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Introduction

In [1, 2] we applied systematically the nonlinear time series analysis approach
[7] to the traffic measurements obtained at the input of the intermediate size Lo-
cal Area Network (LAN). We have demonstrated that nonlinear techniques can be
successfully used for a deeper understanding of main features of the traffic data. In
order to reconstruct the underlying dynamical system, we estimated the correlation
length and the embedding dimension of the traffic series. The reliable values of
the correlation length and the embedding dimension provided the application of a
layered neural network for identification and reconstruction of the dynamical sys-
tem. We have found that the trained neural network reproduces the packet size
distribution of real measurements, which follows the log-normal distribution [2].

The log-normal distribution has been first observed, to our knowledge, by Lucas
et al. [8] for the empirical probability distributions of packet arrivals aggregated
at 100 ms. Later they developed the background traffic model, or (M,P,S) model
[9], which realistically generated the aggregated traffic flows for a large campus
network. The log-normal distributions for packet arrivals have been observed at
different stream scales [9]. Similar inter-arrival time distributions for channel arrivals
have been observed in cellular telephony [10]. However, there was no a reliable
explanation of reasons, which may cause the appearence of such distribution.

In our work [3], based on the detailed analysis of traffic measurements, we demon-
strated that the reason of this distribution may be a simple aggregation of real data.
In fact, we show that the aggregation of traffic measurements forms (starting from
some threshold value of the aggregation window) a stable statistical distribution,
which does not change its form with further increase of the aggregation window.
Applying the x2-test we proved that with a high significance level this distribution
corresponds to the log-normal distribution. '

Later in [4] we proved that the Principal Components Analysis, especially the
“Caterpillar”-SSA approach [11, 12], is very efficient for understanding main features
of terms forming the network traffic. The statistical analysis of leading components
demonstrated that a few first components already form the fundamental part of
the information traffic [4]. The residual components play a role of small irregular
variations, which do not fit in the basic part of the network traffic and can be
interpreted as a stochastic noise.

In order to further decrease the dimension of the dynamical system underlying
the network traffic, we applied the wavelet filtering to traffic measurements [5]. The
analysis of influence of this preliminary filtering on characteristics of individual prin-



cipal components and on summary distributions of leading and residual components
gave additional arguments for the correctness of results obtained in [4]. The Fourier
analysis of original traffic measurements and individual principal components both
for original and filtered data confirmed that the fundamental part of information
traffic is formed by a few first leading components.

Applying the continious wavelet transform to traffic measurements, we found
that the corresponding series has a multifractal, multiplicative character. This cir-
cumstance together with the log-normal distribution of traffic data confirms the
applicability of the Kolmogorov’s scheme [6] to the description of network traffic.

The aim of this work is to summarize the results of obtained in [1, 2, 3, 4, 5], to
formulate main characteristics of the background statistical model of network traffic
and to emphasize possible directions for further studies.

In our work we used traffic measurements collected at the input of Dubna Uni-
versity [13] LAN, which includes approximately 200-250 interconnected computers.

In Section 1 we describe the data acquisition system of this LAN, realized on
the basis of a standard PC. In Section 2 we present first results of application of
the nonlinear analysis to the traffic measurements. We show that the dynamical
model based on the neural network reproduces the packet size distribution of real
measurements, and that this distribution fits in the log-normal form. In Section 3
we explain that the reason of this distribution may be caused by a simple aggre-
gation of real data. In Section 4, applying the Principal Components Analysis, we
demonstrate that a few first components already form the basic part of the network
traffic, while the residual components play a role of small irregular variations. In
Section 5 we analyze the spectral characteristics of traffic measurements applying
the Lomb periodogram technique. The peculiarities of the wavelet filtering of traffic
series are considered in Section 6. Section 7 is devoted to the analysis of statistical
and spectral characteristics of the filtered traffic series. In Section 8 we show that
the main part of network traffic can be efficiently described by a minimal number of
feature components. In Section 9 we show that the traffic measurements have a mul-
tifractal, multiplicative character, and discuss the applicability of the Kolmogorov’s
scheme to the description of network traffic.

1. Data acquisition system

Two protocols are used in the "Dubna” LAN. The NetBEUI protocol is applied
only for internal exchanges, and the TCP/IP for external communications. The
measurements of network traffic have been realized at the external side of the input
lock of LAN.

The performance of the data acquisition system is based on realization of an
open mode driver [14]: see Fig. 1.

In standard conditions the network adapter of a computer is in a mode of detect-
ing a carrying signal (main harmonic 4 — 6 MHz). After appearing in the cable bits
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Figure 1: Scheme of a data acquisition system

of the package preamble, the network adapter comes to a mode of 1 bit and 1 byte
synchronization with the transmitter and starts receiving first bytes of the package
heading. As soon as one succeeds in extracting the MAC-address of the shot receiver
from the first bytes taken by the adapter, the network adapter compares it to its
own. In the case of a negative result of the comparison, the network adapter ceases
to record the shot’s bytes into its internal buffer and cleans its contents and then
waits until the next package appears.

In order to provide conditions for receiving and analysis of all the packages
transmitted over the network, it is necessary to move the adapter devices to a free
mode when all possible shots are recorded in the buffer. This operation is executed
through the instructions of the NDIS driver.

The free mode driver records the accepted packages in the preliminary capture
buffer and displays the flag of receiving the package. Then the receiving package
module is activated and analysis of the margin of the package’s type is carried out
to extract TCP/IP packages from the whole stream.

After identification it is possible to separate and delete the data block as well
as to record the headers to the SQL-server database. The recording is performed



together with the time data with a frequency up to 10 kHz. Although the record-
ing is performed with buffering, the mode of saving the packages’ headers requires
enormous server’s resources, as in this case there is a permanent procedure of record-
ing with small portions to the hard disk. That is why this mode is switched on if
required at the management system’s instruction.

The system also provides control over the external traffic of the local area net-
work on the basis of controlling the records in the router table. Initial information
on the legal IP addresses is saved in the database of the LAN computers from
which data on legal addresses are loaded into the main memory array. The users
which do not participate in forming the external traffic, are not taken into account
when calculating the number of transferred and received bytes. In order to decrease
the number of sessions of recording the information on the external traffic in the
database, a timer of load out of the buffer and a timer of changing a current date
have been introduced into the system.

The recorded traffic data correspond approximately to 20 hours (1600000 records
with a frequency up to 10 kHz, which corresponds to 1 ms bin size) of measurements.
The part of this series corresponding approximately to 1 hour of measurements and
aggregated with different bin sizes is presented in Fig. 2.

The contribution of the NetBEUI traffic has been estimated around 1-6 pack-
ages per second during daily working hours. This is negligibly small compared to the
TCP/IP traffic. In this connection, we may neglect the influence of non-IP traffic
on the TCP/IP traffic.

2. Nonlinear analysis of network traffic

Chaos theory offers a new methodology, nonlinear or chaotic time series analysis,
to handle irregular time series, such as traffic measurements [7]. First attempts to
apply this approach to the network traffic analysis demonstrated serious difficulties
as well as some promising results (see [15] and references therein).

In nonlinear time series analysis we view the signal {z;} as the one-dimensional
projection of a dynamical system operating in a space of vectors g of larger dimen-
sion [16, 17]:

Ti = (Ti, Tigry oy Tige(m-1)r)- (1)
Here m is the dimension of the underlying dynamical system, and 7 is a “delay
time”, or the correlation length of series {x;}.

The main steps of this “phase space reconstruction” for the traffic measurements

include three main steps:

1. Estimation of the correlation length 7,
2. Estimation of the embedding dimension m,

3. Reconstruction of underlying dynamical system.
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Figure 2: Traffic measurements aggregated with different bin sizes: 0.1s, 1s and
10s

2.1. Estimating the correlation length

In order to choose the independent components from the traffic data, we may
compute the correlation length [18, 19], where the linear auto-correlation function

% (Tigr — Z)(2i — T)
o =57 2
> (zi — 2)?

i=1

first time crosses the confidence tube corresponding to Gaussian white noise. Here

x; are the values of traffic measurements, N is the number of points in the analyzed
time series and

T = X;.

uMz

1
N ¢
The dependence of the correlation length agamst the aggregation bin size is pre-
sented in Fig. 3.
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Figure 3: The dependence of the correlation length against the size of the aggregation
bin

We see that for bin sizes from 0.1sec up to 10sec, the correlation length 7 is in
acceptable region: 7 ~ 10sec. The points separated by the time interval 7 can be
considered as linear independent.

2.2. Estimating the embedding dimension

A set of uncorrelated points may be considered as the components of some m-
dimensional vector. The dimension of the underlying process can be estimated by
box-counting or neighbor counting methods [7]. To make sure that the dimension
counting methods give a reliable result, one must check that starting from a certain
value of n (the dimension of the embedding space), the estimated dimension is not
increasing together with further increase of m. If this is the case, the time series

can be considered as generated by a finite-dimensional system, which, in principle,
can be reconstructed from the original time series.



The dimension counting for aggregated time series has been performed with the
Grassberger-Procaccia algorithm [20, 21]. The correlation integral can be estimated
by )

Cy(r) = ‘mg@ﬁ = lyi = yil), 3)
with the distance between two points given by

ly: — y;| = max {|-Ti = Zi|, ey |Ti(me1)r — xj+(m_1)Tl} :

Here © = 1 if its argument is non-negative and 0 otherwise. The value Ci*(r) is the
empirical probability that a randomly chosen pair (y;, y;) of points will be separated
by a distance less or equal to r.

To estimate the embedding dimension dg [20, 22], one computes C3*(r) for r
ranging from 0 to the largest possible value of |y; — y;| and for m increasing from 1
up to the largest possible value. Starting from some m in the dependence

log Cy(r) = Blogr + 7,

if the parameter 8 does change its value, then the embedding dimension dg can be
estimated from the relation
B <dg <m.

Thus, the slope of the log C3*(r) vs. logr gives the lowest estimate of the embedding
dimension: see Fig. 4.

Figure 4: The dependences of
log C3*(r) vs. logr for traffic mea-
surements aggregated with 1sec
bin: 7 = 10sec and m =12, 14, 16,
18

For various parts of the time series we have analyzed, no saturation of the slope
with respect to increasing m was found. For each given value of m in the range of
m = 2 + 18 the slope 3 was found to satisfy

m <28+ 1. (4)



According to the Takens theorem [17], this may imply very high dimension of the
studied time series.

As usual we may consider the traffic measurements as a sum of a regular process
and a stochastic part, related to the high frequency “noise”. The elimination of
the noisy part may simplify the analyzed time series and reduce the dimension of
the underlying dynamical process. In order to achieve this, we applied the filtering
based on a discrete wavelet transform: the details of wavelet filtering are discussed
in Section 6.

We observed that for all curves, the slope of all log-log curves decreased in com-
parison to the slope calculated for the original (not filtered) data. The dimension
about 16 + 18 seems to be close to saturation.

2.3 Reconstruction of underlying dynamical system

In order to reconstruct the dynamical system corresponding to the traffic mea-
surements, we used an artificial neural network (ANN) [7, 25, 26]. The major ad-
vantages of neural networks are that no prior information is required and the identi-
fication of the regular traffic component can be obtained automatically through the
ANN training [27, 28, 29]. This is important in our case, not only because the traffic
system is very complex, but there is also no information about the contribution of
individual components into the system dynamics.

In our study we applied a layered neural network with the feed-forward architec-
ture from the JETNET3 package [30]: the input layer with the number of neurons
corresponding to the embedding dimension of the traffic series, two hidden layers
with varying number of neurons and one output neuron. From the output neuron
we get the predicted value of the ANN model.

For the ANN training we used a data set corresponding approximately to 34
minutes period and aggregated with time bin 1 sec. These data were preliminary
cleaned applying wavelet filtering (for the elimination of “noisy” component) and
normalized to the interval [-1,1]. The following parameters were used for the input
vector (1) formation: 7 = 10 sec and dg = 15 + 20.

Figure 5 presents part of the traffic data (traffic.dat) and the result of the ANN
approximation (train.dat) after 1000 training epochs. We see that, despite the highly
chaotic character of time series, the neural network approximates these data quit
well.

Figure 6 demonstrates the distributions of sizes of traffic packages (normalized
to the interval [-1,1]) for the original traffic measurements (top figure) and for time
series generated by the trained ANN (bottom figure). We see that the ANN model
reproduces quite well the statistical distribution of real data, which seems to be the
log-normal.

It is known, that the ANN training on real data is in general adequate to the
solution of the PCA problem [25, 31, 32, 33]. In this connection, the distribution of
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Figure 5: The result of the ANN approximation of the traffic series after 1000
training epochs

the ANN weights between the output node (neuron) of the ANN and the nodes of
the second hidden layer is quite interesting: see Figure 7. We will see below, in Sec-
tion 4, that this distribution of weights reproduces the character of the eigenvalues
distribution obtained with the help of the PCA method.

3. Log-normal distribution of network traffic

Having available traffic data measured at high-frequency (each arriving packet
has been recorded independently, see Section 1), we obtained the possibility to ana-
lyze the influence of the aggregation bin on the form of the packet size distribution.
Figure 8 shows the packet size distribution for original traffic measurements, while
figures 9, 10 and 11 present the distributions for measurements aggregated with bin
sizes 10ms, 100ms and 1 s, correspondingly.

One can clearly see that for the aggregation with small bin sizes the packet size
distributions have rather chaotic and non-systematic character. However, when the
aggregation bin size approaches 1s (see Fig. 11) the distribution assumes a stable
form that does not change with further increase of the aggregation bin: see, for
example, Fig. 12 corresponding to the aggregation with the bin size 10 s.

The distributions in figures 11 and 12 are well approximated by the log-normal
function [3]

A1

2o T

2

f(z) = b [~5mstinz =y, 6

where z is the variable, o and p are the parameters of log-normal distribution and

A is the ncifn?&iﬁzmg multiplier.
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Figure 6: The distribution of sizes of the traffic packages (normalized to the interval
[-1,1]) for : a) the original traffic measurements, and b) the generated by the trained
ANN

The fitting procedure was realized with the help of the MINUIT package [35]
in the frame of the well-known PAW (Physical Analysis Workstation, see details in
[36]).

As we mentioned above, the fitting curves corresponding to the log-normal dis-
tribution approximate experimental distributions with a reliable accuracy on all
regions of the analyzed distributions. However, they did not pass the x*-test [3].

The main reason is that the distributions presented in figures 11 and 12 are
based on the whole set of data, which corresponds approximately to 20 hours of
measurements. But the traffic series, as well as corresponding statistical distribu-
tions, behave differently depending, if the measurements were done during working
hours or not.

In this connection, we tested the correspondence of experimental distributions

to the null-hyphothesis (5) applying the x? goodness-of-fit criterion using only the
daily traffic. The results of this analysis are presented in Table 1.

10
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 Here v is the probabilit'y'(inr%) that the observed chi-square will exceed the value

x* by chance even for a correct model: see, for instance, [34, 37]. These results show
that the hyphothesis (5) can be accepted with a high probability: see also Fig. 13.
At the same time it must be noted (see figures 11 and 12) that the influence of the
inactive period of LAN does not change significantly the fundamental form of the
statistical distribution.
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We conclude, therefore, that

Figure 10: Packet size distribu-
tion for traffic measurements aggre-
gated with bin size 100 ms
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o the aggregation of traffic measurements forms (starting from some threshold
value of the aggregation window) a statistical distribution, which does not
change its form with further increase of the aggregation window:

e this distribution is approximated with high accuracy by the log-normal distri-
bution.

v



Table 1: Results of fitting of daily part of packet size distributions aggregated with
different bin sizes by the function (5)

Bin, sec | v % a,%
1 47 1 49.84 | 32.30
2 47 | 44.76 | 52.51
3 47 | 41.53 | 65.98

225 |- |0 10
Entries 3600
Mean  0.2379E+05
200 | RMS  0.1695€+05
UDFLW 0.000
15 | OVFLW 96.00
X/ndf49.84 | 47
P1 08576+ 0.1482E-01 . . c .
180 - P2 9903 0.1774£-01 Figure 13: Packet size distribution
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for daily traffic measurements ag-
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4. Principal component analysis of network traffic

The “Caterpillar”-SSA approach {11, 12] can be used for analysis of time series
corresponding to any arbitrary function f(¢),¢ > 0 determined in equidistant points:

zi= flt] = flli—-1)AY), i=1,2,... K, (6)

where At is the sampling interval (in our case At = 1), whose reciprocal is the
sampling rate.

The basic “Caterpillar”’-SSA scheme includes four main steps:
o transformation of one-dimensional series into multidimensional form,
e singular value decomposition of multidimensional series,

e principal components analysis and selection of feature components,

1



e reconstruction of one-dimensional series on the basis of selected components.

The transformation of one-dimensional series (6) into multidimensional one is
realized by representing 6 in matrix form:

Ty T I3 RPN Xy,
D) T3 Ty N ) |
kL
X = (zi)ia =] T3 T Ts .o TLy2 | (2)
Tk T4l Thy2 --- TK

where L < M is called the caterpillar or window length and k = K — L + 1.

Then the eigenvalues \;, ¢ = 1,2,..., L and eigenvectors \—/;, it =1,2,...,L of
the covariance matrix C' = %X XT are determined. The matrix of eigenvectors V is
used for transition to the principal components

Y =VTX = (Y1,Ys,...,Y1), 3)

where Y; (i = 1,2,..., L) are rows of k elements.
The equality
A

o

i=1

M=

ai=1
1

<.
Il

permits to estimate the contribution «; (in decreasing order) of the i-th principal
component into the analyzed series.

The “Caterpillar” length (or window) Cf, has been chosen based on the analysis
of the autocorrelation function for traffic measurements [2]. In this study we used
different values of Cp, starting from the minimal value C; = 12 up to Cp, = 20.

Figure 14 shows the daily part of traffic measurements aggregated with the bin
size 1s, which has been used in this study. The number of points in this series
K = 2048, that corresponds approximately to 34 minutes of traffic measurements.

One of the main results of the application of the “Caterpillar”-SSA technique to
the analyzed series is presented in Fig. 15. It shows the contribution of eigenvalues
in percentages for C, = 12 and 20. This information permits to estimate the number
of principal components, which effectively contribute into the analyzed series.

Taking into account [3], it is reasonable to assume that the packet size distri-
butions, corresponding to leading components, may be described by the log-normal
distribution.

In Fig. 16 we present the results of fitting of the packet size distributions, ‘corre-
sponding to different number N of leading components (the results presented here
are for Cp, = 20), by function (5). Here x? is the calculated value of 2, correspond-
ing to the testing distribution and v is the number of degrees of freedom.

This dependence demonstrates that for N = 3 there is quite a good level of cor-
respondence (o = 22%) of the distribution to the null-hypothesis (see also Fig. 17).

14
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This result is of great interest, because only 3 first components (of 20) already
form the fundamental part of the information traffic. Their summary contribution
into the general dispersion is around 40 % (see Fig. 15 for Cp, = 20).

The value of x%/v reaches its record minimal value 0.732 for N = 8. The
corresponding statistical distribution is presented in Fig. 17. It demonstrates both
a very good level of correspondence of the reconstructed distribution to the null-

‘
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hypothesis (o« = 89.5 %) and a reliable accuracy of approximation on all regions of
the analyzed distribution. The summary contribution of 8 leading components into

the general dispersion is around 66 %.
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Figure 18 shows the series reconstructed by the Caterpillar method (for Cy, = 20)
on the basis of eight leading components. One can clearly see that it reproduces
characteristic features of the original series presented in Fig. 14.

In the region of large N there is a growth of x? especially noticeable at N > 15:
see Fig. 16. Such tendency is caused by the influence of the residual components
related to small irregular variations, which do not fit in the basic model of network
traffic (5) and can be interpreted as a stochastic noise (see Section 5).

Figure 19 shows the series reconstructed on the basis of the smallest residual
component, namely, the component 20. One can clearly see that this series is of
significantly different character as compared to the original traffic measurements. It
looks like a nonstationary dynamical process symmetric against zero mean value.

Figure 20 shows the statistical distribution corresponding to the series presented
in Fig 19. It quite well follows the Gaussian distribution that is confirmed by the
x>-test (see Fig. 20). The autocorrelation function of the corresponding series shows
that it behaves like noise.

However, when increasing the number of residual components, their summary
distribution starts to gradually lose the symmetric form together with growth of
correlations between the series terms.

In order to estimate the amount of residual components, which can be eliminated
from the original time series without the influence on its fundamental part, we divide
all principal components into two parts:

1. first part corresponding to the leading components and responsible for the
log-normal form of the packet size distribution,

17



Figure 19: Traffic series reconstructed by the caterpillar method (Cf = 20) on the
basis of the smallest component
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2. second part related to residual components, which is described by a symmetric
statistical distribution and behaves like a stochastic noise. ’

As the criterion for selection of the second part we used the “moment” of the
symmetry violation for the series corresponding to the residual components. The
well-known sign test has been used for testing the symmetry against zero of residual
distributions. The sign test has the following form:

n

n= Z @(l‘l),

i=1

(7)
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where z1,...,x, are observables, n is the sample size, and © is the Heaviside func-
tion:

1, >0

0, z<0.

am={

When the null-hypothesis is true, the p distribution is approximated (in case of large
n) by

— 5
Plusmnp)~ 8 ELE)

np(1 —p)
where @ is the distribution function of the normal distribution, p = 0.5 and n = 2048
(in our case).

Figure 21 shows the dependence of y value versus the number of the residual
components (for caterpillar lengths 12 and 20). It is clearly seen that the u value

exceeds the reliable confidential level, when the number of residual components is
greater than 6 for C;, = 12 and 11 for C}, = 20.
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Figure 21: The values of sign test y versus the number of the residual components
for the caterpillar length Cf, = 12 (left figure) and Cf, = 20 (right figure)

In order to confirm the results obtained by the sign test, we applied more powerful
criterion based on the w? statistics [40]. This criterion tests the symmetry against
= 0 the distribution function F(z) of the observables zi,...,,, i.e. the null-

hypothesis Hy: F(z) =1 — F(z). The corresponding w? statistics has the following
form:

n/ 2) + Fu(—z) — 1] dFy (), ®)



where F,,(z) is the empirical distribution function. It is more convenient to calculate
the values of statistics (8) using the following algebraic formula

i . n—j+17?2
a=3[pia I
=1 n
where 7 < ... < 4, is the variational series constructed on the basis of observables.

Figure 22 shows the dependences of the w? value versus the number of the residual
components for two cases of the caterpillar length: Cr, = 12 and 20.
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Figure 22: The dependences of the w? values versus the number of the residual
components for two cases of the caterpillar length: Cr, = 12 (left figure) and C, = 20
(right figure)

One can see from Fig. 22 that the number of residual components | = 6 for
Cr, = 12 and [ = 10 for C}, = 20 corresponds to the 5% - significance level for the
w?-criterion. This coincides with the result obtained for the sign test: see Fig. 21.

The dependences presented in Fig. 22 have distinct characteristic features at
Il =4for Cp =12, and | = 7 for C = 20 (one can see that the number of such
components approximately equals to one third of the caterpillar length), after which,
when [ is increasing, there is a quick rise of w?. This means that the residual series
looses its symmetric character, because in the second part are involved the compo-
nents responsible for the fundamental property of the system — the log-normality.



5. Spectral analysis of traffic measurements

A sampled data set (6) contains complete information about all spectral compo-
nents in a signal z(¢) up to the Nyquist critical frequency

1
fC: 2_At7 (9)

and scrambled or aliased information about any signal components at frequencies
larger than f. (see, for example, [37]).

In order to estimate the presence or absence of periodic components and to
evaluate the viability of stochastic noise in the traffic series, we apply here the
Lomb spectral method: see, [37, 41] and references therein.

The Lomb normalized periodogram (spectral power as a function of angular fre-
quency w = 27 f > 0) of one-dimensional time series (6) is defined by

K 2

2
i > (x; — Z) cosw(t; — T)] [f: (x; — Z)sinw(t; — 7)
=1 +

i=1

> costw(t; — 7) Sosin?w(t; — 7)
i=1 i=1
where
JEED ST P
= — Z;, g” = Ty —T
K = K—1-

and 7 is defined by the relation
K K
tan(2wr) = Z sin 2wt; / Z cos 2wt;.
i=1 i=1

In order to estimate the significance of a peak in the spectrum Px(w), we have
to test the null-hypothesis that the data values are independent of Gaussian random
values.

Scargle has shown [42] that for the normalized Lomb peridogram (10) at any w
and when the null-hypothesis is valid, Px(w) has an exponential probability distri-
bution with unit mean. This means that the probability that Pg(w) will be between
some positive z and z+dz is exp(—z)dz. If we scan some M independent frequencies,
the probability that none give values larger than 2 is (1 — e~*)™. Thus,

p(>2)=1-(1-eM (11)

determines the false-alarm probability of the null-hypothesis, and it shows the sig-
nificance level o of any peak in the Pg(w) spectrum.

For estimation of the significance level «, we need to know M in the region where
o assumes small values, o < 1, and Eq. (11) can be represented as

p(> z) = Me™*. (12)
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The relation (12) shows that the significance level changes linearly with M. In
practice, an error of even +£50% in the evaluated significance is often tolerable,
which means that our estimation of M need not to be very accurate.

Horne and Baliunas [43] have found that M is very nearly equal to K when
the data points are equally spaced, and when the sampled frequencies “fill” the
frequency range from 0 up to f..
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Figure 23: The dependence of Pk (w) against the angular frequency w = 27 f for
traffic measurements presented in Fig. 14: 0 < w < 27f,

Figure 23 shows the result of application of the Lomb method to the time series
shown in Fig. 14: we used the code period from the Numerical Recipes library [37].
The figure plots Px(w) against the angular frequency w = 27 f for the frequency
interval starting from 0 up to f.. The horizontal dashed and dotted lines correspond
(from bottom to top) to the significance levels 0.5, 0.1, 0.01, 0.001, respectively.

One can see (Fig. 24) three highly significant peaks at low frequencies: 0.06,
0.012 and 0.034. There are three other peaks at frequencies 0.186, 0.241 and 0.252,
which also exceed the 50 % significance level.

For frequencies higher w > 0.35 together with the frequency increase, the am-
plitude of peaks is very quickly decreasing (Fig. 23) and does not exceed the value
5. This amplitude corresponds to the significance level a & 1. This may mean that
the traffic components related to this high frequency part can be interpreted as a
stochastic Gaussian noise.
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Figure 24: The dependence of Pg(w) against the angular frequency w for traffic
measurements presented in Fig. 14: 0 < w < 0.35

6. Wavelet filtering of traffic measurements

The wavelet analysis is the most suitable approach to handle irregular time se-
ries, such as traffic measurements, because it permits to focus on localized signal
structures along with a zooming procedure that progressively reduces the scale pa-
rameter: see, for instance, [53, 54].

The discrete wavelet transform (DWT) of the function f(t) € Ly(R) given in form
of one-dimensional time series (6) can be represented by the following expansion

f) = > dup(2t = k). (13)
jkeZ
Here the set of basis functions (wavelets) {¢;x(t) = ¥ (2/t—k), 4,k € Z} is obtained
from a single “mother” wavelet function 1 (t) € Ly(R) applying the binary dilation
27 and the dyadic translation k/27. -
Following the multiresolution wavelet analysis, Eq. (13) can be rewritten in a
more convenient form

F)=>"sie(7t = k) + 3 3 diy(2t - k), (14)
k

i>Jkez

where ¢(t) is the scaling function corresponding to the chosen wavelet function (t)
(see, for example, [23]). In (14) the first term describes a smooth part of series (14)
restricted by level J, and the second term is related to details, or a high-frequency
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part of the analyzed series. We use here the discrete Daubechies wavelets [23, 24],
because they provide high quality representation of both high- and low-frequency
components of the analyzed signal [37].

The coefficients sfc and dJ are usually determined with the help of the pyrami-
dal scheme [44] of the fast wavelet transform (see, for instance, [37]) applying the
following equations:

= Z hmsgk+m7 dﬁl = Z gmsgk+mv (15)

m

where h,, and g,, are the coefficients of low pass and high pass filters, respectively.

The wavelet filtering implies rejection or modification of part of expansion co-
efficients with absolute values less of a preassigned threshold value A. There exist
several different wavelet filtering algorithms specified as hard, soft, quantile and uni-
versal thresholding (see, for example, [38, 39]). However, the most widespread is the
hard thresholding algorithm (see, for example, [37]). In this scheme all coefficients
with absolute values less than A have to be rejected (set to zero).

In all methods mentioned above the filtering procedure affects all coefficients,
without taking into account their belonging to some resolution level J. Therefore,
such a procedure may eliminate both the coefficients {d,} which correspond to the
high-frequency part of (14) and the coefficients {sj} related to the low-frequency
part.

In this connection, it is impossible to apply the existing algorithms to our case,
because the filtering will affect not only a high-frequency, noisy part, but also a
regular part, which should not be touched.

To overcome this problem, we modified the hard thresholding scheme in such
a way that the groups of coefficients corresponding to different levels of wavelet
decomposition are filtered in a successive order. The modified algorithm performs
as follows. Suppose K is the number of elements in the analyzed series and M < =
Then M smallest of K “detailed” coefficients of series (14) have to be rejected. If
oM< 3K 3K , then we eliminate all K “detailed” coefficients together with M — 7
smallest coefﬁc1ents corresponding to a lower level of accuracy (the whole number
of such coefficients is £), etc.

Compared to the traditional filtering procedure, the modified scheme provides
more effective elimination of the high-frequency component from such highly irreg-
ular time series as traffic measurements.

After the DWT, the selected M coeflicients are set to zero, and then, using the
inverse wavelet transform, the regular part of the traffic series is reconstructed. The
difference between the original time series and the filtered signal, is considered as a
noisy component.

The symmetry test based on the w? statistic [40] has been used for estimation of
a possible number of wavelet coefficients related to the noisy part. The result of the
w? test has been independently checked by analyzing the autocorrelation function
behavior for the rejected part.



Figure 25 shows the dependence of w? values versus the number of rejected
wavelet coefficients. This dependence clearly shows the minimal value of «? at
M = 1768. One can also see in Fig. 25 that a possible maximal number of coefficients
that can be eliminated without exceeding the 5%-significance level is M = 1408.
This corresponds to approximately 70 % of 2048 coefficients.
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The autocorrelation function can be also used as a criterion for evaluation of the
noisy part. The time series corresponding to the noisy part must be uncorrelated.
Figure 26 (left plot) presents the dependence of the auto-correlation function for the
noisy part corresponding to different number of rejected coefficients M. This figure
shows that up to M = 1408 the rejected part can be considered as noisy.

Based on estimations of these two criteria, we came to the conclusion that it is
reasonable to assume M = 1408. Figure 27 presents the original traffic series, the
filtered signal and the noisy part that may be rejected.

In order to monitor the influence of the rejected part on the main part of traffic
series (from the nonlinear analysis point of view), we also controlled the behavior of
the autocorrelation function of the smooth part of series (14) for different number of
rejected coefficients: see Fig. 26 (right plot). One can clearly see that the rejection
of the smallest coefficients up to M = 1408 did not influence seriously the form of
the autocorrelation function.

It is also interesting to check the influence of the filtering procedure on spectral
characteristics of the analyzed series. Figure 28 shows the dependence of Py (w)
against the angular frequency w for filtered signal (continuous curve) and original
(dashed curve) traffic measurements.

This plot shows that the filtering procedure increased the power of all frequen-
cies contributing into low frequency region. At the same time, higher frequencies
starting approximately at w = 1.1 have been significantly suppressed.
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Figure 26: Autocorrelation functions C(7) of noisy (left plot) and smooth (right
plot) parts corresponding to different number of rejected coefficients

7. Analysis of statistical characteristics of filtered series

In Fig. 29 we present the contribution of individual components into the analyzed
series for traffic data after filtering out the high-frequency part corresponding to M =
1408 smallest coefficients. One can clearly see that the contribution of the residual
components noticeably decreased compared to the original traffic data (Fig. 15). At
the same time the contribution of the leading components significantly increased.

This result may play a very important role for decreasing the dimension of the
system describing the information traffic, but this may be the case, if the filtering
procedure does not seriously disturb the statistical and dynamical characteristics of
traffic series.

Taking into account the results of Sections 5 and 6, it is important to see how the
filtering procedure influences the statistical characteristics of traffic series, namely,

1. if it disturbs seriously the packet size distributions, corresponding to leading
components, and

2. how this procedure influences the residual components, whose contribution
have been significantly suppressed by the filtering procedure.

In order to check the influence of the wavelet filtering on the packet size distri-
butions of leading components, we applied the same procedure as in Section 4, i.e.
we tested the correspondence of these distributions to the log-normal form.

Figure 30 shows the results of fitting of the packet size distributions (for the
filtered traffic series), corresponding to the sum of a different number N of leading
components (the results presented here are for Cf, = 20), by function (5).
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Figure 27: Traffic measurements: 1) original traffic series, 2) filtered signal, 3) noisy
part

Here the top and bottom lines correspond to significance levels a = 10% (2/v =
1.247) and o = 42.9% (x%/v = 1.023) for v = 47, correspondingly.

This dependence confirms the result of Section 4 (Fig. 16) concerning the number
of leading components that form the main part of information traffic. One can
clearly see that three leading components form the distribution that follows the
null-hypothesis (5) with a quite high correspondence level (a = 39.2%): see also
Fig. 31.

The dependence of x2/v versus the number N of leading components in Fig. 30
shows that

1. the maximal significance level of the x>-test corresponds to the sum of 3-4 first
leading components;

2. this dependence is compactly distributed around the corridor corresponding

to the admissible regioh.fo} thex_"’-te7st
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Figure 28: The dependence of Pk (w) against the angular frequency w = 2 f for fil-
tered signal (continuous curve) and for original traffic measurements (dashed curve)
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Figure 29: Contributions of eigenvalues in percentages for the traffic data after
filtering out the high-frequency part. The results are presented for two cases of the
caterpillar length: Cf, = 12 (left) and 20 (right)
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"Figure 32 shows the seria reconstructed on the basis of first, second and third
leading component, correspondingly, after the subtraction of the caterpillar average
value.
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Figure 32: Time seria corresponding to three leading components (after the sub-
traction the caterpillar average value): the trend component and two first periodic
components

These seria are very much similar to the seria corresponding to the original
traffic data (see Fig. 8 in [4]). However, the filtered seria are visually more smooth if
compared to the original data. Their summary contribution into the analyzed time
series is noticeably higher (~ 54 %) if compared to the original data (~ 40 %): see
Figs. 15 and 29 for Cf, = 20.

Figure 33 shows the series reconstructed on the basis of the smallest residual
component, namely, the component 20. It looks very similar to the same com-
ponent of the original traffic measurements (Fig. 19). The statistical distribution
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Figure 33: Traffic series reconstructed by the caterpillar method (Cr, = 20) on the
basis of the smallest component

corresponding to this series quite well follows the Gaussian distribution (the same
as Fig. 20).

At the same time, the amplitude dispersion and the standard deviation of this
series are significantly less if compared to the original data: see Figs. 19 and 20.

8. Selection of feature components

In order to estimate the number of residual components that can be eliminated
from the filtered time series without influence on its main part, we applied here the
statistical criterion of symmetry based on the w? statistic: see Section 4.

Figure 34 shows the dependences of the w? value versus the number of residual
components for original (left figure) and filtered (right figure) traffic seria for the
caterpillar length Cf, = 20. The horizontal line corresponds to the significance level
0.05.

It is clearly seen that the w? value exceeds the reliable confidential level (corre-
sponding to the 5 %-significance level), when the number n of residual components
exceeds 10 for original traffic measurements and 17 for the filtered series. This result
demonstrates that after the wavelet filtering 17 smallest components can be consid-
ered as noisy and can be eliminated from the whole set of principal components.
This confirms the result of Section 4 obtained by the y*-test: see Fig. 30.

Figure 35 shows the dependence of Px(w) against the angular frequency w =
27 f for three leading components (continuous curve) and for all components of
the filtered signal (dashed curve). This dependence clearly demonstrates that the
low frequency region of traffic series is formed by three leading components. This
plot also shows that the powers of all frequencies contributing into this frequency
domain have been increased if compared to the powers of the series corresponding
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Figure 34: The dependences of the w? values versus the number of the residual
components for the original (left figure) and filtered (right figure) traffic series and
for the caterpillar length Cp, = 20
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Figure 35: The dependence of Px(w) against the angular frequency w = 2r f for 3
first leading components (continuous curve) and for all components of the filtered
signal (dashed curve): 0 < w < 0.35

to all components of the filtered signal. At the same time, in the case of 3 leading
components all frequencies higher w > 0.35 are suppressed: see Fig. 36.
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Figure 36: The dependence of Px(w) against the angular frequency w = 27 f for 3
first leading components (continuous curve) and for all components of the filtered
signal (dashed curve): 0.35 < w < 0.8

9. A.Kolmogorov’s scheme and log-normal distribution of
network traffic

It has long been observed that in a large variety of physical phenomena, where
self-similar processes take place, the logarithms of dynamical variables are normally
distributed. This holds for grain sizes in crust fragmentation [45], for energy released
in seismic events [46, 47], for the distribution of topographic contours, tree rings,
leaves, rivers: see, for example, [48].

The theoretical explanation of appearance of the log-normal distribution in na-
ture was first given, to our knowledge, by Andrei N. Kolmogorov in 1941 in a “small
paper” (6] not well-known in the Western literature. Kolmogorov proposed a general
scheme of a random process of the homogeneous fragmentation of grains.

A simplified explanation of Kolmogorov’s result, see p. 206 in [46], is the follow-
ing. Suppose that we have a big rock which crumbles into sand. If the environmental
stresses are the same whatever the size of the rock, the probability that a given piece
of rock is fragmented into n; smaller rocks is independent of the stage i of the frag-
mentation process. Therefore, if we start out with a single rock (ny = 1), in the
next stage we have n; smaller rocks, in the next stage each of these smaller rocks is
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fragmented into ng still-smaller rocks, and so on. As the n; are independent random
variables, the number of grains at the k-th stage of fragmentation must be

k

Ni =[] ni = nang -, (16)
i=1
or
k
InNj, = > Inn;. (17)
i=1

The grain sizes Sy are inversely proportional to the number of grains Ny. Applying
a variant the Central Limit Theorem, Kolmogorov found that the logarithms of the
grain sizes were normally distributed [6], i.e. the distribution of grain sizes was
log-normal.

The basic feature of log-normality is the power law or self-similarity. Let X and
Y be two random variables. Then if X is log-normal and if

Y =aX? (18)

Y is also log-normal. The parameter a is called the scale factor and the exponent
d is the fractal dimension. Power laws such as (18) are known as self-similarity
relations. Conversely, if both X and Y are known to be log-normal, there must
exist a self-similarity relation, such as (18), between them. Kolmogorov invoked
this property to deduce that, if the distribution of grain sizes of sand is log-normal,
so are the grain volumes and the fractions by weight retained in sieves of different
mesh size.

In [49] the wavelet transform has been applied to the self-similar stochastic pro-
cesses, which Kolmogorov used in his theory of turbulence [6]. For such processes,
after suitable re-scaling, the wavelet transform at predetermined position becomes a
stationary random function of the logarithm of the scale argument in the transform
[49]. The re-scaling depends on the scaling component.

Unfortunately, the approach of Vergassola and Frisch [49] can not be directly
applied to network traffic measurements, because they have significantly a more
complex structure [50, 51, 52].

However, the wavelet transform, being very powerful technique for extracting
specific information from a given data [23, 24, 37], may provide additional infor-
mation necessary for understanding the log-normality of traffic measurements. It
has been shown (see, for instance, [54]) that the local signal regularity is charac-
terized by the decay of the wavelet transform amplitude across scales. Singularities
and edges are identified by following the wavelet transform local maxima at fine
scales. All these features appear in complex signals like multi-fractals. The wavelet
transform takes advantage of multi-fractal self-similarities, in order to compute the
distribution of the singularities of the signals.

In order to reveal the self-similarity of traffic measurements at different scales, we
applied the Continuous Wavelet Transform (CWT) to traffic measurements (Fig. 6).



Figure 37 shows the shade plot of the CWT, based on the biorthogonal spline
wavelets, of the time series analyzed. The self-similar, multi-fractal character of
traffic measurements is clearly shown in the tree-like fragmentation structure.
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Figure 37: Shade plot of the CWT coefficients for traffic measurements aggregated
with 1s window

Figure 37 clearly demonstrates the multiplicative character of traffic measure-
ments. This result is in agreement with formula (16) and confirms the applicability
of the Kolmogorov’s scheme to the description of network traffic.

Conclusion

Applying a nonlinear analysis to network traffic measurements and using a lay-
ered neural network for identification and reconstruction of the underlying dynam-
ical system, we found that the trained neural network reproduced the statistical
distribution of real data, which well fits the log-normal form [2]. Based on detailed
traffic measurements we demonstrated that this distribution is caused by a simple
aggregation of real data [3]. The “Caterpillar”-SSA [11, 12] and statistical analysis
based on the joint utilization of x* and w? tests provided the possibility to divide
the whole set of components into two classes [4]. The first class includes the lead-
ing components responsible for the main contribution to network traffic, and the
second class involves residual components that can be interpreted as a stochastic
noise. A detailed analysis of the boundary region between these two classes, based
on the “Caterpillar”-SSA analysis, wavelet filtering and statistical x* and w? meth-
ods, demonstrated that the main part of the network traffic can be described by
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a minimal number of feature components: three leading components for C;, = 20.
We also found that the time series reconstructed on the basis of these components
preserves main spectral characteristics of original traffic measurements. This may
mean that all transformations realized on the original traffic series did not disturb
its dynamical characteristics.

We hope that such simplification of a very complicated structure of the original
traffic series may open additional possibilities for development of a more realistic
dynamical model of network traffic and serve as a basis for elaboration of efficient
Quality of Service (QoS) tools.
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Anrtonuoy . u np. E11-2002-222
CraricTiyeckas MOfiesib MH(OPMALMOHHOTO TpaduKa

B [1,2] MBI IpUMEHWIN HEIMHEHHbIH aHANIM3 K U3MEPEHUIM HHGOPMALUMOHHOIO Tpadu-
Ka, OJIy4eHHbIM Ha BBIXOZHOM IIUTIO3€ JIOKAILHOH CETH CpenHero pasmepa. PeamuctuyHsie
BEJIMYMHBl BpEMEHHOIO C/BUIa U BIIOXEHHOH pa3MEpHOCTH 0OecneysId BO3MOXHOCTb IpPH-
MEHEHHs TPAMOTOYHOIH HEHPOHHOM ceTH M MAeHTUHUKAUMK M PEKOHCTPYKLMH JIeXallei
B €r0 OCHOBE IMHAMH4eCKO# cucteMpl. OOyueHHas Ha 3TUX NaHHBIX HEHPOHHas CeTh BOCIIPO-
U3BeNla CTaTUCTHYECKOE PacNpe/ie/IeHHe arperipOBaHHBIX NMAaKETOB PEabHBIX JaHHBIX, KOTO-
poe xopoluo (pUTHPYeTCs JIOTHOPMAaJbHBIM pacnpenesieHieM. JleTanbHelil aHaIM3 U3MEpPeHui
tpacuka [3] mokasai, 4TO TaKOe paclpeesieHHe BO3HMKAET B Pe3y/bTaTe arperaliy peaib-
HbIX OaHHBIX. AHAJIM3 NPUHLUMIHAIBHBIX KOMIIOHEHTOB U3MepEeHH Tpaduka NpoaeMOHCTPH-
POBaI, YTO YyXe HECKOJBbKO JHMAMPYIOLUMX KOMIOHEHTOB (hOpMHUPYIOT (DyHAAMEHTAIbHYIO
4acTh ceTeBOro Tpauka, B TO BpeMs Kak OCTaTOYHbIE KOMIIOHEHTBI HIPAIOT POJIb HEOOBIINX
HEpETYISpHBIX BapHalUid, KOTOpble MOTYT OBbITh MHTEPIpPETHPOBAHBI KaK CTOXaCTUYECKHid
wyM [4]. DroT pe3ynbrar ObUT MOAAEPXKaH IPUMEHEHHEM BEHBIIET-(DUIBTPALIUK U ypbe-aHa-
JM3a KaK K UCXOMHBIM U3MEPEHHUSIM TpaduKa, TaK M K OTAEIBHBIM MPUHLMITHAIBHBIM KOMIIO-
HEHTaM OPUTHHAIBHBIX U OTGHIBTPOBaHHBIX HaHHBIX [5]. JlorHOpManpHOE pacnpeneneHue
arperupoBaHHbIX M3MEPEHMI M MYJIBTHUIUIMKATUBHBIA XapaKTep BPEMEHHOH cepuu Tpaduka
MOATBEPXKIAET NPUMEHUMOCTb CXeMBl, paspaboraHHoit A. KosMoropossM [6] K oqHOpoaHO#
(parMeHTaLK KPYIMHOK, TaKXe M I CETEBOro Tpaduka.

Pa6ota BbimonHeHa B Jlaboparopun nHpopMalMoHHbIX TexHonmoruniit OMAH.

Coobuenne OGbeIHHEHHOTO HHCTHTYTA SAEPHBIX HccenoBanuil. Jy6GHa, 2002

Antoniou I. et al. E11-2002-222
Statistical Model of Network Traffic

In [1,2] we applied a nonlinear analysis to traffic measurements obtained at the input
of a medium size local area network. The reliable values of the time lag and embedding di-
mension provided the application of a layered neural network for identification and recon-
struction of the underlying dynamical system. The trained neural network reproduced the sta-
tistical distribution of real data, which well fits the log-normal form. The detailed analysis
of traffic measurements [3] has shown that the reason of this distribution may be a simple ag-
gregation of real data. The principal components analysis of traffic series demonstrated that
a few first components already form the fundamental part of network traffic, while the resid-
ual components play a role of small irregular variations that can be interpreted as a stochastic
noise [4]. This result has been confirmed by application of the wavelet filtering and Fourier
analysis to both the original traffic measurements and individual principal components
of original and filtered data [5]. The log-normal distribution of traffic measurements
and a multiplicative character of traffic series confirms the applicability of the scheme, de-
veloped by A. Kolmogorov [6] for the homogeneous fragmentation of grains, also to the net-
work traffic.

The investigation has been performed at the Laboratory of Information Technologies,
JINR.
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