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1 Introduction

The existing algorithms for the numerical integration of real valued
functions (see, e.g., [1] for details on the available algorithms and a
recent review of numerical quadrature) are tailored for specific classes
of integrands, with limited possibilities to solve simultaneously families
of integrals falling in different classes.

In the attempt to get numerical solution of integrals over ranges of
the first Brillouin zone in the two-band singlet-hole Hubbard model of
cuprate superconductors [2]-[4], the reliability of the existing numerical
algorithms was found to be exceedingly poor to allow straightforward
physical insight. The integrals entering this model involve a variable
parameter (the hole or electron doping in the high-T, superconductor)
the variation of which results in substantial modification of the behaviour
of the involved functions over the Brillouin zone. Thus, in order to
make possible the exploration of the predictions of the physical model
on the doping, which is fundamental for the acceptance of the proposed
mechanism as responsible of the superconducting pairing in cuprates,
ways of improving the reliability of the decisions within the automatic
adaptive quadrature had to be sought.

To our best knowledge, the U(1) x SU(2) gauge theory model of
underdoped cuprate superconductors [5, 6] met similar difficulties.

We may therefore assume that a study able to increase the reliability
of the parametric integrals in connection with the solution of physical
models is of interest for a large category of users of quadrature algorithms.
A recent study [7] addressed a similar problem. However, the proposed
solution was found to be too restrictive. In the present paper, we address
the reliability problem of the local error estimate e associated to a
quadrature sum ¢ on a much general basis.

Theére are two main reasons why the computed value of e cannot be
acceptable: either the occurrence of an insufficiently resolved integrand
profile at the quadrature knots, or the occurrence of difficult isolated
points (integrable singularities, turning points, jumps) which result in
slow convergence. The identification of both kinds of difficulties can be
explicitly done by means of a number of consistency criteria which check
whether the integrand profile satisfies or not requirements following
from the general definition of the Riemann integral, the fundamental
properties of the basis polynomials spanning the approximating linear



space where the interpolatory polynomial of the quadrature rule is
defined, the properties of the continuous monotonic functions, and the
properties of continuous functions at or near their extremal points.

The occurrence of an insufficiently resolved integrand profile is always
superseded under repeated subdivision of the integration range, which
eventually results in the fulfillment of all the reliability constraints.
The identification of a difficult integrand point may originate both in
the occurrence of an insufficiently resolved integrand profile or of a
genuine difficult integrand point. In the first case, the diagnostics will
no more recover such a point under further subrange subdivision. In
the latter case, the diagnostics will remain the same under repeated
subrange subdivisions. Therefore, in all the alternatives, the diagnostics
stability under iteration is achieved. This is the point where the general
control routine of an automatic quadrature rule can take safe decisions
concerning the best way to continue the solution or to decide that the
integral was solved within the input accuracy specifications.

Since the automatic decision processes are all based on diagnostics
obtained from the analysis of integrand profiles defined locally, we have
to consider first the problem of local quadrature rules and to establish
diagnostics over a single integration range. Thus, while we refer in the
sequel to local couples {g, e} only, the validation algorithm is formulated
such as to be directly applicable to automatic quadrature problems.

The basic definitions and notations of the quantities of interest are
given in section 2. The main new results derived within this investigation
are summarized in section 3. To assess their practical importance, in
section 4 we discuss numerical evidence obtained from the solution of
integrals by Gauss-Kronrod 10-21 quadrature rules [8] with improved
error estimate [7]. Concluding comments are given in section 5.

2 Definitions and notations

Let I denote the actual value of the integral to be solved numerically,
IEI[f]:/abg(x)f(x)dx, —o<a<b< oo (1)

Here, the weight function g(z) is an analytically integrable function

which absorbs a difficult part of the integrand (e.g., an oscillatory or a
singular factor). In the absence of such factors, g(z) = 1. The integrand
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function f(z) is assumed to be continuous almost everywhere on [a, b],
such that (1) exists and is finite.

A local quadrature rule produces as solution of (1) a couple {g, e},
where the quadrature sum q yields an approximate value of the integral I,
while the local error estimate e > 0 provides information on the accuracy
of q. If e > |eg|, where

eg=1I-¢ (2)
is the actual error associated to g, then the couple {g, e} is reliable,
otherwise it is unreliable and the numerical solution fails.

To get a (2n + 1)-knot interpolatory quadrature sum gs,, the inte-
grand f(z) is replaced by an interpolatory polynomial of 2n-th degree,

Pn(@) = 3 e pi (), 3)
k=0

where {px(z)} is the set of orthogonal polynomials of degree at most
2n spanning the approximating space of Pa,(z). The coefficients oy are
obtained from the set of conditions of interpolation

Pon(:) = f(z4), (4)

at a set of 2n + 1 abscissas inside [a,b], a < zp < z1 < -+ < T3, < b.
Although most of the following discussion holds true for general

quadrature sums, we restrict it to symmetric 2n + 1-knot quadrature

sums. In this case, the interpolation abscissas inside [a, b] are given by

zi=c+hy; c=(b+a)/2; h=(b-0a)/2; i=-n,—n+1,---,n, (5)

where the reduced quadrature knots y; are defined on [—1, 1], such that
O=yo<y1<y2<---<yn <1, whiley ;=—-y;,i=1,---,n

The local quadrature sum ¢, is then expressed as a linear combi-
nation of the integrand values at the quadrature knots,

n

@on = Qn[f] = Z w; f(3) (6)
i=—n
with the quadrature weights showing the symmetry property w_; = w;.
The information provided by the 2n + 1 integrand values at the
quadrature knots, {f(z;)|¢ = —n, - - -,n}, is insufficient for the derivation
of an expression for the error estimate ey, associated to go,.
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Kronrod [9] derived an error estimate (called in what follows genuine
Gauss-Kronrod kind of error estimate) from an upper bound of the right
hand side of

€ggk = ‘Q2n - ‘Inl ) (7)
where gy, is the quadrature sum (6), while g, is a lower degree quadrature
sum derived over the subset of (5),

Tonty < Toppyt2 <" < Tpeq2 < Ty, (8)

where = 1 for an open quadrature sum (typically, the Gauss-Kronrod
(GK) quadrature where the spanning basis {px(z)} in (4) is given by
Legendre polynomials and their orthogonal Kronrod extensions), while
v = 0 for a closed quadrature sum (typically, the Clenshaw-Curtis (CC)
quadrature where the spanning basis {px(z)} in (4) is given by Chebyshev
polynomials).

In the QUADPACK package [8], which has been incorporated in most
major program libraries, while maintaining unchanged the above idea in
the case of the CC quadrature, the GK error estimate was reformulated -
as follows. Let f denote the computed value of the average of f(z) over
(@, b] at the knots (5), 3

F=am/(b—a), (9)
and let A = Qfm“ f-f l] denote the computed value of the integral

Plf@) - f |dz, which measures the area covered by the deviations of
f(z) around f.
The local QUADPACK error estimate (QDP) is then given by

eqap = A x min{(200e,4c/A)/?, 1}. (10)

The values (7) and (10) are taken for error estimates provided they
do not fall below the attainable accuracy limit imposed by the relative
machine precision. The latter threshold is defined as the product

E€roff = T060Q2n[|f|]- (11)

Here 7 is an empirical multiplicative factor (following QUADPACK, we have
chosen 75 = 50) and ¢, denotes the relative machine accuracy.

Using the error estimates (7), (10) and (11), we get the improved
error estimate [7]

€on = MAX [€roff, MiN(€ggk, €gdp)] - (12)
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For the case study integrals considered below, the value I of (1) is
computed from the existing analytical expressions, such that the exact
error eg (2) of the quadrature sum g¢o, can be defined.

In the graphical presentation of the quadrature errors, the moduli of
the relative errors (simply called relative errors in the sequel) are useful,

ca = lea/I|, a€ {2n,Q}. (13)

The derivation of the local error estimate ey, within a subroutine
which implements a quadrature rule uses information inferred from the
estimated relative errors,

Pon = |e2n/q2n‘ . (14)

3 Well-conditioned integrand structures

The set of integrand values at the quadrature knots (5) define the
integrand profile, the study of which provides the necessary information
concerning the output reliability. The derivation of criteria concerning
its well-conditioning uses several kinds of consistency arguments which
are discussed in separate subsections.

3.1 Insensitivity of the integral sums to discretizat-
ion details

The very definition of the integral sums in a Riemann integral assumes
the fulfillment of the following two features:

(i) The norm of the discretization defined over the integration domain
ténds to zero.

(ii) The integral sum is insensitive to the the addition or removal of a
single discretization abscissa within the defined partition.

These features have straightforward consequences in the numerical
quadrature:

(I) A denser discretization of a well-defined integrand f(z) secures
better accuracy of the quadrature sums than a sparser one.



(II) The removal of a single knot value from the sampling of a well-
defined integrand f(z) does not result in substantial modification
of the integrand profile.

The quantity
doy = 1/n (15)

defines the average density of the quadrature knot distribution over the
fundamental range [—1,1].

For the GK and CC quadrature rules mentioned above, the fundamental
range [—1, 1] consists of a sparser knot region centered around the origin
and two denser knot regions located towards the range ends.

A direct consequence of the well-conditioning criterion (I) is the
following enhancement of the opposite of (II):

(ITa) If the sensitivity criterion (II) is infringed over a region of dense
discretization, then the integrand profile is ill-conditioned.

3.2 Features of the basis orthogonal polynomials

Since the equations (5) perform the mapping of the original interval [a, b]
onto the reduced interval [—1, 1] over which the orthogonal polynomials
are usually defined, in this subsection we refer to this reduced interval
and use the notation pi(y) for the basis polynomials. All the properties
discussed below hold true over arbitrary interval lengths, hence reference
to the expression (3) of the interpolatory polynomial spanned by the basis
orthogonal polynomials does not give rise to any confusion.

Within the set of basis polynomials spanning the interpolatory
polynomial (3), the following properties hold true:

(ili) po(y) = const.

(iv) The set of the successive extremal values of a polynomial pi(y) of
degree k > 1 defines an alternating sequence over [—1,1].

(v) The locations of the extremal values of the polynomials pi(y)
and pg4+1(y) are interlaced over the open range y € (—1,1).

There are several straightforward consequences of these features upon
the numerical quadrature rules:



(111)

(IV)

(IVa)

3.3

The average value f, Eq. (9), of the integrand f(z), which defines
its zeroth order moment over the sampling (5), serves as reference
value with respect to which the oscillations of the integral profile
are counted.

The deviations from f of the successive extremal values within
the quadrature knot sampling of a well-conditioned integrand f(z)
define an alternating sequence.

If the sampling of a well-conditioned integrand f(z) defined at
the abscissas of a symmetric quadrature rule is folded around the
centre c of the integration domain [a, b, then the well-conditioning
property (IV) still holds true.

Over any subdomain length within the regions of dense knot
discretizations inside [a,b], the ratio between the number of
successive extremal values of the integrand profile over the fine
sampling (5) and the corresponding number defined over the coarse

sampling (8) cannot be larger than two. .

Over the sparser region around the center, the above ratio is to be
counted for the fine sampling value decreased by one.

Well-conditioning over monotonic subranges

Within any monotonicity subrange of a smooth first order differentiable
function f(x), the first order derivative smoothly vary from point to point.

Within numerical quadrature, the fulfillment of this property for
well-defined integrands can be checked by making use of first order
divided differences. If the integrand profile is monotonic over |[a, b,
or monotonicity subranges can be defined which extend over three
successive knots at least, then a smoothly varying profile will by
characterized by the absence of jumps:

(VI)

Over monotonicity ranges, the ratio of successive first order divided
differences cannot exceed a smoothness threshold which depends on
the relative accuracy requsted at the input.

If one of the knots involved in the divided differences is an
extremal point, or it coincides with one of the end points a or b
of the integration domain, then this smoothness condition is to
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be checked only one-directionally, skipping the case of vanishingly
small divided difference at the extremal point.

3.4 Integrand variations around its isolated extremal
points

The lateral first order derivatives of a smooth first order differentiable
function vanish at an extremal point, while the curvature of a second
order differentiable function (which is given by the second order deriv-
ative) keeps constant sign over a nonvanishing neighbourhood of the
extremum.

Within the discrete mesh defined by the quadrature knots, inquieries
about these properties can be made only at isolated extremal points of
the integrand.

As it concerns the first order derivatives, the following consistency
criterion establishes the normal relationship which should exist within
the data:

(VII) Let us assume that an extremal point isolated to the right/left of
a well-conditioned integrand was identified over a sufficiently well
resolved integrand profile.

Then the approximation of the lateral derivative as defined from
data over the fine sampling should be closer to zero as compared to
the value estimated from data defined over a coarse sampling with
respect to the extremum location.

The following consistency criterion establishes the sign constancy of
the curvature of a well-conditioned smooth integrand:

(VIII) Let us assume that an extremal point isolated to the right/left of
a-well-conditioned integrand was identified over a sufficiently well
resolved integrand profile.

Then the approximation of the second order derivative as defined
from data over the fine sampling centered at the extremum should
have the same sign as compared to the value estimated from data
involving the reference extremum as a lateral point to the left /right.

The technical implementation of these consistency requirements
needs the definition of the isolated extremal points of the mesh at the
quadrature knots.



The following definition allows the analysis of lateral both first and
second order derivatives:

Definition # 1: An extremal point is isolated to the right if it
is separated from the previous extremum to the left by at least one
intermediate quadrature knot and it is separated from the next extremum
to the right by at least n;,, intermediate quadrature knots.

A similar definition holds for an extremal point which is isolated to
the left.

The next definition applies only to lateral limits of the first order
derivatives:

Definition # 2: An extremal point is isolated to the right/left
provided it is separated from the next extremum to the right/left by
at least n;,, intermediate quadrature knots.

For practical purposes, a value n;s, = 2 was chosen for the estimate
of the first order derivatives, while a value n;;,, = 4 was chosen for the
estimate of second order derivatives. The latter value is necessary to
ensure the absence of the inflection point from the region of analysis
with a sufficiently high probability. '

To illustrate how such an analysis works, consider for instance the
case of an extremal point isolated to the right in the frame of the first
definition.

Let the reference extremum be denoted z,. Then the available
information range over which the analysis may be done extends over the
set of abscissas {z_1, %o, %1, 22} at which the integrand function takes
respectively the values {f_1, fo, 1, f2}

To estimate the right lateral approximation of the first order
derivative, we define the interpolatory polynomial of the third degree
fitting these four data. This yields the following result:

h
11 pine(@0) = diy — = [ho1df] + haodi] . (16)

.
2,~1

Here, h;; = z; — 2, d§}} = (fi — fj)/hi;j denote the first order divided

differences at z; and z;, while dgzi = (d% —~d%) /h2, and df)_l =

(d% - d(()f)_l) /hi1,—1 denote specific second order divided differences.
On the other hand, the coarse sampling around z; yields:

fr,',coarse (1170) = dgg . (17)



The criterion (VII) then simply requires that the approximations (16)
and (17) should Sa’tiSfy |f1{,fine(z0)! < lfr,,coarse(zo)l'

Over the same set of data, the condition for the constancy of the sign
of the second order derivative writes

(53 — df) () — df2,) > 0. (18)

3.5 Stability of the diagnostics under subrange sub-
division

The existence and finiteness of the Riemann integral (1) guarantees that,

for a well-defined integrand, the discretization process will reach, after

a finite number of subrange subdivisions, a stable profile configuration,

the refinement of which will result in unessential modifications only.

Under the occurrence of isolated difficult points of the integrand, the
discretization process will resolve the profile over the well-conditioned
subranges within a finite number of subrange subdivisions, and then it
will mainly create a dense mesh around the difficult points. In this case,
the automatic control subroutine will safely decide upon the activation
of a specific convergence acceleration algorithm, such that a reliable
numerical solution will be available in the end.

The achievement of the stability of the iterative diagnostics emerging
from the study of the conditioning properties of the integrand profiles
over subranges is the fundamental feature which secures the efficiency of
the procedure proposed in this investigation. We formalize it in the final
reliability criterion, enabling safe automatic control decisions:

(IX) The iterative integrand profile analyses result in stable diagnostics
after a finite number of subrange subdivisions.

The occurrence of identical reliability diagnostics under successive
subrange subdivisions enables the general control routine to make
safe choices among the implemented alternatives.

4 Numerical results

To illustrate the present analysis, numerical data have been obtained
from Gauss-Kronrod 10-21 (GK 10-21) quadrature rule solutions of the
families of elementary integrals considered in ref. [7].
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First, we considered the two families involving monotonic integrands:

e Integrals over [0,1] of the terms of the fundamental power series,
n
z", . .
/x”dw —— ., n=01,---,1023. (19)
0 n+1

e Integration of a constant integrand (which simulates a centrifugal
potential at large =) over ranges of variable length,

/obxz%{-ldx = arctan(b), b=2", n=0,1,---,611. (20)

For these two families of integrals, the conclusions drawn from the

numerical outputs can be summarized as follows:

e The present analysis correctly identified the upper threshold n.,
which separates the outputs carrying at least two most significant
figures from the spurious outputs: 7. = 160 in the case of the first
family of integrals, and n., = 8 in the case of the second family.
These figures are to be contrasted with the answers n., = 59 and
ner = 4 respectively yielded by the error estimates proposed in [7].

e For the higher order values of the parameters n entering the two
families of integrals, the present analysis predicted the occurrence
of jumps, somewhere inside the sparser discretization region.

Fig. 1 illustrates the behaviour of the error estimates with the power n
in the case of the family of integrals (19).

Second, we considered two families of integrals showing nonmonotonic
(oscillatory) behaviour, written in algebraically equivalent forms:

©y [ 11 5-29) cos(wg) dp = (21)
(2 [ " 96777 cosh(pz) cos(wz) d = (22)

= 2¢7"™[psinh(p) cos(w) + w cosh(p) sin(w)]/(w? + p?) ;(23)
s1) [ 11 =29 gin(wz) do = (24)
s2) | " 9677 sinh(pz) sin(w) dz = (25)

= 2e7P*[p cosh(p) sin(w) — wsinh(p) cos(w)]/(w? + p?) . (26)

11
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Fig. 1: Relative errors of the GK 10-21 outputs for the family of
integrals (19) at exponents n < 200.

The parameter w was chosen to run over the set of values
wy, = nw /60, n € {0,6000}, (27)

while constant values p = 1 and £y = —1 have been chosen on the ground
that they are typical for the description of the behaviour of the numerical
results.

The analysis of the families of integrals (21-25) shows that the
identification of a well-conditioned nonmonotonic integrand profile needs
testing the complete set of consistency criteria established in Sec. 3.
Therefore, the analysis is long. However, it is straightforward and can be
easily implemented in a computer program.

The main reward of the detection of a reliable output is the
identification of its occurrence at a much earlier stage than within the
standard qudrature programs. Fig. 2 provides supplementary support to
the results reported in Fig 1.
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Fig. 2: Outputs of the GK 10-21 quadrature rule for the family of
integrals (21) at p = 1. The left arrow points to the frequency parameter
value up to which the improved error estimator proposed in ref. [7] shows
that the output is reliable. The right arrow points to the result of the

present analysis.

Fig. 3, presents integrand profiles for the four integrals (21-22)
and (24-25) at an arbitrarily chosen large value w = (16127 /60).

The analysis of the profile established their ill-conditionings due to
the infringement of the following criteria:

e The integral (C1): Criterion (IV) (four times, marked by solid line
arrows) and criterion (II) (at knot label +5).

e The integral (C2): Criterion (II) (five times, -8, -7, -6, +6, and +7)
and criterion (VIII) (-4 (right) and +4 (left)).

e The integral (S1): Criterion (II), once, in a dense region (+7) and
criterion (VIII) [-3 (right) and +3 (left)].

It is perhaps important to observe that the three apparent
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Fig. 3: Ill-conditioned integrand features in the family of integrals (21—
25) at w = 1612.

infringements of criterion (VII) [-7 (left), -3 (right), and 3 (left)]
which are suggested by the crudest approximations of the first
order derivatives over the fine sampling are denied by the more
accurate formula (16).

e The integral (S2): Criterion (IV) (three times, marked by solid line
arrows), criterion (II) (+6, +7, +8), criterion (VII) [+5 (left)], and
ctiterion (VIIH) [-5 (right)].

5 Comments and conclusions
The present investigation started from the need to get reliable numerical
solutions of some difficult integrals occurring in theoretical models

devoted to the study of the mechanism of the high-T, superconductivity
in cuprates [2]-[6]. An important prerequisite to be satisfied by the
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automatic quadrature algorithm was the substantial increase of the
reliability of the local error estimates.

We have found that the study of the conditioning of the integrand
profile enables the formulation of validation criteria (consistency
conditions for a well-conditioned profile) able to identify insufficient
profile resolution or the occurrence of isolated difficult points of the
integrand. The analysis is simple, it is intuitive, it is easily implemented
in a computer program and it is easily done.

An important supplementary bonus offered by this analysis was the
identification of output reliability ranges which are substantially larger
as compared to those obtained within the usual implementations of
quadrature routines. The unsatisfactory features noticed in the validation
criteria developed in ref. [7] have been fully removed.

The subroutine doing the profile analysis described in this paper is
documented and described in a separate document [10].

We conclude this study with the observation that the validation
analysis described in the present paper is not intended to replace the
existing quadrature algorithms. When the estimated accuracy exceeds
a critical threshold (tentatively set to six decimal figures), then the
present procedure is skipped altoghether. However, if this threshold
is not attained, it is automatically activated by the general control
routine. Its results prove to be invaluable in the analysis of complex
integrands, where it is able to discover the overwhelming fraction of
peculiar integrand profiles at early stages of the analysis.
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YCi0BUS DOCTOBEPHOCTH AJITOPUTMOB BHIYMCIIEHHS KBaIpaTyp

Ins moNyveHus OOCTOBEPHBIX PE3YNbTATOB NPH BBIYHMCIICHHH KBaIpaTyp KpH-
THYECKOE 3HAYCHHE HUMEET BBLIBJICHHE IUIOXO Pa3pelleHHBIX WM HEPETYISPHBIX
CTPYKTYp B IOABIHTErpaIbHbIX yHKUUAX. ChopMyTHpPOBaHbl KPHTEPHH, Hallarae-
Mbie Ha NMPOGWIk MOABIHTETPATLHOH (YHKLUHMH B y¥IaX KBaIpaTyPHBIX CYMM, BBbI-
TIOJIHEHHE KOTOPBIX MO3BOJISET MOBBICHTh HAalleXXHOCTh BLIYMCIIEHHH O 3HAYEHHUH,
OG/IM3KMX K TEOpETHYECKH moCTHXHMOMY npeaeny 100 %, mpH oaHOBPEMEHHOM
YIAYYLIEHHH OLUEHKH norpemHocty. [IpeanaraeMslil MeTon npexcrasnser Haubomns-
LIKMA UHTEPEC MPH BHIYHCICHUH WHTETPANoB, 3aBUCAILIMX OT apaMeTpoB, B CIIOX-
HBIX (PH3MYECKHX MOJENSX.

Pa6ora BoinonHeHa B Jlaboparopun Teopernydeckoit ¢usuku uMm. H. H. Boro-
mobosa OHUAU.
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Reliability Conditions in Quadrature Algorithms

The detection of insufficiently resolved or ill-conditioned integrand structures
are critical for the reliability of the quadrature rule outputs. We show that the relia-
bility can be raised towards the theoretical 100 % rate of success, under error esti-
mate sharpening, provided the study of the profile of the integrand at the quadra-
ture knots shows the fulfillment of several validation criteria. The proposed proce-
dure is of the highest interest for the solution of parametric integrals arising
in complex physical models.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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