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1 Introduction

During the past decade the growing interest to the process of lepton pair
production in the strong Coulomb fields appeared. This is connected mainly
with beginning of the operation of the relativistic heavy ion collider RHIC
(Lorentz factor v = Z = 108) and the new collider LHC (y = 3000) which
will operate in the nearest future. At such energies the lepton pair yield
becomes huge (according to [1, 2]), so that a detail analysis of the process

A+B—>A+B+et+e” 1)

accounting the Coulomb corrections (CC) is required. Such work has been
done during last years and a lot of papers are devoted to this subject [3,
4, 5, 6, 7, 8, 11, 12, 13]. Nevertheless, the problem turn out to be more
complex than it seems from the first glance. We want only to notice the
exciting result obtained in the papers [3, 4, 7]: the Coulomb corrections to
the process (1) enter the amplitude of this process in such a way that its
cross section is determined solely by the lowest (Born) term. At present we
understand that this result is the incorrect application of crossing symmetry
property which, as it is known long ago (see, e.g., [14]), is valid only on the
Born level. As an obvious example of the crossing symmetry violation we
want to cite the process of lepton pair photoproduction on the nuclei and its
counterpart, the bremsstrahlung in lepton—nucleus scattering. Amplitudes of
both processes are determined by Coulomb phase which is infrared stable in
the case of pair photoproduction whereas it is infrared divergent in the case
of bremsstrahlung and this difference cannot be adjust by trivial crossing
change of variables. Taking into account the importance of the problem
and permanent interest to it from the scientific society, we calculated the
full amplitude for the process (2) accounting all possible photon exchanges
among the colliding relativistic particles. Comparing it with the amplitude of
the process (1) we had shown that the crossing symmetry property becomes
invalid whereas one takes into account the final state interaction of the lepton
pair with the Coulomb field of ions.

2 The Born amplitude of the process 3 — 3

Let us construct the amplitude of the process 3 — 3 represented in Fig. 1 (a,
b)
A1(p1) + Az(p2) + C(ps) — Ai(py) + A2(py) + C(p5). (2)

We consider the kinematics when all the energy invariants which determined
the process (2) are large, compared with the masses of involved particles and
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the transfer momenta

s=(; +P2)2, 51 = (1 +P3)2, sy = (p3 +P2)2,
G=m-r) @=0@-m)? &=@s-n) (3)
pi=p"=m} pi=py’=m} pi=pi’=m?

S>> 81 ~S> —¢ ~ —gs ~ —g2.

For the Born amplitude of the process (2) one can write

4(p3)Opou(p3) g g*° )

M) = —i(410)2 2y Zotu(p; )y, u(p1 (P ) 1o (pe) s :
1

where Z; ; are the charge numbers of the colliding nuclei. We use Sudakov
parameterization for all four-momenta entering the problem (for details see

[12])
@i =012+ LiP1 + qui, G2 = P2 + Pab1 + Gau,
Py =Py + B+ Pi1, Py = aoby + Bybr + Pl (5)
p3 = o3Py + BsP1 +psr, Py = agPy + PaPr + D5y,
and the Gribov decomposition of the metric tensor into the longitudinal and
transverse parts 0
9w = Gl + ; (ﬁluﬁ% + ﬁluﬁZu) )
with light-like 4-vectors p; 2. For the kinematics of the process we will use

the following relations

s = 2ﬁ1ﬁ2’ ﬂl + ﬁ3 = ﬂ:li’ ag + Qa3 = a;}’ (6)

V]

_ 2.
Guo = ;plapmn Gvp = gplvp2pa
G=q¢ =-a’ ¢G=¢ =-a°

where q; are two—dimensional vectors in the plane transverse to the z-axes,
which we choose along 3-vector p; = —p> in the center of mass frame of
initial particles A;, A;. Using the gauge invariant condition

01%(P3)Opot(p3) = (Brbr + q11),8(P3)Opote(p3) = O,

220U(P3) Opou(p3) = (a2ba + g2 )ot(P3)Opou(ps) = 0, (7)

one gets the Born amplitude in the form

MU (a1, 45) = —4isNy Ny(4maZy) (4maZs) Bay, ), (8)
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with

a(pg)opvu(p3)QfJ.qg.L (9)
sof1q12q2?

B(q1, ) =

u(py)p1u(ps), saafy = —g3 — (q1 — q2)® ~ m?.

®» |~

1 .
N, = ;ﬂ(Pll)qu(Pl), Ny =

The values of N; for every polarization state of initial particles (or for
spinless particles) are unity and

@(p3)Opou(p3)gl a5, =

. . P3tat+m Pst+do+m
(ps) %J.m(Iu + Qum(Iu] u(ps). (10)

3 The Coulomb corrections to the process
3—3

Let us consider the set of six Feynman diagrams (FD) with one virtual photon
connected the p3 line with the particle A; and the two ones connected p;3 line
with the particle A, (see Fig. 2). The loop momentum integration in the
relevant matrix element can be performed accounting that

)2 1 d(sak) d(sﬂk)
2mi 2mi

It can be shown that only 4 FD amplitudes works (Fig. 2 (a—d)). Really,
when one write explicitly denominators in Fig. 2 (e, f) through longitudinal
Sudakov variables, i.e.,

k= (2r ———=d’k1, k=opr+ B +ki  (11)

(ps + k)2 — m? + i0 =~ sayfBs + 40,

(ps — g2 + k) — m® + i0 =~ soyBs + 40,

(p2 — k)? — m? + 40 =~ —sf + 10, (12)
(py + k)? — m? + 40 = s + 40,

one can see that both poles in o) complex plane are situated in the same half-
plane, so their contribution to the amplitude is zero (suppressed by factor
lg2/s| ~ |s1/s|). This result is in agreement with one obtained in [8].

It is convenient to introduce 8 FD (including four ones depicted in Fig. 2
(a—d) and additional four FD with interchanged photons absorbed by nucleus
A line). To avoid the double counting we multiply the relevant matrix



element by statistical factor 1/2!. This trick permits one to perform the
integration over oy, O with the result

[ d(sow) ( By Bs ) _

27 sayfs + i0 + —safs + 10

Tdsh) [ 1 1 _
/ 2mi (s,@k+z'0 + —sﬂk+i0) =1 (13)

—00

—00

Now let us show how the cancellations of contribution arising from FD
with absorbtion of n + 1 number of exchanged photons between particle C
and nucleus A;, sandwiched between two exchanges between particle C and
nucleus A, (Fig. 3) take place. The algebraic symmetrization procedure
described above (13), with using the relations

li=ope+ B+, a,<az<op <1l [<P<pf, <1, (14)

leads to the product of factors

n IBS n 1
> 1.
H (saz.ﬂa + 0 + —sal. 3 + 10 H 3,31J + zO —s0; +10 "=

i=1

(15)
In the terms of notation used in [9, 10] our assumptions (14) read
m;  mi
E=pu>pu>p =75, 5 =n <p-<p-=FE (16)

It is easy to see, that in this case, no dependence on p3+ sign appears for the
eikonal amplitudes corresponding to the situation in Fig. 3.

The poles of the electron Green functions (Fig. 3) are situated at the
same half plane of k_ what one allows to safely neglect the contribution of
such diagrams.

Performing the integration over longitudinal Sudakov variables ¢, Bi; in
blocks 1, 2 of FD in Fig. 3 one can see, that dependence on longitudinal
Sudakov variables ay, Bk relevant to the lower loop is completely the same as
in the previous case (see Fig. 2 (e, f)), therefore contribution of such type of
FD to the total amplitude is zero.

The physical reason of this suppression is the same as in the case of
bremsstrahlung suppression for fast charged particle moving through the me-
dia known as the Landau-Pomeranchuk-Migdal effect. Really, this effect can
be explained starting from the fact of power suppression of radiation between
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two scattering centers in the case when the distance between these centers is
less than the coherence length.
Further integration over transverse momentum is straightforward

d’k 1 2 q?
/ RN (@R g N an)

For the amplitude M((2)) (see Fig. 4) and the similar amplitude M((1))
obtained

2

+ 2iZsa ln 32

MY + M) = MY (a, Q2)2' [2zZ1aln > (18)
The amplitude for arbitrary amount of interchanged photons (see Fig. 5)

is constructed in the similar way

(oo) (Q1,Q2) = (1) (¢11 gp)e'P1(@)+e2(az)) (19)

with the Coulomb phases

2 Qa2
a
pi1(a1) = Zyaln )‘—12, v2(q2) = Zzalnv

Consider now the case with one additional exchanged photon between
two nuclei A;, A;. The relevant matrix element M;p) reads

d’k

. M(IB) = ’1:(1le2 m

M) (1 + k, g2 + k). (20)
Two-dimensional integral in (20) is infrared divergent. To regularize it we
introduce the photon mass parameter .

In the same approach we get for the matrix element with the n exchanged
(between nuclei) photons (see Fig. 6 (a))

ZaZ1Z2)"
M) = H/ 7r(k 3 + )‘2) (1) S+ Z ki g2 + Z ki) (21)

i=1

It is convenient to write down this expression in the impact parameter rep-
resentation. For this aim we use the following identity

/d Kn+18® (kni1 — a1 — Zk) /d Knp1d2peitnti—ai-Tlka)e — 1

(22)




Thus the matrix element with arbitrary number of exchanged photons can
be cast

o 1 [dp .. . . -
M(3 — 3) = Zl M(nB) = Z Tpe zq1.pett121Z21/J(P)M((:)) (P’ q1, (12) (23)
with
&2k e—ikp CpA
o) = [ iy =2l = 21 (57), 24
where C ~ 1.781 and
(1) K i pr s ()
My (b, @) = [ —e™ Mk, k+ a2 — q1)- (25)

This result confirms the general ansatz given above (see (19)) that the
dependence on ” photon mass” A can be represented as a phase factor. As can
be seen the whole amplitude (23) cannot be cast solely as a Born amplitude
multiplied by the phase factor. The corresponding contributions to the total
cross section (except the Born term) will be enhanced only by the first power
of logarithm in energy.

Finally, taking into account all photon exchanges between particle C and
nuclei A;, A, we obtain the general answer by the simple replacement in the
expression (25)

M) — M) = MJ)(k, k + g3 — q1)e*or W +iealkcraz—an) (26)

with 1, ¢2 given in (19).

4 The Coulomb corrections to the process of
lepton pair production

As was mentioned above, our goal is to investigate the crossing symmetry
property between the amplitudes of the process (2) and the relevant process
in Fig. 1 (c, d)

Ai(p1) + Az(p2) — Ai(p}) + A2(p2) + C(ps) + C(pa), (27)
with the following kinematics

s=(P1+p2)% sp=(++¢)% &=mm-0)% &= (p2—0h)?% (28)
pl=p’=m? @ =¢=mi ¢ =¢=m

s> —qf ~ —q% ~ 812.
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Using the Sudakov technique the Born amplitude for the process (27) can
be represented in the form

Mp = —7;8267T2Z1Z2N1N2Bp(q1, (h) (29)
with
_ eferu(g-)Tupv(gs)laulaa|
$q1%qa?
§=sab = (g+ +¢-)" + (@ + @2)°,
h—g++m G2—d++m
= + ,
Pl =gz -m2 " g =g ) —m2
(for details see [12]).
Generalization for the case of arbitrary number of exchanged photons

between colliding nuclei is straightforward. The same approach as was used
above leads to the following form of the generalized amplitude

)

1 [d _, ~iaZ1 Z2%(p)
M(2—4) =7 [ e 0PenT¥o,(p, o), (30)
with
d’*k
®5(p, q2)=/T€’k”Mp(k, g2 — k).

Comparing the expression (30) with the amplitude for the process 3 — 3
(23) one can see that the crossing symmetry property between the considered
processes takes place in the case when one neglects the multiple exchanges
of particle C with nuclei. Moreover, this statement is correct even when
one takes into account the screening effects between nuclei A; and A, in
both processes, which manifest itself by insertion of light-by-light scattering
blocks into Feynman amplitudes. As was shown in [13] accounting of this
effect can be provided by the universal factor

exp {_a2Z2122 LA(p)}, L = In(m17ys), (31)

with the complex quantity A(p) connected with the Fourier transformation
of light-by-light scattering amplitude.

Nevertheless, crossing symmetry is broken in all orders of perturbation
theory if one tries to compare the full amplitude for the process 3 — 3
(expression (23) with the replacement (26)) and the relevant amplitude for
the process 2 — 4 accounting the multiple interaction of produced particles
[12].

Thus the crossing symmetry property takes place only for the colliding
nuclei with charge numbers fulfilled the approximation Z;,a < 1.
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Fig. 1: Feynman diagrams for Born amplitudes of the process /_11 +A;+C — A +
Az + C (a, b) and the process Ay + Ay — A; + As + C + C (c, d).

T G T
Tk

Fig. 2: Feynman diagrams for the process A; + Ay + C — A; + Ay + C with three
photon exchange.

(3

(@)

A

Fig. 3: Feynman diagram for the process Ay + Ay + C — A; + Ay + C withn + 1
exchanged photons (n > 1) between particles A; and C.
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Fig. 4: Feynman diagram for the amplitude M ((21)) .

Fig. 5: Feynman diagram for the amplitude M((::)) (q1, 92)-
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Fig. 6: Feynman diagrams for the n phot;)n exchange between nuclei A; and Ay com-
pared with the Born diagram for the processes 3 — 3 (a) and 2 — 4 (b) (blob in (b)
correspond to diagrams in Fig. 1 (c, d)) .
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Baprom 3., I'eopkan C. P., Kypaes D. A. E2-2002-211
HapylieHne KpOCCHHI-CHMMETPHH, CBS3BIBAIOILEE TIPOLIECC

06pa3oBaHKA JIENTOHHBIX I1AP B CTOJKHOBEHMAX TSKENBIX HOHOB

C COOTBETCTBYIOLIMM KPOCCHHI-IIPOLIECCOM

Hcnons3ys TexHuky Cynakosa, Ml CyMMHpYEM PSA IOIPABOK IS mpolecca
3 >3 1 nonyyaeM KOMIAKTHOE aHATMTHYECKOE BHIpAXEHHE YIS aMIUTHTYIBI 3TOr0
TMpoLEecca, KOTOPOE YUUTHIBAET BCE BO3MOXHBIE KYTOHOBCKHE B3aMMOJIEHCTBUSA Me-
XMy CTalKMBAIOIIAMUCA dacTHLaMH. CpaBHMBad 3TO BRIDAXEHHE C aMILUTMTYXOH
06pa3oBaHHUs JICITOHHBIX Map B CTOJKHOBEHHSX TAXENBIX HOHOB, TO €CTb B MPO-
Hecce 2— 4, MBI ITOKa3bIBAEM, YTO KPOCCHHI-CHMMETPHS MEXY 3THMH Ipolecca-
MH CYILIECTBYET, TONIBKO eClY IpeHeOperarh B3aHMONEHCTBHEM Naphl ¢ HOHaMH (TO
ecTh B Npubmukenuu Z;,a<<1).

Pa6ora BuinonHeHa B Jlaboparopuu Teopernyeckoil ¢usuku M. H. H. Boro-
mo6osa OWSAH.
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Bartos E., Gevorkyan S. R., Kuraev E. A. E2-2002-211
Crossing Symmetry Violation in the Process

of Lepton Pair Production in Relativistic Ion Collisions Compared

with the Crossing Process

Using the Sudakov technique we sum the perturbation series for the process
353 and obtain the compact analytical expression for the amplitude of this
process, which takes into account all possible Coulomb interactions between col-
liding particles. Comparing it with the amplitude of the lepton pair production
in heavy ion collisions, i.e., in the process 2— 4, we show that crossing symmetry
between these processes holds only if one neglects the interaction of the produced
pair with ions (i.e., in the approximation Z; o« 1).
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