTHOM M MapTeHCHTHOM a3, U3 KOTOPBIX
onpezeseHsl YIIpyrue MoCTosHHbIe 06eux (a3 B 3aBUCHMOCTH OT CTENEHH ycTanocTH. Takxke
NpencTaBIeHbl pe3ynpTaTthl 06paGOTKH, YYHTHIBAIOLIEH YNpPYTyi0 aHH3OTPOIHMIO B IIOJMKDH-
CTAVIMYECKOM MaTepuaie nof Harpyskoil. OctarouHas aedopMalus B ayCTEHMTHOH MaTpHLe
onpeeiieHa ¢ MCIOIb30BAHHEM HELMKIIMPOBAaHHOro obpasiia Kak 3TanoHa. OcTaTouHble Ma-
KPOHANpPSIXEHHUs U CIBUTOBBIE KOMIIOHEHTHI ()a30BbIX OCTATOYHBIX MMKPOHATIPSXEHHI OIpe-
HeJieHbl B IIPEATIONIOXEHHH GIU30CTH YNIPYTHX CBOHCTB 06enx ¢as.

Pa6ora Bemonnena B JlaGopatopun HeiitponHo#t ¢u3uxu uMm. M. M. ®panka OMSU.

Coobuenne O6beMHEHHOr0 HHCTUTYTa SIEPHBIX HccnenoBasuii. Jy6GHa, 2002

Taran Yu. V. et al. E14-2002-161
Study of Mechanical Features for Low Cycle Fatigue Samples

of Metastable Austenitic Steel AISI 321

by Neutron Stress Analysis under Applied Load

The elastoplastic properties of the austenitic matrix and martensitic volume areas in-
duced during cyclic tensile-compressive loading of low carbon metastable austenitic stainless
steel were studied in an in situ neutron diffraction stress rig experiment on the ENGIN in-
strument at the ISIS pulsed neutron facility. Samples prepared from the steel AISI 321 an-
nealed at 1050 °C and quenched in water were subjected to low-cycle fatigue under to-
tal-strain control with an amplitude of 1 % at a frequency of 0.5 Hz. Subsequent applied
stress—elastic strain responses of the austenitic and martensitic phases were obtained by Ri-
etveld and Le Bail refinements of the neutron diffraction spectra, and were used to determine
the elastic constants of the phases as a function of fatigue level. The results of modified re-
finements accounting for the elastic anisotropy in polycrystalline materials under load are
also presented. The residual strains in the austenitic matrix were determined as a function
of fatigue cycling, using a noncycled sample as a reference sample. The residual
macrostresses and the deviatoric components of the phase residual microstresses were deter-
mined assuming that the elastic properties of both phases are similar.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2002
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