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1 Introduction

A lot of experimental and theoretical works were dedicated to investi-
gation of Zn impurity influence on properties of cuprate compounds [1}-
[20]. A special attention attracted recent scanning tunneling microscope
(STM) study of spatial variation of the local density of states (LDOS)
around the nonmagnetic impurity (Zn,Ni) in a cuprate superconductor,
as BiySroCaCuz0s44 (Bi-2212) compound [5]-[8]. There was shown that
nonmagnetic impurities cause appearance of localized low-energy excita-
tions in their close vicinity.

Such impressive experimental results inspired many theoretical inves-
tigations [9] - [16]. In spite of the important findings concerning space
variation of the LDOS around an impurity and implicit information about
corresponding superconducting condensate symmetry, one should stress
that the proposed models were of a phenomenological character. In par-
ticular, in [9, 10, 15] the *7-matrix’ formalism for the Green functions
(GF) was used with an impurity scattering potential modeled by a phe-
nomenological 2 x 2 matrix. Off-diagonal terms in the matrix was given
by a local supression of the gap function at the impurity site [10, 11]. The
Bogoliubov - de Gennes (BdG) formalism was considered for a model im-
purity potential [14] where only s-wave scattering was taken into account
and solution was obtained by a variational ansatz for the u(r) and v(r)
parameters. In [17] spatial dependence of the spin-dependent part of
the scattering potential K (r) was modeled in accordance with nuclear
magnetic resonance experimental results.

In our recent papers [3, 4] a microscopic model of the CuO; plane
with Zn impurities has been proposed based on band structure calcula-
tions for corresponding compounds using the original p-d model for the
CuQ, plane. Using cell-perturbation scheme and Schrieffer-Wolf trans-
formation, we derived an effective one-band t-J model in terms of the
Hubbard operators [4]. That Hamiltonian was further used to study s-,
p- and d- wave contributions to the density of state (DOS) in the normal
phase for the CuO, plane with Zn impurities [4].

Main goal of the present paper is to generalize our calculations for a
superconducting phase of the proposed model. Applying the projection
technique in the equation of motion method for the normal and anoma-
lous GF, we obtain the corresponding 7-scattering matrix. It contains
frequency dependent diagonal and off-diagonal parts of the scattering



potential. Finally, we calculate s-, p- and d-wave contributions to the
on-site LDOS D(w,r) which is proportional to the differential conduc-
tivity dI/dV (1],{11] measured in STM experiments [5]-[8].

The paper is organized as follow. In the next, Section 2, we introduce
the model Hamiltonian and derive equations for the Green functions. In
Sec. 3 we present the results: symmetry analysis (Sec. 3.1), density of
electronic states (Sec. 3.2) and local density of electronic states (Sec. 3.3)
for s-, p- and d-wave symmetry. Conclusions are given in the Section 4.

2 Green functions

In order to investigate influence of Zn impurity on the superconducting
state, we consider an effective ¢-J model for the CuQO, plane with Zn
impurities [3, 4]

H =H,_;+ Vimp = Ho + Viac + Vimp- (1)

The Hamiltonian H_ for the host lattice with a vacancy at the impurity
site 4 = 0 can be written as the ¢t-J model for an ideal lattice Hy:

1

H0=Ht_J=€EX£70+t Z XSOX?U+4

i0 1#7,0

J ¥ (XPPXPe - X XD),

i#j,0
(2)
with the vacancy contribution V,,. given by

1 P _
Viac = —€ Y X§°—t Z(X3°X2”+H.c.)—ZJ S (XX -X° X% +H.c.).
3)

Here € = ¢4 — p is the energy of the hole, ¢;; = ¢ is the hopping parameter
for the nearest neighbors (n.n.) sites ¢, j in a square lattice and u is the
chemical potential. The summations in Eq.(3) are performed over the
Cu-sites of the host square lattice, where the Zn-impurity is at the i =0
site and a = 1(az), 2(ay), 3(—az), 4(—a,) denoting its n.n. sites. In what
follows we neglect in (1) the impurity potential Vin, at the ¢ = 0 site
since its energy is much higher than the chemical potential x [3] and
impurity levels rest unoccupied in the low energy transitions.

To study the superconducting phase within the proposed model Hamil-
tonian (1-3) we introduce the following matrix Green function (GF) in



the Nambu representation
Gijo(t — 1) = (Lo (8); U5, (¢)) = —i8(t — ) ({ T (1), LT, (¢)})-

with Nambu operators in terms of the Hubbard operators [21]-[25]

\i’ig = < §§: ) , ‘i’:;_ = (le’o X?&) ,

where Zubarev’s notation [26] for the GF is used. Corresponding time-
Fouriér component can be written in the following way

: _ | Gelw) G (w)
Gijo(w) = ( gijla(w) gg%(w) ) . (4)

where GIL (w) = ((X7|X7°)), is the normal and G2, = ((X7°|X?°)).
is the anomalous components of GF. The GF components (4) obey the
following symmetry relations G2 = —Gi2; G2 (-w) = G}2(w). The
equation of motion for the Nambu operator U,, can be written in the -
form

i—Vio = Zip = Wi, H = S (B + V) ¥ip + 227,

[

where linear in ¥,, part define the frequency matrix E for the ideal
lattice and static perturbation V. The irreducible part ng’ caused by
the inelastic scattering processes is defined by the following orthogonality
condition ({Z" \il;-t, ) = 0. It results in the following definitions of the

g ?

frequency matrix
> 2 2 A E A
Byo = ({10er L 150000 = ( R4 )
ijo
and the perturbation potential

Vz‘ja _ ({[@im%ac],\il;;})@a(j)_l = ( };+ _$ ) 5)

where ({§,, ¥1}) = Q,(0) = ( O i ) with @, (i) = (XM +
X77). Since we consider the paramagnetic state, the correlation function
Q,(1) = Q; =1 — n;/2 depends only on the average number of the holes
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n; at lattice site 7. In what follows we neglect here lattice site dependence
of n; and introduce @Q; =Q =1 - n/2.

Introducing the normalized GF, G,,,, = ng , we obtain the fol-
lowing equation:

~

wGije (W) = 570 + 3 (Bits + Vito) Gljo (W),
i

where 7 is the unit matrix. From this matrix equation we get the fol-
lowing linear system

wGij(w) = 0y + Z(Eil + Vi) Gij(w) + Z(A + ¢7) Fijo(w),  (6)

Fijo(w Z(A 77)Gij(w) Z(Eu +Va)Fljo(w), (7

for the normal Gj; = G}, and the anomalous Fijo =G,
GF.

The diagonal components of the frequency matrix can be written in
the following way

components of

EY = E;; = & + 6; 140,

ijo
where the on-site energy € = €+ d¢, and the effective hopping energy £ in

the generalised mean field approximation (GMFA) are renormalized due
to the kinematic and exchange interactions [23],[4]

e = —2"5 SO /21 = e 2) + (SSiva = Q) — 5 SAXKEL),

= —[ ((1 = n;/2)(1 — niva/2)) + (SiSita)] — (XUO i+ta

Off—dlagonal components of the frequency matrix can be written as fol-
lows 7

o _ s 2t 300 305
Aij = 6,']'6 ;(XO X?+a> + 6j,i+aQ

where a = (*ay, +a,). In what follows we consider only d-wave sym-
metry of the gap Af; and therefore disregard the first term in Eq. (8),
which is zero for this symmetry, ie. ¥,(X°X27 ) = 0. Diagonal and
off-diagonal components of the perturbation matrix have respectively the
following nonzero elements

Vij = VoobioBjo + Vor0io Y 6ja + Vor8jo O Gia + Vi1 D 6iabja,  (9)
a a a

(X7 X, (8)



with %0 = —E, %1 = —t~, ‘/11 = —(1/4)(56, and
5 = —0i,080 — 0;0A%, — 8ia0ja(2t/ ) AG,, (10)

i T

where A§, = AF, (86,20, — Ja,2a,) and A§; = (J/Q)(X"X?). Solving the
system of equations (6), (7) for the GF as the N x N matrices in the cell
sites representation, one obtains the following equation

(Wl — (E+V) = (A" + ¢7)wl + E+ V] (A% +¢°) )G =1, (11)

where I is the N x N unit matrix. For the ideal lattice (V = 0), we
introduce the corresponding zero-order GF in the superconducting state

G® = {wl - E - A% (wI + E)71A°*} L, (12)
Then one can write the equation (11) in the following form
G =G"+ GV + ®)G, (13)

where

1
wlI+E+V

g o g (8 o 1 o
& = (A +¢°) (A% +¢°)F = AT ———AT  (14)

After simple algebraic transformations, one obtains the following formal
solution of the Dyson equation (13)

1 .
— GO — (0 OM 0
C=r—ewryC ¢ TEME,
where we introduced the scattering matrix
1
M= o) — . 1
VO r—eyTe) (13)

In the linear in ¢ approximation, one obtains
®~—{AG(~w)¢°t + He} — A GY(—w) V GY(—w)A,  (16)

where the zero-order GF for the host lattice in the normal state is given

by
1

wl -E’

Ghw) =



3 Results and discussion

3.1 Symmetry analysis

Scattering of quasiparticle electron excitations on an impurity poten-
tial results in the additional contribution §G to zero-order GF. In ac-
cordance with the irreducible representations (IR) of the corresponding
lattice group transformations, 6G can be separated in different s-, p- and
d-parts [27], i.e.

G=G"+ Z 0G,, 17)
p=s,p,d
where
6G, = GCT,M,T}G° (18)
and
M, =T MT, = (V, +®,)[1 - GOV, + ®,)] 7%, (19)

with V, = T#VT,, G° = T#GT,, and

®, =T,)0T, = —-{AZG‘,’,,,‘(—w)qSZ’L+H.c.}—AZG‘,’W(—w)V#G?,,#(—-w)AZ*.
(20)
Explicit forms of the T}, and the perturbation V' and ¢ matrices are given
in the Appendix (A1),(A2).
The s-, p- and d-symmetry block-diagonal parts of the perturbation
matrices V), and ¢, (9), (10) are given by the equations

_ _v.a _ [ Voo 2Vn
‘/s_‘/lla ‘/P_V'IITOa ‘/;i— ( 2‘/01 ‘/11 )) (21)
¢s =0, ¢ = —(2t/ )AL 73, da=0 (22)

Applying the unitary transformations (A1) on the G°, A, and G® matri-
ces, one obtains respectively the following equations

G =G —2GY, + G = 7, (23)
Gg = 7p7A-0, Yo = G(I)I - G(1)31 (24)
0 0
GO _ dOO dOl _ GOO 2G01 (25)
~ \dw dn a 0 0
2G01 Ea Gal’



Ay =0, A, =0, AS=2A%# (26)

G?z,s = GY' — 2GY§ + G13 = Yn,s (27)

Gg;,p = fYn,p’fb) Tnp = Gl G13 , (28)
N God'  2Go

Gha= (B B - L e
10 11 GO K za GO,n

where 7,, 73 are Pauli matrices.

3.2 Density of states

Impurity scattering causes the additional contribution to DOS, which
can be separated in s-, p- and d-wave parts according to the symmetry
27, 4]

bg=> 6gy=—-= EIm{JG,‘(w +ig)}=—= Z ———arg{D,‘(w)}

where
L=1-G\(V,+®,) (30)

is symmetrized denominator of the scattering matrix M (15) and D,, is
the determinant of I,,.

According to the Eqs. (20) and (26), one obtains that ®; = 0 and
I, = D, = 1 — ~,Vi;, where 1, is defined in (23) in terms of the GF G°
(12) for the superconducting phase and Vi; is given in Egs. (9),(10).

In accordance with the Eqgs. (20), (A1) one obtains that ®, is 2 x 2
zero matrix, so that Eq. (30) gives the following expression for the p-wave
part of the perturbation matrix ’denominator’

I, =1 — V)7 with D,=det{l,} =(1- fyqu)z,

where 7, is given by (24).
For d-wave symmetry Egs.(19),(20), (21),(25) lead to the following
solution for the & matrix

(I)ll (I>12
Q)d: ( q)gl @%2)7



where its matrix elements are given in the Appendix, (A3)-(A6). Intro-
ducing the following denotations

Voo = Voo + @g's 2Viy = 2Vor + @7,

2Vip = 2V + @35 V) = Vi + 87, (31)

d-wave part of the perturbation matrix denominator (30) can be written
as follows

; B I
I;=1-G4(Va+ @) = 2 12 |
d 1d
where the corresponding matrix elements are
I ~ GooVoo — 4G Vio,  I3” = 2Goo Vg, + 2Go, Vi,

I3 = 2G} Voo"‘ZZG tor I3 = 114Gy Vg, — ZG i

Its determinant can be written in the following way

Dy =I712 - 1212 =
1 - V5oGoo — Vi Z Go1 — 4V, Gy, — 4VioGy, + det{V;} det{G3},
a

where the matrix elements V; = V; + ®; and GY are given in Egs.(31)
and (24), respectively.

3.3 Local density of states |

As a consequence of the impurity scattering there appears the follow-
ing additional contribution to the on-site local density of state (LDOS),
which can be also separated in s-, p- and d-wave parts

§D® (w, i) = ——Im{&G(") (w+ig)}, (32)
where symmetrized GF matrix is given in Eqgs.(17)-(19).

For s-wave part, one have M; = V4;/I; and I, = 1 — ~,V}; and 7, is
given in Eq.(23) and

§GY) = 2 1)+ G3,GY: M,

aa'

»Jklr—l

{Z( 1)°G? } . (3



In particular, for the impurity site ¢ = 0 and ¢ = a; = +(a; £ a,) - the
next nearest neighbour to the impurity site, one has ¥,(—1)*G>, = 0
which causes zero contribution to LDOS of s-wave part at sites 0 and as
for any w, i.e.

6D®)(w,0) = 6D¥(w,az) = 0.

For sites ¢ = 1(az), 2 (ay), one has nonzero LDOS (32) where
s 1
5G51) = Z{ngz - Ggl - G?3}2M3,
with
§D)(w, £a,) = §D®)(w, %a,) = ———Im {667 (w +ie)} .

For p-wave, one has the following corresponding equations

Vi1
M,=—22 3 34
P -V (34
and Via
5GP = —L__ 116 — GY)? + (G — G
T V2 51(Gh = Gia)* + (G — G3)°"}

In particular, for the site ¢ = 0, one has G}, = G}, = G, = G), and
AGE, = 0, which causes zero contribution to LDOS of p-wave part at 0
site for any w value, i.e. §D®(w,0) =

For sites 1 = 1, 2, one has

_Vu 1

5G(P) —
1- ’7pV11

(G G(1)3)27
and for site 1 = a; = £(a, + a,) one has

sG)  — Vi

0 0 2
azaz 1-— ,val (Gazl Ga23) )

which leads to corresponding nonzero values for LDOS for p-wave part
at the sites 1,2 and a,

§D®)(w, +a,) = 6DP)(w, +a,) = —;1T-Im {66 (w +ie) }



and

§DP)(w, ay) = ——Im {6G9),,(w +ie)},
respectively. For d-wave, one has
711 A7i2
)1 1 Md Md
My=Vilg'=2-| |, (35)
d M&?l M32
where
My ~ dooVgs — 2don Vg Voo + 2don Vg, Vo + 4du Vo, Vi,

Mg? = 2V(:odooVa% + don Vit Voo + 2Vg1 — (2V5)?dio — 2du Vg Vi,
MP = 2Vw 2doo Vi Voo ~ (2Vi) *don + d1o Vi1 Vo + 2du1 Vi1 Vi,
= 2VgodioVi3 + Viy — 21V Vi, — dun (V)2
and

1 - 1, - 1~
0Gi) = 5 (M (G8) + 5 (M + MG 3 G+ M S GG,

where

Y Go.Gas =Y (Ga:)? +2G% Y Go; + 2G5,(GS; + GY) + 2G3,GY,.

aa' a

In partlcular for the impurity site 7 = 0 one has 3, G% = 4G}, and
S ear G3.G%0 = 18(GY;)?, so that one obtains

. - 9 .
5648 = & B (M3 (Goo)” + 2(M3" + MI)GGhy + 5 M (GR)*),

with 1
§DD(w,0) = —;Im{&Gg‘f,) (w +ie)}.

For the ¢ = 1, 2 sites, one has
5G(d)

1 - 1, -1y -
E{Mél(G81)2+5(M32+M31)G‘81(G?1+2G‘1’2+G1 )+ M32ZG Gan}s

aa’

10



with
DD (w, +a,) = 6DD(w, +a,) = —%Im {6G(d)(w + zs)} .

And for the ¢ = a5, one has

Z Gaag - la,2 + G3l12)

Z Gaza a’az - ( 102)2 + 4(G3a2) + 4G1a2G3a2 + 4G2a2G3a27

which are contained in the following expression

5G(d) = {Mt}l(GOaz) +(M;2+M31)G8a2(G(1)a2 30,2 + ZGaza a’ag ’

a2a2
aa’

with
DD (w, ap) = ——Im{5G(d) (w+1€)}.

az2a2

3.4 Host lattice Green functions

To study DOS and LDOS one needs the zero-order GF for normal phase
G?]’-"(w) and for superconducting phase G;(w). The normal phase GF

G} (w) obeys the following equations [4]

3 Gl (w) = WG (w), Goft(w) = wGHH(w) — 1

where
1

Goo(w =y Zq:
where the quasiparticle spectrum in normal phase is given by e(q) =
v(q), v(a) = (1/2)(cosg, + cosg,), where the energy is measured in
units of the half bandwidth w = 4¢ and we take € = 0.
For the superconducting phase, the zero-order normal GF G?j (w) can
be calculated using the Fouriér transformation

_ _]1\7 (@) cosali =) (36)

1



The corresponding host lattice GF in {q}-representation can be written
as follows

w+e(q) _ 2 1 9 1
w?~FE%q) “w- E,(q)

G’(q,w) =

where we introduce the quasiparticle energy E,(q) = 1/e(q)? + A,(q)?
and the Bogoliubov parameters

IR

The superconducting gap A,(q) obeys the following equation

As(q) = -]%,-Xq: J(k-q) ZAI,;;((qq)) tanh (Egéfl)) :

with J(q) = 4Jv(q). Solution of the gap equation for the d-wave pairing
is analyzed in a number of papers, see e.g., [21]-[24]. '

4 Conclusions

In the present paper we considered the microscopical model for the Zn-
doped CuO, plane [3] and generalize the calculations of the electron
spectrum [4] to the superconducting phase. Applying the projection tech-
nique in the equation of motion method for the normal and anomalous
Green functions (GF), we obtained the corresponding 7 -scattering ma-
trix. Asscattering potential, in addition to the diagonal V elements of the
perturbation matrix (5),(9), it contains also the w-dependent part ®(w),
given by Eq.(16), which has the off-diagonal element of the perturbation
matrix (5),(10). This w-dependent perturbation was not considered in
earlier investigations [9]-[17].

Performing the symmetry analysis, in Section 4 we fully took into
account the d-symmetry of the wave functions at the Cu-sites of the host
lattice, that resulted in special forms for the u = (s, p, d) symmetry of the
wave functions [4], partial scattering potentials V,,, ¢, (21)(22), scattering
matrix M, (33),(34),(35) and @, (A4)-(A7) and GF (23)-(29). In such a
way, we derived the analytical expressions for the total (DOS) and local
(LDOS) density of states, separated to s-, p- and d-wave contributions.

12



The w-dependences of these expressions are given through zero-order
GF in the superconducting phase and for d-symmetry also for the GF
in the normal phase. It can be calculated using the Fourier transforma-
tion (36) and known corresponding Fouriér transforms G°(q,w) in (37).
Numerical calculation can be greatly simplified by using corresponding
analytical forms for Green functions in terms of the elliptic integrals [4]
and it will be given elsewhere. One could expect that for different w
values (or bias voltage in the experiments with scanning tuneling micro-
scop w = eV), different partial contributions of s-, p-, d-symmetry will
dominate in measured LDOS and DOS. Such separate contributions also
were not considered in [9]-[17]. Finally, we stress that our calculation
were performed without fitting parameters, contrary to phenomenologi-
cal approaches in [9]-[17].
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Appendix

Rectangular T,,-matrices are columns of the corresponding unitary matrix
(see [4] for details), i.e. have the following form

0 0 O 1 0
1 1 0 0 1/2
T,= 3| -1 |; = %] 0 1]|; Tu=| 0 1/2
1 -1 0 0 1/2
-1 0 -1 0 1/2

(A1)
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The nonzero submatrix of the perturbation V' and ¢ matrices have the
following form

Voo Vo Voo Vo Viu 0 -1 1 -11
Voo Vi O 0 0 -1 -6 0 00
V=|Va 0 Vi 0 o0/|,¢6=4A5] 1 06 00|,
Vo O 0 i 0 -1 00 -6 0
Vo O 0 0 Vi 1 00 086

(A2)
where 0 = 2t/J and the matrix elements V;; are given in the Eq. (9).
The elements of the d-wave part of the w-dependent perturbation are

as follows
@' = —4A3,{8GG (—w)

xVor 3 Gl (—w) + 4[Go (—w)PVao + Vu [3_ G (—w)I?},  (44)

B = —8AZ {VooGoi" (—w) G (—w) + 4V [Goi* (—w)]? + Ven Gog (—w)
x 3 GoH(~w) + Vi Y GO (—w) G (—w)}, (A5)
B% = —16¢01 201G (—w)—8A2 {VaoGol (—w)Gog (—w) +Vor Gog (—w) x
3 GUM(~w) + AV [Gof (—w)]? + Vi Gof* (—w) Y- G (—w)},  (A6)

®F = —4A3, {8VnGop' (—w)Gof (~w)+Vao[Gop' (—w)*+4Vau[Gof (—w)*}-
(A7)
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Kosauesuu XK., IInakuna H. M., Xaiin P. E17-2002-203
Pe3oHaHCHBIE COCTOAHHMSA B BHICOKOTEMIIEPATyPHBIX
CBEPXNPOBOIHHKAX C NMPUMECIMH

IpemtoxeHa MUKPOCKONHYECKasd TEOPUS PE3OHAHCHBIX COCTOSIHHMI IS ILTOC-
koctd CuO; ¢ nmpuMecaMu Zn B cBepxnposoasilei casze B pamMkax 3ceKTHBHOM
t-J-Mopenu. B mpeanoxeHHoil MonenH, BHIBENCHHOH U3 p-d-MoAenH, NpUMeCH
Zn paccMaTpHBAIOTCS KaK BaKaHCHH d-COCTOAHUIi Ha y3nax Cu. B cepxmposons-
meil ¢asze JOMOMHUTENIBHO K CTATHYECKOMY BO3MYIIEHHIO 32 CYET BaKaHCHH MO-
ABNIAEeTCd IUHAMHYECKHU BKNall, B pe3yabTaTe 4ero MaTpHlia BO3MYILEHHH CTaHO-
BUTCH 4acTOTHO-3aBUCHMOIi. Ha ocHoBe Merona ¢yHkuuit I'puHa ot oneparopos
Xa60apna BBIYMCIIEHA JIOKAIbHAS IUVIOTHOCTh 3IEKTPOHHBIX COCTOSHHI, HMEIOLIHX
d-, p- U S-CHMMETPHIO.

Pa6orta BbimonHeHa B JlaGoparopun teoperuyeckoii ¢usuxku uM. H. H. Boro-
mo6osa OUAU.

Hpenpunt O6beAMHEHHONO HHCTHTYTa SAEPHBIX HccnenoBaHuiH. dy6Ha, 2002

Kovacevié¢ Z., Plakida N. M., Hayn R. E17-2002-203
Resonant States in High-Temperature Superconductors
with Impurities

A microscopic theory of resonant states for the Zn-doped CuO, plane in super-
conducting phase is formulated within the effective #-J model. In the model de-
rived from the original p-d model Zn impurities are considered as vacancies
for the d states on Cu sites. In the superconducting phase in addition to the local
static perturbation induced by the vacancy a dynamical perturbation appears which
results in frequency-dependent perturbation matrix. By employing the T-matrix
formalism for the Green functions in terms of the Hubbard operators the local den-
sity of electronic states with d-, p- and s-symmetry is calculated.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2002
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