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Introduction

In [3]) we applied the Principal Components Analysis, especially the “Caterpillar”-
SSA approach [1, 2], to the network traffic measurements. The statistical analysis
based on the joint utilization of x? and w? tests provided the possibility to divide
the whole set of components into two classes [3]. The first class includes leading
components responsible for the formation of the basic part of network traffic, while
the second class involves residual components that play a role of small irregular
variations and can be interpreted as a stochastic noise. However, a more detailed
analysis of the boundary region between these two classes may provide some addi-
tional information on traffic components and, thus, simplify the understanding of
traffic dynamics.

In [5] we applied wavelet filtering to network data. The aim was to eliminate
a high-frequency, noisy part and decrease the dimension of the dynamical system
underlying the network series. The result of this procedure was rather promising
[5].

We investigate here the influence of preliminary wavelet filtering both on the
characteristics of individual principal components and on the sum distributions of
leading and residual components. The aim of this study is to decrease the number
of feature components responsible for the formation of the main part of the network
traffic. This will be the case, if the wavelet filtering does not influence the main
statistical and spectral characteristics of the original traffic series. This is in fact
the case here.

In our study we use traffic measurements obtained at the input of the Dubna
University [6] Local Area Network (LAN), which includes approximately 200-250
interconnected computers. We describe briefly in Section 1 the data acquisition
system of this LAN realized on the basis of the standard IBM PC. In Section 2 we
analyze the power spectrum of traffic measurements applying the Lomb periodogram
technique. The peculiarities of wavelet filtering of traffic measurements are consid-
ered in Section 3. The statistical analysis of traffic components after filtering out of
a high-frequency, noisy part is presented in Section 4. In Section 5 we discuss the
influence of the filtering procedure on a number of feature components forming the
main part of the network traffic.

1. Data acquisition system

Two protocols are used in the ”Dubna” LAN. The NetBEUI protocol is applied
only for internal exchanges, and the TCP/IP for external communications. The
measurements of network traffic have been realized at the external side of the input
lock of LAN. The performance of the data acquisition system is based on an open
mode driver [7]: see Fig. 1. ‘
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Figure 1: Scheme of a data acquisition system

In standard conditions the network adapter of a computer is in a mode of detect-
ing a carrying signal (main harmonic 4 — 6 MHz). After appearing in the cable bits
of the package preamble, the network adapter comes to a mode of 1 bit and 1 byte
synchronization with the transmitter and starts receiving first bytes of the package
heading. As soon as one succeeds in extracting the MAC-address of the shot receiver
from the first bytes taken by the adapter, the network adapter compares it to its
own. In the case of negative result of the comparison, the network adapter ceases
to record the shot’s bytes into its internal buffer and cleans its contents and then
waits until the next package appears.

In order to provide conditions for receiving and analysis of all the packages
transmitted over the network, it is necessary to move the adapter devices to a free
mode when all possible shots are recorded in the buffer. This operation is executed
through the instructions of the NDIS driver.

The free mode driver records the accepted packages in the preliminary capture
buffer and displays the flag of receiving the package. Then the receiving package
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Figure 2: Traffic measurements aggregated with different bin sizes: 0.1s, 1s and
10s

module is activated and analysis of the margin of the package’s type is carried out
to extract TCP/IP packages from the whole stream.

After identification it is possible to separate and delete the data block as well
as to record the headers to the SQL-server database. The recording is performed
together with the time data with a frequency up to 10 kHz. Although the record-
ing is performed with buffering, the mode of saving the packages’ headers requires
€normous server’s resources, as in this case there is a permanent procedure of record-
ing with small portions to the hard disk. That is why this mode is switched on if
required at the management system’s instruction.

The system also provides control over the external traffic of the local area net-



work on the basis of controlling the records in the router table. Initial information
on the legal IP addresses is saved in the database of the LAN computers from
which data on legal addresses are loaded into the main memory array. The users
which do not participate in forming the external traffic, are not taken into account
when calculating the number of transferred and received bytes. In order to decrease
the number of sessions of recording the information on the external traffic in the
database, a timer of load out of the buffer and a timer of changing a current date
have been introduced into the system.

The recorded traffic data correspond approximately to 20 hours (1600000 records
with a frequency up to 10 kHz, which corresponds to 1 ms bin size) of measurements.
The part of this series corresponding approximately to 1 hour of measurements and
aggregated with different bin sizes is presented in Fig. 2.

The contribution of the NetBEUI traffic has been estimated around 1-6 pack-
ages per second during daily working hours. This is negligibly small compared to the
TCP/IP traffic. In this connection, we may neglect the influence of non-IP traffic
on the TCP/IP traffic.

2. Spectral analysis of traffic measurements

Figure 3 shows the daily part of traffic measurements aggregated with the bin
size 1s, which has been used in this study. The number K of points in this series
was K = 2048 = 2!, that corresponds approximately to 34 minutes of traffic
measurements.
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Figure 3: Traffic measurements aggregated with the bin size 1s

This time series can be represented as

yi=yt:) =yl — DAL, i=12,...,K, (1)



where At is the sampling interval (At = 1 in our case), whose reciprocal is the
sampling rate. A sampled data set (1) contains complete information about all
spectral components in a signal y(t) up to the Nyquist critical frequency

= m’ (2)

and scrambled or aliased information about any signal components at frequencies
larger than f, (see, for example, [12]).

In order to estimate the presence or absence of periodic components and to
evaluate the viability of stochastic noise in the traffic series, we apply here the
Lomb spectral method: see, [12, 13] and references therein.

The Lomb normalized periodogram (spectral power as a function of angular fre-
quency w = 27 f > 0) of one-dimensional time series (1) is defined by
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In order to estimate the significance of a peak in the spectrum Py (w), we have
to test the null-hypothesis that the data values are independent Gaussian random
values. Scargle has shown [14] that, at any w and when the null-hypothesis is valid,
the probability that Pk (w) will be between some positive z and z+dz, is exp(—=z)dz.
This means that, if we scan M independent frequencies, the probability that none
of those gives values larger than z is (1 — e~*)™. Thus,

p(>2)=1-(1-e*)¥ (4)

is the false-alarm probability of the null-hypothesis, and it determines the signifi-
cance level o of any peak in the Px(w) spectrum. A small value of p(> z) indicates
a highly significant periodic signal at z.

For estimation of the significance level a, we need to know M. Our interest is in
the region where o assumes small values, o < 1, so Eq. (4) can be written as

p(>2) = Mfz“‘. (5)



Relation (5) shows that the significance level changes linearly with M. In practice,
an error of even £50% in the evaluated significance is often tolerable, which means
that our estimation of M need not to be very accurate.

Horne and Baliunas [15] found that M is very nearly equal to K, when the data
points are equally spaced, and when the sampled frequencies “fill” the frequency
range from 0 up to the frequency f..

Figure 4 shows the result of application of the Lomb method to the time series
presented in Fig. 3: we used the code period from the Numerical Recipes library
[12]. The figure plots Pg(w) against w = 27 f for the frequency interval starting
from 0 up to the frequency f.. The horizontal dashed and dotted lines correspond
(from bottom to top) to the significance levels 0.5, 0.1, 0.01, 0.001, respectively.
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Figure 4: The dependence of Px(w) against the angular frequency w = 2rf for
traffic measurements presented in Fig. 3: 0 < w < 27 f,

One can see (Fig. 5) three highly significant peaks at low frequencies: 0.06, 0.012
and 0.034. There are also three other peaks at frequencies 0.186, 0.241 and 0.252,
which exceed the 50 % significance level.

For higher frequencies (w > 0.35), together with the frequency increase, the am-
plitude of peaks is very quickly decreasing (Fig. 4) and it does not exceed the value
5, which corresponds approximately to the significance level a ~ 1. This means that
traffic components contributing into this high frequency region can be interpreted
as a stochastic Gaussian noise: see further analysis below.
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Figure 5: The dependence of Px(w) against the angular frequency w = 2w f for
traffic measurements presented in Fig. 3: 0 < w < 0.35

3. Wavelet filtering of traffic measurements

As usual, we may consider the traffic measurements as a sum of a regular process
and a stochastic part, related to the high frequency “noise”. It has been shown in
[5] that the elimination of the noisy part reduces the dimension of the underlying
dynamical process and, thus, simplifies the analysis of traffic series.

Wavelet analysis is very suitable for handling irregular time series, such as traffic
measurements, because it permits to focus on localized signal structures along with
a zooming procedure that progressively reduces the scale parameter. This prop-
erty permits to study localized features of time series, while, for example, Fourier
transform provides only general information on the analyzed series in the frequency
(scale) domain.

Here we present the main scheme of the wavelet analysis. The details can be
found, for instance, in [8]-[11].

The discrete wavelet transform (DWT) of the function f(t) € Ly(R), given in
the form of one-dimensional time series (1), can be represented by the following

expansion
f&)= 3 dup(2t - k). (6)
J.k€Z
Here the set of basis functions (wavelets) {¢;(t) = ¥(27t—k), j,k € Z} is obtained
from a single “mother” wavelet function ¥(t) € Ly(R), applying the binary dilation
27 and the dyadic translation k/27.
Following the multiresolution wavelet analysis, Eq. (6) can be rewritten in a more




convenient form

ft) = Zsk¢(2% k) + 35 dlw(2t — k), )
ji>JkezZ )
where ¢(t) is the scaling function corresponding to the chosen wavelet function % (t)
(see, for example, [8]). In (7) the first term describes a smooth part of series (7)
restricted by level J, and the second term is related to details, or a high-frequency
part of the analyzed series.
The coefficients s, and dJ, are usually determined with the help of the pyrami-
dal scheme [16] of the fast wavelet transform (see, for instance, [12]) applying the
following equations:

J+1 Z h 'S';k—km’ d‘i:—*—l = ngsgk+m7 (8)

where h,, and g,, are the coefficients of low pass and high pass filters, respectively.

We use here the discrete Daubechies wavelets [8, 9], because they provide high
quality representation of both high- and low-frequency components of the analyzed
signal [12].

Wavelet filtering implies rejection or modification of a part of expansion coef-
ficients with absolute values less of a preassigned threshold value A. There exist
several different wavelet filtering algorithms specified as hard, soft, quantile and uni-
versal thresholding (see, for example, [17, 18]). However, the most widespread is the
hard thresholding algorithm (see, for example, [12]). In this scheme all coefficients
with absolute values less than A have to be rejected (set to zero).

In all these methods the filtering procedure affects all coefficients, without taking
into account their specific resolution level J. Therefore, such a procedure may
eliminate both the coefficients {d} which correspond to the high-frequency part of
(7) and the coefficients {s{} related to the low-frequency part.

In this connection, it is impossible to apply the existing algorithms in our case,
because the filtering will affect not only the high-frequency, noisy part, but also the
regular part, which should not be touched.

To overcome this problem, we modified the hard thresholding scheme in such
a way that the groups of coefficients corresponding to different levels of wavelet
decomposition are filtered in a successive order. The modified algorithm runs as
follows. Suppose, K is the number of elements in the analyzed series, M is the
number of wavelets coefficients that must be rejected and let M < K . Then we
reject the M smallest of £ “detailed” coefficients of series (7) Iff< M < 3K we
eliminate all K “detalled” coefficients together with the M — 7 smallest coefﬁc1ents
correspondmg to a lower level of accuracy (the whole number of such coefficients is
), etc.

Compared to the traditional filtering procedure, the modified scheme provides a
more effective elimination of the high-frequency component from such highly irreg-
ular time series, as traffic measurements.

After the DWT, the selected M coefficients are set to zero, and then, using the
inverse wavelet transform, the regular part of the traffic series is reconstructed. The
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difference between the original time series and the filtered signal, is considered as a
noisy component.

The symmetry test based on the w? statistic [19] has been used for the estimation
of a possible number of wavelet coefficients related to the noisy part. The result of
the w? test has been independently checked by analyzing the autocorrelation function
behavior for the rejected part.

The w? symmetry criterion tests the symmetry against y = 0 of the distribution
function F'(y) of observables vy, . . ., Yn, i.€. the null-hypothesis Hy: F'(y) = 1—F(y).
The corresponding w? statistics has the following form:

wi=n [ [Fy)+ Fal-y) 1P dFa(y), (9)

where F,(y) is the empirical distribution function. It is more convenient to calculate
the values of statistics (9) using the following formula

n ; 2
2 _ n—j+1
wn:z [F"(_yj)_ ’
=1 n
where 91 < ... < ¥, is the variational series constructed on the basis of observables.

Figure 6 shows the dependence of w? values versus the number of rejected wavelet
coefficients. This dependence has the minimum at M = 768. The corresponding
packet size distribution (Fig. 7) passes the x?-test on the correspondence to the log-
normal distribution (see details in Section 4) with the significance level a = 18%.
One can also see from Fig. 6 that a possible maximal number of coefficients, that
can be eliminated without exceeding the 5%-significance level, is M = 1408 (this
amounts approximately to 70 % of the whole number K of coefficients).

The autocorrelation function [20]

x

K

;(yz}r - '!7) (yi - ?j) 1

C(r) == , g= T2V (10)
-0y i

1

can be also used as a criterion for the evaluation of the noisy part. The time series
corresponding to the noisy part must be uncorrelated. Figure 8 (left plot) presents
the dependence of the auto-correlation function for the noisy part corresponding to
different number of rejected coefficients M. This plot shows that up to M = 1408,
the rejected part can be considered as noisy.

In order to monitor the influence of rejection of the noisy part on the main part
of the traffic series (from the nonlinear analysis point of view), we also controlled
the behavior of the autocorrelation function for the smooth part of the series (7),
corresponding to a different number of rejected coefficients: see Fig. 8 (right plot).
One can clearly see that the rejection of smallest coefficients up to M = 1408 did
not influence seriously on the form of the autocorrelation function.

10
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Based on estimations of these two criteria, we came to the conclusion that it is
reasonable to assume that M = 1408. Figure 9 presents the original traffic series,
the filtered signal and the noisy part related to M = 1408 of rejected coefficients.

It is also interesting to check, how the filtering procedure influences the spectral
characteristics of the analyzed series. Figure 10 shows the dependence of Px(w)
against the angular frequency w for filtered signal (continuous curve) and original

11
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Figure 9: Traffic measurements: 1) original traffic series, 2) filtered signal, 3) noisy
part

(dashed curve) traffic measurements. This plot shows that the filtering procedure
increased the power of all frequencies contributing into low frequency region. At
the same time, all high frequencies starting approximately from w = 1.1 have been
significantly suppressed (see also Section 5).

4. Analysis of statistical characteristics of filtered series

In [3] we applied the Principal Components Analysis, especially the “Caterpillar”-
SSA approach [1, 2], to the network traffic measurements. This approach permits
to obtain the contribution (in decreasing order) of individual components into the
analyzed series. Figure 11 shows the corresponding dependence for two cases of
the caterpillar length [3]: Cp = 12 (left) and 20 (right). This information permits
to estimate the number of principal components which effectively contribute to the
“traffic series.
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In Fig. 12 we present similar dependences for traffic data after filtering out
the high-frequency part corresponding to M = 1408 smallest coefficients. One
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Figure 12: Contributions of eigenvalues in percentages for the traffic data after
filtering out the high-frequency part. The results are presented for two cases of the
caterpillar length: Cp, = 12 (left) and 20 (right)

can clearly see that the contribution of residual components noticeably decreased
compared to the original traffic data (Fig. 11). At the same time the contribution
of leading components significantly increased.

This result may play important role for decreasing the dimension of a process
describing the information traffic, but this may be the case, if the wavelet filtering
does not seriously disturb the statistical and dynamical characteristics of traffic
series.

We have demonstrated [4] that the aggregation of packet sizes of traffic measure-
ments forms the log-normal distribution. Later, applying the Principal Component
Analysis of traffic series [3], we found that just a few first components form the main
part of information traffic. The residual components play the role of small irregular
variations, which do not fit in the basic component of the network traffic and can
be eliminated as stochastic noise.

Taking into account the results of [3] and [4], it is important to analyze how the
filtering procedure influences on statistical characteristics of traffic series, namely,

1. does it disturb significantly the packet size distributions, corresponding to
leading components, and

2. how this procedure influences on residual components, whose contribution have
been significantly suppressed by the filtering procedure.
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4.1. PCA of filtered series: analysis of leading components

In order to check the influence of the wavelet filtering on packet size distributions,
corresponding to leading components, we applied the same procedure as in [3], i.e.
we tested the correspondence of these distributions to the log-normal function [21]:

A1
§(@) = <=z exp [~5z(ne — ) (1
Here z is the variable, o and u are the parameters of log-normal distribution and A
is the normalizing multiplier.

The fitting procedure has been realized with the help of the MINUIT package
[22] in the frame of well-known PAW (Physical Analysis Workstation, see details
in [23]). The MINUIT package is conceived as a tool to find the minimum value
of a multi-parameter function and to analyze the shape of the function around the
minimum [22].

Figure 13 demonstrates the results of fitting of packet size distributions, for the
filtered traffic series, corresponding to the sum of a different number N of leading
components (results presented here are for the caterpillar length Cr, = 20, see details
in [3]), by the function (11). Here x? is the calculated value of x? and v is the number
of degrees of freedom. Two lines parallel to the abscissa axes show the significance
levels (or the probability that the observed chi-square will exceed the value »* by
chance even for a correct model: see, for instance, [12, 21]) @ = 10% (the top line,
X2/v = 1.247, v = 47) and a = 42.9% (the bottom line, x%/v = 1.023, v = 47)
corresponding to the x2-test.

This dependence confirms our previous result, obtained in [3], concerning the
number of leading components that form the main part of information traffic. One
can clearly see that three leading components form the distribution that fits the
null-hypothesis (11) with a quite high correspondence level (a0 = 39.2%): see also
Fig. 14.

The dependence of x%/v versus the number N of leading components in Fig. 13
shows that

1. the maximal significance level of the x*-test corresponds to the sum of 3-4 first
leading components;

2. this dependence is compactly distributed near the corridor corresponding to
the admissible region for the x>-test.

Figure 15 shows the series reconstructed on the basis of the first, second and
third leading component, correspondingly, after the subtraction of the caterpillar
average value.

These series are very much similar to seria corresponding to the original traffic
data (see Fig. 8 in [3]). However, filtered series are visually more smooth compared
to original data. Their summary contribution into the analyzed time series is no-
ticeably higher (~ 54 %) compared to the original data (~ 40%): see Figs. 11 and

12 for C, = 20. 15
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4.2. PCA of filtered series: analysis of residual components

Figure 16 shows the series reconstructed on the basis of the smallest residual
component, namely, the component 20. It looks very similar to the same component
of the original traffic measurements (see Fig. 11 in [3]).

Figure 17 presents the statistical distribution corresponding to the series in
Fig 16. It quite well follows the Gaussian distribution (similar to Fig. 12 in {3]).

At the same time, the amplitude dispersion of the above series (Fig. 16) and
the standard deviation of its statistical distribution (Fig. 17) are significantly less
compared to the original data: see Figs. 11 and 12 in [3].
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5. Selection of feature components

Together with the increase of a number of residual components, their sum dis-
tribution starts gradually to lose the symmetric character. In order to estimate
the number of residual components that can be eliminated from the filtered time
series without influence on its main part, we applied here the statistical criterion of
symmetry based on the w?-statistic: see [19, 3].
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Figure 18 shows the dependences of the w? value versus the number of residual
components for original (left figure) and for filtered (right figure) traffic seria for the
caterpillar length Cp = 20. The horizontal line corresponds to the 5 %-significance
level.
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Figure 18: The dependences of the w? values versus the number n of the residual
components for original (left figure) and for filtered (right figure) traffic seria and
for the caterpillar length Cp, = 20

It is clearly seen that the w? value exceeds the reliable confidential level (corre-
sponding to the 5 %-significance level), when the number n of residual components
exceeds 10 for the original traffic measurements and 17 for the filtered series. This
result demonstrates that after the wavelet filtering the 17 smallest components can
be considered as noisy and can be eliminated from the whole set of principal com-
ponents. This result is in the agreement with the result obtained in Section 4 when
the x2-test was used: see Fig. 13.

Figure 19 shows the dependence of Px(w) against w for three leading components
(continuous curve) and for all components of the filtered signal (dashed curve).
This dependence clearly demonstrates that a low frequency region of traffic series
is formed by the three leading components. At the same time, for the sum of the
three leading components the contribution of frequencies higher than w > 0.35 is
significantly suppressed: see Fig. 20.

Conclusion

Applying the “Caterpillar”’-SSA analysis, wavelet filtering and statistical x* and
w? tests, we demonstrated that the main part of network traffic can be described by a
minimal number of feature components: three leading components for C, = 20. We
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also show that the series reconstructed on the basis of these components preserves
the main spectral characteristics of the original traffic measurements. This suggests
that all transformations performed under the original traffic series did not destroy
the dynamical characteristics of the traffic.

We expect that such simplification of a very complicated structure of the origi-
nal traffic series will open additional possibilities for development of more realistic
models of network traffic and serve as a basis for the elaboration of efficient Quality
of Service (QoS) tools.
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AnToHHOY 5. u ap. E11-2002-223
Beiipner-¢unsTpauns u3MepeHni HHGoOpMalHOHHOTO TpadHKa

AHanu3 u3MepeHuil ungopmaionHoro TpagHka Ha ocHose nonxona «Cater-
pillar»-SSA 1 cOBMECTHOTO IIPUMEHEHHS CTATHCTHYECKHX KPHTEPHEB %% u o mo-

380N pa3buth HaGOp MPHHUMIHANBHBIX KOMIIOHEHTOB Ha nBa Kiacca. Ilepebrit
KJ1acC BKJIIOYAET JIMAMPYIOIIHE KOMIIOHEHTbI, OTBETCTBEHHbIE 3a (hOpPMHPOBaHHE
OCHOBHOTO BKJIaJla CETEBOro Tpaguka, BTOpOi CONEPXUT OCTATOYHBIE KOMIIOHEH-
Thi, KOTOPbIE MOXHO MHTEpIIPETHPOBaTh KaK WIyM. JleTanbHeIH aHATH3 IPOMEXY-
TOYHO# 06IACTH MEXY 3THMH KJIacCaMH MOXET JaTh NOTIONHUTENBHYI0 HHGOpMa-
LIMIO O KOMIIOHEeHTax TpadMKa H, TAKHM 06pa3oM, YIIPOCTHTh MOHMMaHHE €ro JH-
HaMUKH. B 3TOil CBA3M MBI IIPUMEHWIH BEHBIET-QUILTPALHI0 K H3MEPEHHAM
TpathuKa H UCC/CNOBAIH €€ BIUIHUE KaK Ha OTHEIIbHBIC MPUHLIUIHAIBHBIE KOMIIO-
HEHTHI, TaK H Ha CyMMapHbie pacrpeleneHus JHAUPYIOLIMX U OCTaTOYHBIX KOMIIO-
HEHTOB.

Pa6ota BoinonHeHa B Jlaboparopun HHGopMalHOHHBIX TexHonoruin OWSIH.

Coobmenne O6beIMHEHHOTO HHCTHTYTa SEPHBIX HccnenoBaHHui. [y6na, 2002

Antoniou I. et al. E11-2002-223
Wavelet Filtering of Network Traffic Measurements

The «Caterpillar»-SSA and statistical analysis of network traffic measure-
ments based on the joint utilization of x 2 and & tests provided the possibility to di-
vide the whole set of components into two classes. The first class includes leading
components responsible for the main contribution to network traffic, and the sec-
ond class involves residual components that can be interpreted as noise. More de-
tailed analysis of the boundary region between these two classes may give addi-
tional information on traffic components and, thus, simplify the understanding
of traffic dynamics. In this connection, we apply wavelet filtering to traffic mea-
surements, and analyze its influence both on the characteristics of individual prin-
cipal components and on the sum distributions of leading and residual compo-
nents.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2002




Maker T. E. Ilonexo

Tloanucano B neyars 15.11.2002.
®opmar 60 X 90/16. Bymara opcernas. ITevars odpcetras.
Ven. new. 1. 1,5. Vu.-u3n. n. 2,34. Tupax 310 3k3. 3axa3 Ne 53617.

Wanarensckuit oraen O6GseXHHEHHOIO HHCTHTYTa AJEPHBIX HCCIEAOBaHMH
141980, r. Iy6Ha, Mockosckas 06u1., yi1. XKomno-KiopH, 6.
E-mail: publish@pds.jinr.ru
www_jinr.ru/publish/



