E6-2002-201

K. Ya. Gromov, S. A. Kudrya*, Yu. V. Norseev, Zh. K. Samatov, V. A. Sergienko*, V. I. Fominykh, V. G. Chumin

ON THE ²²¹Rn → ²²¹Fr DECAY SCHEME

Submitted to «Известия РАН, серия физическая»

^{*}St. Petersburg State University, Russia

Experimental information on the structure of the 221 Fr levels can be gained from investigation of either the 225 Ac ($T_{1/2}=10$ d) α -decay or the 221 Rn ($T_{1/2}=25$ min.) β -decay. In the latter case there arise difficulties with preparing 221 Rn sources: radon is a noble gas and the only way to produce sufficiently strong 221 Rn sources is via the reaction of spallation of thorium by protons yielding not only 221 Rn but also other radon isotopes. The most comprehensive investigation of 221 Rn sources was performed by Vylov et al. [1]. Data on the γ -spectrum, conversion electron spectrum, and α -spectrum were gained. A decay scheme was proposed. However, coincidence experiments could not be carried out at that time.

In [2] the α -decay 225 Ac \rightarrow 221 Fr was investigated. Qualitative analysis was given to $(\alpha-\gamma)$ -coincidences to prove belonging of γ -transitions to the 225 Ac -decay. The 225 Ac -decay scheme was proposed. The results of the investigation also allow 221 Rn decay scheme proposed in [1] to be somewhat refined relying on, first, the proof [2] of existence of the relevant levels in 221 Fr and, secondly, the relative intensities of γ -rays at the deexcitation of these levels. The 221 Rn \rightarrow 221 Fr decay scheme proposed by us on the basis of an analysis like that is displayed in Fig. 1. It shows all γ -transitions found in [2] at de-excitation of a level. Transitions observed in [1] are marked with an asterisk. A total intensity, including conversion, is given for each γ -transition. Intensities of γ -transitions that were not observed in [1] are calculated with relative intensities of γ -rays from each level given in [2].

Vylov et al. [1] assume that the 221 Rn decay may excite the 393.2-keV level in 221 Fr , which is then de-excited by the 119.9, 168.9, and 197.8-keV transitions. Seven transition from this level are found in the 225 Ac decay (see Fig. 1). Intensity ratios of the 168.9-keV and 197.8-keV γ -rays in [1] and [2] coincide within the error. Therefore, we believe that the 393.2-keV level in 221 Fr is excited at the 221 Rn decay. Intensities of the 114, 139.6, 243.2, 284.5, and 354.9-keV γ -rays are lower than the intensity of the 197.8-keV γ -transition, which explains their absence in [1]. Placing the 119.9-keV γ -transition between the 393.9 and 273.5-keV levels [1] is in conflict with the results [2]. The 273.5-keV level is introduced in [2] on the basis of coincidence of 236-keV γ -rays with $E_{\alpha} = 5563$ keV α -particles. No 273.5-keV γ -rays were observed in [2, 3]. Therefore we believe that

273.5-keV γ -rays in [1] are due to presence of other isotopes in the 221 Rn source. Thus, we think that in [1] they did not have grounds for introducing the 273.5-keV level at the 221 Rn decay and thus for placing the 119.9-keV γ -transition between the 393.9 and 273.5-keV levels.

Intensity ratios of γ -rays from de-excitation of the 294.6, 279.2, 253.5, 234.5, 224.6, 195.8, and 150 keV in [1] and [2] coincide within the tolerable error. Therefore, we believe that excitation of the above levels at the 221 Rn decay is justified. The 221 Fr level at 288.1 keV excited at the 225 Ac α -decay is not found in [1] at the 221 Rn decay.

Gromov et al. [4] and Ardisson et al. [3] assumed excitation of the 221 Fr level at 145.9 keV at the 225 Ac decay. Investigation of the (α - γ)-coincidences [2] confirm existence of a 221 Fr level at this energy. The spectrum of α -particles coinciding with the 119.9-keV γ -rays is displayed in Fig. 2. Peaks with $E_{\alpha} = (5686 \pm 15), (5609 \pm 15), \text{ and } (5443 \pm 15) \text{ keV}$ are observed in this spectrum. Energies of these lines coincide with energies of α -particles populating levels at 145.9, 224.6, and 393.2 keV. Coincidences with $E_{\alpha} = (5609 \pm 15)$ keV are due to the fact that the 145.9-keV level is populated by 78.8-keV γ -rays at de-excitation of the 224.6-keV level more intensely than by the α -decay to the 145.9-keV level. The area of the E_{α} = (5443 ± 15) keV peak is small, about 2.5% area of all peaks in Fig. 2. Coincidences of 119.9-keV γ -quanta with (5443 \pm 15)-keV α -particles is due to population of the 145.9-keV level by a cascade of the 78.8 and 169.2-keV γ -transitions from the 393.2-keV level through the 224.6-keV level. The intensity ratio of the 119.9 and 46.2-keV transitions is 17 in [2]; that is why 46.2-keV γ -rays were not observed in [1]. Thus, we consider introduction of the 145.9-keV level in the ²²¹Rn decay scheme to be justified.

Intensity ratios of γ -rays at de-excitation of levels at energies ranging from 25.9 to 108.3 keV in [1] agree with the data in [2] within the tolerable error, i.e., all these levels are excited at the 221 Rn decay and there is no contradiction in their properties.

Intensities of β^- -transitions to 221 Fr level are found from the intensities of γ -transitions at the 221 Rn decay and reduced probabilities lgft of these β^- -transitions are calculated [5]. The value Q_{β^-} (221 Rn) = 1130(100) keV [6] was used in this calculation. The values of I_{β^-} and lgft are shown in Fig. 1.

Levels at 108.3 keV $(7/2)^-$ - and 294.6 keV $(9/2)^+$ are most intensely populated at the ²²¹Rn decay, the respective intensities being $I_{\beta^-} = 10.3(34)$ and 25(2). To the 108.3-keV level there proceeds a once-forbidden

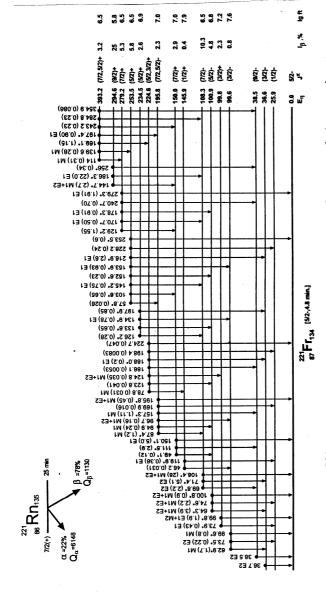


Fig. 1. $^{221}\mathrm{Rn}$ decay scheme. Above γ -transitions there are their energies, total (including conversion) intensities (in parentheses), and experimental multipolarity data. An asterisk (*) marks γ -transitions observed in [1]. Next to the level energies are spins and parities [2], intensities and reduced eta-decay probabilities.

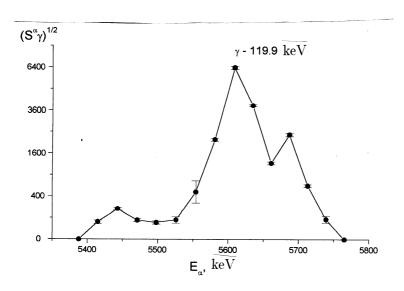


Fig. 2. Intensity of 119.9-keV γ -ray in $(\alpha-\gamma)$ -coincidence experiment as a function of the α -particle energy.

 β^- -transition. A β^- -transition to the 294.6-keV level is allowed. The 221 Rn ground state spin is 7/2 [7]. Reduced probabilities for transitions to these levels allows a conclusion that the 221 Rn ground state parity is most probably positive. The reduced probabilities for transitions to other 221 Fr levels are not in contradiction with the assumption of the positive parity of the 221 Rn ground state.

Thus, in addition to those in [1], the 393.2-keV $(7/2, 5/2)^+$ and 145.9-keV $(1/2)^+$ levels are introduced in the ²²¹Fr level scheme. The assumption [1] of excitation of the 273.5-keV level at the ²²¹Rn decay is shown to contradict the results of investigation of $(\alpha - \gamma)$ - coincidences at the ²²⁵Ac decay [2]. The ²²¹Rn ground state parity appears to be positive.

Reference

- Ts. Vylov, N.A. Golovkov, B.S. Dzhelepov et al. // Izv. AN SSSR, ser.fiz. 1977. V.41. P.1634.
- S.A. Kudrya, V.M. Gorozhankin, K.Ya. Gromov et al. //Izv. RAN, ser.fiz. 2003. V.67. Nom. 1
- 3. G. Ardisson, R.K. Sheline et al. Phys. Rev. C, //V.62, 064306. 2000.
- 4. K.Ya. Gromov, M.Ya. Kuznetsova, Yu.V. Norseev et al. // Izv. RAN, ser.fiz. 1994. V.58. P.35.
- 5. B.S. Dzhelepov, L.N. Zyryanova, Yu.P. Suslov. // Beta-processy. Nauka. M.-L. 1972.
- G. Audi, O. Bersillou, J. Blachot et al.// Nucl. Phys. A624. 1977.
 P.1
- 7. AIP Conf. Proceedings 164, 5-th International Conference, "Nuclei far from stability", Rosseau Lake, Ontario, Canada. 1987. P.126.

E6-2002-201

Громов К. Я. и др. О схеме распада 221 Rn → 221 Fr

Сравниваются результаты исследований β -распада ²²¹Rn и α -распада ²²⁵Ac. Показано, что при распаде ²²¹Rn возбуждаются уровни ²²¹Fr с энергиями 145,9 и 393,2 кэВ. Определены интенсивности и приведенные вероятности β -распада на уровни ²²¹Fr. Сделано заключение о положительной четности основного состояния ²²¹Rn.

Работа выполнена в Лаборатории ядерных проблем им. В. П. Джелепова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2002

Gromov K. Ya. et al. On the 221 Rn \rightarrow 221 Fr Decay Scheme E6-2002-201

The results of investigating the 221 Rn β^- -decay and the 225 Ac α -decay are compared. It is shown that 221 Fr levels at 145.9 and 393.2 keV are excited at the 221 Rn decay. Intensities and reduced probabilities of the β^- -decay to the 221 Fr levels are determined. A conclusion is drawn that the parity of the 221 Rn ground state is positive.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2002

Макет Т. Е. Попеко

Подписано в печать 04.10.2002. Формат $60 \times 90/16$. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,5. Уч.-изд. л. 0,57. Тираж 310 экз. Заказ № 53547.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6.