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I. INTRODUCTION

Since the discovery of the parton substructure of nucleons and its
interpretation within the constituent quark model, much effort has been spent
to explain the properties of these particles. The phenomenon of confinement,
i.e. the property of quarks to exist only in bound states as mesons and baryons
in all known systems, poses great difficulties for a describing theory. So far
the problem has been solved by introducing a color interaction that binds all
colored particles to “colorless” states.

However, it is believed and new experimental results (1) underline it, that
at very high temperatures egceeding 150 MeV, or densities higher than three
times nuclear matter density, a transition to deconfined quark matter can
occur. Besides of the heavy ion collisions performed in particle physics, the
existence of a deconfinement phase and its properties is of high importance
for the understanding of compact stars (2) in astrophysics. These, that are
popular as Neutron stars, imply core densities above three times the nuclear
saturation density (4) so that quark matter is expected to occur in their
interior (3) and several suggestions have been made in order to detect signals
of the deconfinement transition (5; 6).  Unfortunately, rigorous solutions
of the fundamental theory of color interactions (Quantumchromodynamics
(QCD)) for the EoS at finite baryon density could not be obtained yet,
even Lattice gauge theory simulations have serious problems in this domain
(7). To describe interacting quark matter it is therefore necessary to find
approximating models. The best studied one is the Nambu-Jona-Lasinio
(NJL) model that was first developed to describe the interaction of nucleons
(8) and has later been applied for modeling low-energy QCD (9-11) with
particular emphasis on the dynamical breaking of chiral symmetry and the
occurence of the pion as a quasi Goldstone boson. The application of the NJL
model for studies of quark matter thermodynamics is problematic since it has
no confinement and free quarks appear well below the chiral phase transition
" (12; 13). This contradicts to results from lattice gauge theory simulations of
QCD thermodynamics where the critical temperatures for deconfinement and
chiral restoration coincide. That can be helped by using a separable model
which can be treated similarly to the NJL model but includes a momentum
dependence for the interaction via formfactors. It has been shown (14) that



in the chiral limit the model has no free quarks below the chiral transition.

Looking again at the densities of compact star cores and comparing with
the results of NJL model calculations (13; 15) it seems reasonable to include
strange-flavor quarks in the model because the energy density is sufficiently
high for their creation in weak processes. Therefore, we extend in the present
work the separable model to the case of three quark flavors, assuming for
simplicity U(3) symmetry. We will calculate the partition function using the
method of bosonisation and applying the mean-field approximation. Finally
we will formulate the resulting thermodynamics of three-flavor quark matter
and obtain numerical results for the quark matter EoS and compact star
structure. ’

Il. THE SEPARABLE QUARK MODEL

The starting point of our approach is an effective chiral quark model action

with a four-fermion interaction in the current-current form
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where we restrict us here to the scalar current j#(k) = §(k)A.f(k)g(k) and the

+

pseudoscalar current jg (k) = §(k)ivsAaf(k)g(k) in Dirac space with ¢(k) and
G(k) being quark spinors and the formfactor f(k) accounts for the nonlocality
of the interaction. The action (1) is invariant under chiral rotations of the
quark fields and color correlations are neglected (global color model). The
generalization of previous models of this type (14; 16; 17) to the three-flavor
case is done by using the U(3) symmetry where ), are the Gell-Mann matrices
and Ao = \/21.

Furthermore we do not include one of the possible models to account for the
Ua(1) anomaly since, at least in the quark representation of the Di Vecchia
- Veneziano model (18), it can be shown that there is no contribution to
the quark thermodynamics on the mean-field level (19). For the quark mass



matrix in flavor space we use the notation
m= Z m fP fo (2)
f

where my are the current quark masses and the projectors Py on the flavor
eigenstate f = u, d, s are defined as
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Since the Matsubara frequencies in the T — 0 limit become quasicontinuous
variables, the summation over the fourth component k4 of the 4-momentum
has been replaced by the corresponding integration. According to the
Matsubara formalism the calculations are performed in Euclidean space rather
than in Minkowski space where we use y* = i7y°. The partition function in
Feynman’s path integral representation is given by

2[T,p) = / DgDq exp (s[q, - / %im“@) , (6)

where the constraint of baryon number conservation is realized by the diagonal
matrix of chemical potentials i (Lagrange multipliers) using the notation of
the hat symbol analogous to (2).

In order to perform the functional integrations over the quark fields § and
g we use the formalism of bosonisation (see (20) and references therein) which
is based on the Hubbard-Stratonovich transformation of the four-fermion
interaction terms employing the identity

e D0 [ [ S W) =
NI.I / do® exp [(Z;): o k’)] , (7)

for the scalar and a similar one for the pseudoscalar channel, where for the

phase space integral the abbreviation [, = [ (—z,‘ﬁ—’;; has been used and N is
a normalization factor. Now the generating functional is Gaussian in the



quark fields and can be evaluated. We arrive at the transformed generating

functional in terms of bosonic variables

2[T,4) = [[ Do"Dr® exp {Slo®, %)} (8)
with the action functional
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with analogous use of the already known hat symbol and the 4-vector I~cf =
(1_5, ks + iuf). In order to further evaluate the integral over the auxiliary
bosonic fields ¢, and 7, we expanded them around their mean values &, and
7 that minimize the action

Oa =0q + Ga(k)
Ta = Ta + Talk)

and neglect the fluctuations &, (k) and #4(k) in the following. The mean values
of the pseudoscalar field vanish for symmetry reasons (19). The indices DFC
refer to the determinant in Dirac-, flavor- and color- space. So we end up
with the mean-field action

SurlT, (ug) = 5 (-2 [ grctnBy + M1+ L) (1)

with the effective quark masses M; = M;(k) = ms+ A; f(k) and the number
of colors N,. The flavor dependent mass gaps Ay are defined by & = 37 Az P.

A. Quark matter thermodynamics in mean field approximation

In the mean field approximation, the grand canonical thermodynamical
potential is given by
AT, {u}) = 87 In{Z[T, {us}]/2[0,{0}]}
= 67 {SwrlT, {us}] — Surl0, {0}]} , (11)

Where the divergent vacuum contribution has been subtracted. In what
follows we consider the case T = 0 only. In order to interpret our result,



we want to represent it as a sum of three terms
d% k3 + M? A?
Q = - f f L
0.(m) = 3 ( 2N, [ Gy (k%m%) - SDO)
d k% + m3
~2N, - 12
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where M? = my+ A} f(k?) are the effective quark masses in the vacuum. The

second term on the r.h.s. of this equation is the renormalized thermodynamical
potential of an ideal fermion gas (21). The third term of Eq. (12) is
independent of T and p, i.e. it is a (thermodynamical) constant for the chosen
model. Refering to the MIT bag model we call this term the bag-constant
B. The remaining term includes the effects of quark interactions in the mean
field approximation and can be evaluated numerically.

All thermodynamical quantities can now be derived from Eq. (12). For
instance, pressure, density, energy density and the chiral condensate are given
by:

pV:—Q,n:—%,a=—p+un,<¢7qu>=aa—§zl. (13)

Still the quark mass gaps Ay have to be determined. This is done by solving

20 —

the gap equations which follow from the minimization conditions oa; =

The gap equations read

d% 2M;f(k)
(2m)* k2 + M3

Ay =4Do( 2N,) / (14)

As can be seen from (14), for the chiral U(3) quark model the three gap
equations for A,, Ay, A, are decoupled and can be solved separately.

IIl. RESULTS FOR THE GAUSSIAN FORMFACTOR

A. Parametrization of the model

In the nonlocal separable quark model described above the formfactor of
the interaction was not yet specified. In the following numerical investigations



—<au+dd>B| A | Dy | mg | my | AJ | A
{MeV] [MeV]{[GeV~2?]|[MeV]|[MeV] | [MeV]{[MeV]
230 659.2| 29.32 | 6.8 [143.5]549.9|767.8
235 697.6| 23.88 | 6.4 [136.1]497.0}719.3
240 736.5| 19.88 | 6.0 |129.5 | 453.8 |682.1
245 775.5| 16.85 | 5.6 |123.4 [ 419.7|653.1
250 814.9| 14.49 | 53 |118.0( 391.1|630.0
255 853.8| 12.66 | 5.0 [112.9) 368.7 |611.4
260 894.2| 11.11 | 4.7 [108.1 | 349.1|596.1

1

Table I Parameter sets for the' Gaussian separable model for different values of the
chiral condensate <u + dd>.

015 " . . T . ;
—_—p= 0
01 — - =300 MeV
\— p=333MeV |
- = p=400 MeV
§ 00sk —
g |-
=
e -
o0 .
peg 4
& ;
ol.
-0.05 4 -
o,.
-" N
- -
, I , | , I ,
01y 02 04 06 08
A[Gev]

Figure 1 Dependence of the thermodynamical potential on the light flavor gap
Ay = Ay = Ag (order parameter) for different values of the chemical potential,
Ag; =682 MeV.



we will employ a simple Gaussian
f(k) = exp(—k*/A?) , (15)

which has been used previously for the description of meson (22) and baryon
(23) properties in the vacuum as well as for those of deconfinement and mesons
at finite temperature (17; 24). A systematic extension to other choices of
formfactors can be found in (25; 26).

The Gaussian model has five free parameters to be defined: the coupling
constant Dy, the interaction range A, and the three current quark masses m,,,
mq, m,. Setting m, = mq =im, we restrict ourselves to four free parameters.
These are fixed by the three well known observables: pion mass m, = 140
MeV, kaon mass mg = 494 MeV and pion decay constant f, = 93 MeV.
The formulas for the meson masses and the decay constant are calculated
as approximations of the Bethe-Salpeter equation including the generalized
Goldberger-Treiman relation (26).

The fourth condition comes from values for the chiral condensate that are
conform with phenomenology. The resulting parametrisations of the quark
model are shown in Tab. L.

B. Thermodynamics for quark matter without S8 equilibrium

This case is relevant for systems which are considered for time scales
larger than the typical strong interaction time of about 1 fm/c but smaller
than the weak interaction time of several minutes, so that the presence of
leptons (electrons) does not influence on the composition of quark matter
and we can choose the chemical equilibrium with p, = pg = us = p. For
the numerical calculations we choose the parameter set for the light quark
condensate —(@u + dd)/® = 240 MeV which is a typical value known from
phenomenology. We consider the behavior of thermodynamical quantities at
T = 0 with respect to the chemical potential. As we set m, = my earlier there
is no difference between up- and down quarks and both are referred to as light
quarks. Fig. 1 visualizes the behavior of the thermodynamical potential as a
function of the light quark gap A, = A, = Ay for different values of the
chemical potential y. For p < p. = 333 MeV the argument and the value
of the global minimum is independent of x which corresponds to a vanishing
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Figure 2 Solutions of the gap equations that minimize the potential
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Figure 3 Pressure of the quark matter as a function of the chemical potential for
the separable model (solid line) compared to a three-flavor (dotted line) and a two-
flavor (dashed line) bag model. All models have the same critical chemical potential

pe = 333 MeV for (light) quark deconfinement.



quark density (confinement). At the critical value u = u, = 333 MeV a phase
transition occurs from the massive, confining phase to a deconfining phase
negligibly small mass gap. From the solution of the gap equation shown
in Fig. 2 one can see that the strange quark gap of A, = 682 MeV still
remains unchanged. Thus the strange quarks are confined until a higher
value of the chemical potential p., = 492 MeV is reached. This value is
much bigger than the current strange quark mass. In Fig. 2 we separate
by vertical lines the regions of full confinement, two-flavor deconfinement
and full deconfinement. Thus, in the present model, the onset of strange
quark deconfinement is inhibited. Moreover, the onset of a finite strange
quark density is not determined by a drop in the strange gap which remains
constant and even starts to rise for large u values. This result of the present
model drastically differs from those of bag models or NJL models. The reason
is the 4-momentum dependence of the dynamical quark mass function which
results in complex mass poles for the quark propagators and makes the naive
identification of the mass gap with a real mass pole impossible (26).

The effect on thermodynamical quantities can be understood if we look at
the pressure. In Fig. 3 we show for comparison the resulting equation of state
for the pressure of the present separable model together with a two-flavor
and a 3-flavor bag model. Both bag models are chosen such that the critical
chemical potential for the deconfinement coincides with that of the separable
model. The pressure of the present three-flavor separable model can be well
described by a two-flavor bag model with a bag constant B = 81.3 MeV /fm?
in the region of chemical potentials 333 MeV < p < 492 MeV where the third
flavor is still confined. For comparison, the 3 flavor bag model has a bag
constant B = 100.7 MeV/fm? and is considerably harder than the separable
one due to the additional relatively light strange quark flavor.

C. Inclusion of 8 equilibrium with electrons

Quark matter in S-equilibrium is to be supplemented with the two relations
for conservation of baryon charge and electric charge. In the deconfined phase
there are quarks and leptons (in our model case up, down, strange quarks and
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Figure 4 Composition of three-flavor quark matter in 8 equilibrium with electrons.
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electrons) with vanishing net electric charge

2 1
Ny — =(na+ns) —n.=0. (16)

Qq(p*, 1%, 1®) + Qu(p) = 3 3

Taking into account the energy balance in weak interactions

d o ute +7, (17)
s ute +7, (18)

and introducing the average quark chemical potential u = %(,uu + pa+ ps) we
can write the 8 equilibrium conditions as

2 1
uu=u—§ue, ua=us=u+§ue- (19)

Solving the equation of charge neutrality (16) one can find the chemical
potential of electrons as a function of y and using Egs. (19) the equation
of state can be given in terms of a single chemical potential x. In Fig. 4
we show the composition of the three-flavor quark matter for the Gaussian
separable model in the case of 8 equilibrium with electrons as a function of the
energy density. As for the case without 8 equilibrium we can define also in
Fig. 4 the regions of quark confinement (¢ < &, = 350 MeV/fm?) and three-
flavor deconfinement (¢ > &., = 930 MeV/fm?). In the region of two-flavor
deconfinement the concentrations of electrons, up- and down- quarks coincide
with those of the two-flavor bag model except for the relatively small energies
close to £, where the effect of a small dynamical quark mass leads to a density
dependence of the composition. In Fig. 5 we demonstrate the influence of
the 8 equilibrium on the equation of state. It can be seen that the difference
between pressures with and without § equilibrium is limited to the region of
intermediate densities, where the electron fraction reaches its maximum value
z, =~ 0.002.

IV. APPLICATIONS FOR COMPACT STARS

One of the main goals for studying the strange quark matter equation
of state is the possible application for compact stars. In particular, the
hypothesis that strange quark matter might be more stable than ordinary

nuclear matter (27) has lead to the investigation of possible consequences for
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properties of compact stars made thereof (28). Most of these applications
use the bag model equation of state where the result depends on the value
of the bag constant as a free parameter. Recently, first steps have been
made towards a description of strange quark matter within dynamical quark
models such as the NJL model (29), where the parameters are fixed from
hadron properties. The non-confining quark dynamics of this model, however,
leads to predictions for dynamical quark masses and critical parameters of the
chiral phase transition which differ from those of confining models (14; 30)
and might be quantitatively incorrect. Here we want to extend previous
studies of compact star properties with dynamically confining quark models
to the strange quark sector and find the characteristics of stable compact star
configurations with the equation of state derived above.

For the calculation of the self-bound configuration for the quark
matter with gravitational interaction one needs the condition of mechanical
equilibrium of the thermodynamical pressure with the gravitational force.
This condition is given by the Tolman-Oppenheimer-Volkoff-Equation

ap _
dr

m(r) + 4rGr3P(r)

—G(e(r) + P(r)) r(r — 2Gm(r))

(20)

and defines the profiles for all thermodynamical quantities in the case of
nonrotating spherically symmetric distributed matter configurations in general
relativity. In this equation m denotes the accumulated mass in the sphere with
radius r given by

m(r) =4r fors(r')rmdr . (21)

The gravitational constant is denoted by G. The radius R of the star is
defined by the condition that the pressure becomes zero on the surface of the
star P(R) = 0. The total mass of the star is M = m(R).

Each configuration has one independent parameter which could be chosen
to be £(0), the central energy density. In Fig. 6 we show the dependence of
the total mass of the configuration as a function of the central density and
the radius for the separable quark model and for the bag model in the cases
of two and three flavors respectively.

The rising branches of the mass-radius or mass-density relations correspond
to the families of stable compact stars. The maximum possible mass for the
separable model is 1.64 M, for the three-flavor and 1.71 M, for the two-flavor

12
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Figure 6 Stability for compact stars composed of quark matter.

case. The maximal central density is about 1350 MeV /fm?® which allows for
the three-flavor case to have strange quark matter in the core of the quark
star. The comparison with the corresponding bag model strange stars shows
that the latter are more compact, their maximum radius is about 8 km, and
less massive with a maximum mass of about 1.5 M. The maximum radius of
stars within the separable model is 11 km and thus exceeds the radii for both
two and three flavor bag model quark stars. The origin of this difference is
the behavior of the pressure in the low density region.

V. CONCLUSION

For neutron stars it is relevant to include the effects of strange flavor in a
model for quark matter. In the simplest case considering U(3) symmetry this
can be done without increasing the complexity of the generating functional.
We showed that in our separable model the gap equations decouple and can be
solved separately. The resulting thermodynamics can be solved numerically
and gives the equations of state for interacting quark matter. Unlike the
well known NJL model the separable model is able to express the effects of
confinement in the thermodynamical quantities. The new result obtained
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within the presentﬁ éﬁproach is the separation of the deconfinement of light
quark flavors at u. = 333 MeV from that of strange quarks which occurs
only at a higher chemical potential of y., = 492 MeV. A consequence for
the application of the EoS presented here in compact star calculations is that
strange quarks do occur only close to the maximum mass of 1.64 My, i.e. that
for masses below 1.62 M, only two-flavor quark matter can occur.
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I'oke X. u ap. E17-2002-191
VpaBHeHHE COCTOSAHHUS CTPAHHOH KBApKOBOM MaTepHM '
B cenapabesTbHONH MojenH

IpencraBieHa TepMOANHAMMKA HEJIOKAIBHOH KMPATbHOM KBapKOBOM MOJIENH C cemnapa-
GenbHBIM  4-pepMHOHHBIM  BlauMozeHcTBHEM g ciydas U(3) apoMaTHOH CHMMETpHM
B GYHKLIMOHATBHO-MHTETPAILHOM noxxone. YeThipe napameTpa MOAenH (PUKCHPYIOTCS C MO~
MOLUBI0 KMPATLHOTO KOHAEGHCATa W M3 CBOHCTB ICEBIOCKAIAPHBIX ME30HOB (Macca IHOHa,
Macca KaoHa, KOHCTaHTa MHOHHOTro pacnafa). O6CyXIeHO YPaBHCHHE COCTOSAHHs!, ONHCHIBAIO-
Iee KOH(aHMEHT KBapKOB (Hy/leBOe JaBficHHe KBAPKOBOWX MaTepHH) HHXE KPUTHYECKOIO
XMMHYECKOrO MoTeHuuana u . =333 MaB. HoBmiii pesynbTar HaCTOSILErO MOAXOAA 3aK/II0Ya-
€TCs B TOM, YTO OeKOH(AUHMEHT CTPAaHHOTO KBapKa He CBA3aH C NeKOH(aiHMEHTOM JIETKHX
KBADKOB M HACTYNIaeT TONBKO mNpH OGOMbIIOM 3HAYEHHH XHMHYECKOro IOTeHUHala
B¢ s =492 MaB. Pe3ynbTaTsl 1aHHONO YpaBHEHHS COCTOSIHUS CPaBHHBAIOTCS C YPaBHEHHEM CO-
CTOSIHHS MOMEJH MelIKa ¢ ABYMs M TpeMs apoOMaTaMH KBapKoB, B KOTOPOM (pa3oBblii epexon
B BaKyyM IIPOHCXOJHUT C HYJEBbIM JaBJICHHEM IIPH 3HAYECHHH XHMMYECKOIrO MOTCHUMANa L.
B mpeanonoxeHuH Hanuung [-paBHOBECHS KBApPKOB C 3/IEKTPOHAMH HM3Y4EHBI COCTOSHHS
KBApKOBOi MaTepun B o6ILeil TeOpUH OTHOCHTENBHOCTH M MIOKA3aHO, 4TO B KOH(HIypalHsax
¢ MaccaMH, GJIH3KMMH K MaKCHMAalIbHOHM Macce CTaGUIBHBIX KOHGUrypauuii M =162+ 1,64 Mo,
MOXeT BO3HHKHYTh CTPaHHas KBapKOBas MaTepus.

Pa6ora semonHena B JlaGoparopum teoperuyeckoit ¢msuku um. H. H. Boromo6osa
OMAN.

Ipenpunt OGbeaAMHEHHOTO MHCTHTYTA SAEPHBIX HccnenoBanuii. TyGHa, 2002

IlepeBon aBTOpOB

Gocke Chr. et al. E17-2002-191
Equation of State for Strange Quark Matter in a Separable Model

We present the thermodynamics of a nonlocal chiral quark model with a separable
4-fermion interaction in case of U (3) flavor symmetry within a functional integral approach.
The four free parameters of the model are fixed by the chiral condensate,
and by the pseudoscalar meson properties (pion mass, kaon mass, pion decay constant). We
discuss the T =0 equation of state (EoS) which describes quark confinement (zero quark mat-
ter pressure) below the critical chemical potential p . =333 MeV. The new result of the pre-
sent approach is that the strange quark deconfinement is separated from the light quark one
and occurs only at a higher chemical potential of p . ;=492 MeV. We compare the resulting
EoS to bag model ones for two and three quark flavors, which have the phase transition
to the vacuum with zero pressure also at p .. We study quark matter stars in general relativity
theory assuming B-equilibrium with electrons and show that for configurations with masses
close to the maximum of stability at M =162+164 M, strange quark matter can occur.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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