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1 Introduction

We apply a not yet widely kriown physically transparent analytical method to calculation
of thicknesses and number of layers in multilayer systems (MS) to achieve a high critical
angle.

Usually MS consist of many bilayers of two materials with different refraction indices,
and the thickness a; of the bilayer varies with its number ¢ according to theoretical pre-
scriptions of [1]. In such a stuck all the bilayers have different thicknesses, and the change
of neighboring layers is very small. We consider here a different construction: the MS
consists of several periodic chains, and we show how to find the period, number of periods
for every chain, and number of chains to achieve the critical angle we wish.

Applications of MS in experiments are discussed in many review papers (see, for
instance [2, 3] and references there in), and we do not dwell on it too much. We only
want to add some references [4] - [10], which were not mentioned in [3].

In [4, 5, 6, 7] the MS were used for polarization of neutrons by transmission [4] through
them, by transportation along magnetized neutron guides [5, 7], and by splitting of un-
polarized beam by a magnetized supermirror [6]. In {8] the pulsed beam was produced
by reflection from a supermirror periodically magnetized in external field. In [9] super-
mirrors were used in neutron guides to increase the transmitted flux. Some research on
fabrication of supermirrors was presented in [10].

In our present paper we consider MS for polarization of neutrons. This purpose deter-
mines materials for bilayers. However our analytical method is not limited to this purpose
but is applicable to all MS, even to those that contain more than two materials.

2 Owur method

First of all we should mention one difference of our approach comparing to commonly used
one. We consider reflection in terms of normal component &, of the incident neutron wave
vector instead of the incidence angle. It is more convenient because reflection of a mirror
at a given angle depends also on wave length, whereas in terms of the wave vector k it
depends only on k; and properties of the mirror. In the following we even omit the index
L, and use simply k, because we deal only with specular reflection and for that the one
dimension is sufficient.

To be more precise we consider a neutron propagating along z-axis normal to the
supermirror, and calculate its reflection from the supermirror, which is a set of alternating
layers of two materials. One of them is represented by a potential barrier of height wu,
and width /;, and another one is represented by a potential well of height w,, and width
l,. The potential barrier with ; — oo totally reflects neutrons with &% < ws, and /us
is called critical number k.. It is convenient to use 1/k. as a unit of length, then all the
variables become dimensionless, the barrier becomes of height u,. = 1, and the critical
number is also unity. In the following we use a somewhat different normalization. We
take for unity the difference up — u,,, and for the unit length 1/y/up — .

We look for such MSs which give total reflection up to some K. > k. = 1. In principle
K, can be arbitrary large, but practically it is possible achieve K, not larger than 4.

Our analytical method is based on an observation [11, 12] that every potential can be
split by an infinitesimal gap into two separate ones, as shown in fig. 1, and the reflection
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Figure 1: Every potential can be split by an infinitesimal gap of width ¢ — 0, into
two ones, and the splitting does not change their reflection and transmission properties,
because of total transmission of the gap.

of the composite potential R, is represented as the combination of reflections R; and
transmissions T of the separate barriers:

Ry

Ry =Ry + Tfm, 1)

where the denominator corresponds to multiple reflections inside the gap. For simplicity
in (1) we did not take into account asymmetry of the potentials, we discuss it when
needed.

The expression (1) gives immediately the result [13] for a semiinfinite periodic poten-
tial. If a single period of the potential is characterized by reflection and transmission
amplitudes r and ¢ respectively, then reflection amplitude of the whole potential (denoted
Ry in [1]: eg-s (14-16) there) is

R:\/(1+r)2—t2—\/(1—r)2—t2’ -
Ja+r -+ /a-r-1

and the Bloch phase factor (denoted by & in [1]: eg-s (12), (13) there) is

VA2 —r2 = (1= 1) =2
Va2 =24 J1 -2 -2

where a is the period width, and ¢ is the Bloch wave number. At Bragg reflection R =
exp(tx) and exp(iga) = exp(—q'a) with real x, and ¢’. (We neglect here imaginary part
of the potential.)

With the equations (2),(3) we can find [11] reflection, Ry, and transmission, T,
amplitudes of the periodic chain with finite number N of the periods:

3)

exp(iqa) =

1 — exp(2iqalN) 1 - R?

= Ty = rqa N . 4
Bin R1~Rzexp(2ian)7 v = expliga )1—R2 exp(2tqaNN) )

To see how do these formulas work we need to define the single period and its amplitudes
rand t. A single period is a bilayer. It consists of a potential well and barrier. This period



Figure 2: A period containing a well and barrier, can be rearranged to symmetrical form.

is nonsymmetrical, but we can make it symmetrical by shifting the barrier as shown in fig.
2. This rearrangement is not principal, as we see later, but it facilitates our mathematics.
For symmetrical period of width a = [,, + [, we can immediately find amplitudes r and ¢:

1 — exp(2ikyly) 1-72, (5)
v r2. exp(2iksly)’ - 1 —r2, exp(2iksly)’

— eikwlwr . ikwlweikblb

where kyp = 1/k? — Uwp, rup = (kuw —kb)/(kw + k) and potentials may contain imaginary
part because of losses.

Substitution of them into (2) and (4) gives the result shown in fig. 3 and 4. In fig.
3 we see the Bragg reflection with unit amplitude in the interval A called width of the
Darwin table. By decreasing /,, and [, we can shift the interval A toward larger k, and, if
we can built a system of semiinfinite potentials with different periods in such a way that
intervals A would overlap as intervals D in fig. 5, we can considerably increase k..

However we can build periodic chains only with finite number of periods, so we must
use |Ry| of (4), which at Darwin table is smaller than unity because of exp(—2¢'Na) in
the nominator. This factor is small when N is large. If we tolerate reflection |Ry| =1 —¢
with some small {, we must have
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Figure 3: Reflection amplitude |R(k)| of a semiinfinite periodic potential with period
containing the potential well of depth w,, = 0.5 and width [, = 1, and the barrier of the
height 1 and width [, = 1.
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Figure 4: Reflection amplitude |Ry| of the periodic potential with N = 8 periods. The
parameters of a single period are the same as in fig. 3.

So the strategy is very clear. We step by step cover the range of k, we needed, by overlap-
ping intervals A’ < A, and tuning parameters [, {3, N find maximal A’ to minimize the
number of required chains, and therefore the total number of layers. To proceed further
it is more convenient to transform (2,3) to the form

_ Veos ¢+ [r| — \Jeos & — Ir| _ V/Re(r) + [r[2 — \/Re(r) — |r[2
\/cosgb—{— |r| + \/COS¢— Ir] \/Re(r) +r2+ \/Re(r) - |7‘|27

e _ Vs =y /—sing — 1] \/Re(t) [t — /Re(t) — |17
Vosing 4t/ sing — [t /Re(t) + [t12 + /Re(t) — [¢]2

where ¢ is the phase and Re(r,t) are real parts of amplitudes r, ¢ respectively. To derive
(7,8) we use the relations valid for arbitrary potential [14]:

(7)

(®)

r=e?lr|, t=xie®t], r?—1t?=e"9 (9)

From (7) it follows that R is a unit complex number exp(ix), when |r|? > [Re(r)|.
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Figure 5: A system of periodic potentials with overlapping Bragg peaks of widths D; gives
total reflection in a range of & considerably wider than the common case 0 < k < 1.



3 Algorithm of calculations of [, [,, N and A’

Substitution of (5) into (7) and (8) in the case k? > u; gives

ky tan(kyly/2) — ky cot(kyly/2) kytan(kyly/2) + ks tan(ksly/2)

_ \/ ky tan(kyly) — ks cot(kyly) \/kb tan(kyly/2) + ky, tan(kely/2)
[k tan(kulw/2) — kw cot(ksly/2) ko tan(kyly /2) + ks tan(ksls/2)
\/ o tan(kuly) — ky cob(ksls) | ka T (kuly/2) T Fo tan(kuls/2)

(10)

. COS ¢y + T'yyp COS P SIN @y + Topp Sin P
_ \/cos @1 — Tuph COS P - ¢sin b1 — Top Sin P (1
COS Py + Typ COS P_ Sin @y + rypsing_
\/cos P4 — Taph COS P \/sin by — T Sin P
~and

. cos? ¢y — 12 cosp_ —1/—sin® ¢y + 12, sin? ¢
oo _ 05 0y —rlycost g — /- sin’ gy 1, sin’ § 2

\/c052 ¢y — 12, cos? P + \/— sin® ¢y + r2, sin® ¢_ 7
where ¢4 = (kyly, £ koly)/2. Tt is easy to check that at the limit [ — 0 we obtain R — 0
and ¢ = ky,, and at [, — 0 we obtain R — ryp, ¢ — ky.
If k% < up instead of (11, 12) we obtain

R \/cos2 €. —exp(—2kjly) cos? &4 — i\/sin2 & — exp(—2k}l,) sin? &, (13)
- \/c052 € — exp(—2kjly) cos? &4 + i\/sin2 £ —exp(—2k}ly) sin? &, ’

siné_ — exp(—kjly) sin &4 | cos€- — exp(—kply) cos &
0 siné_ + exp(—k} b) sin €4 cos - + exp(—kjly) cos &4 (14)
€ = )
siné_ — exp(—kjly) sin &4 cos €. — exp(— k p) cos &4
sin §_ + exp(—kjly) sin &4 cos - + exp(—kjly) cos €4

where & = kyly/2 £ ¢o, po = arccos(ky/+/us — uy,) and k) = up — k2.

It is easy to check that in the limit {,, — 0 the periodic potential degenerates to
potential step and we obtain R — ry; = exp(—2i¢o), ¢ = 1k’ In the limit [, — 0 barriers
disappear, and we obtain empty space with R =0 and q = k,,

Now we consider k% > u;. The Bragg reflections take place when expressions under
two square roots in (11) have opposite signs. It happens when |cos ¢4 | < ryp|cos é_|, or
[sing.| < ryp|singy], ie. for mn/2 — ¢ < ¢y < mn/2 + ¢, where n is integer. The half
width of the Bragg reflection d¢ = ryp|cos _| for odd n, and ¢ = r,,|sin ¢_| for even
n. To get this width maximal we must have ¢_ = 7m for odd n and ¢_ = 7m 4 7 /2 for
even n (m is also integer).

From these considerations we obtain, that if we want to have the total reflection at
some k = k, we must require at this point ksl + kylw = 7 and kyl, — kyly = 0, and
immediately find two parameters [, = m/2k;, and [, = 7 /2k,, (as was correctly used in [1],
eq. (7)). We can also require kply + kylw = 2m and kyl, — kyly = 7, and find two other
parameters [, = 7 /2ky, and {,, = 3m/2k,,.
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Figure 6: The MS should contain also a barrier of large width [y to provide total reflection
almost up to k =1

We cannot use the full width A of the Darwin table, because the total reflection inside
it is possible only for infinite number of periods. We need to find such A’ and N which
will give the maximal effective length 6 = A’/N covered by a single period.

For optimization we represent (12) in the form

—q'a_l_QN

=307 (—=2Q), where Q=

[&

\] cos?(¢p_)r2, — cos?(¢4) (15)

¥ (6y) — st (go )y
In the case of small r,; we can expand ¢ near point k, where ¢, = 7n/2 and approximate

(15) as
Q= Tup \/1 - (I/EO)Z’ (16)

where = = (k — k,)/k, and zo ~ 2r,k2kE/mnkl(k2 + k). We see, that zo, and therefore
the width of the Darwin table is largest for n = 1. Thus it is the best to require ¢4 = /2.
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Figure 7: Dependence of reflection coefficient |R|? of FeCo-Si MS on k. MS consists of a
wide barrier of width 20 and 34 chains with different number of periods. Total number of
bilayers is 1947. Critical k, for FeCo is equal to 1. Potentials do not include imaginary
parts.

Now we need to find the ends k,. of the Darwin table around k,. They depend on
what deviation from total reflection we tolerate. If we tolerate |R|* =1 — 2(, then

Q@ = —In(¢)/4N. (17
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Figure 8: Dependence of reflection coefficient |R|? of FeCo-Si MS on k. Parameters of
MS are the same as for fig. 7. Potentials include imaginary parts

(2Y =1~ (L) (19

To find the optimal number N of periods we require the maximal effective width of §k
covered by a single period, i.e. we seek a maximum of (k, — k,)/N. This requirement
gives

From it we find

In¢
and f 912 3
5k = |kye — ky| = kymo—oo Varukik 3ku7'wb7 (20)

2 wky(k2 + k)

where k,,, ky and r,; are determined for k = k,. If we tolerate 2( = 1%, then N = 2.6/r.
If we use another condition ¢_ = 7/2 we find that zo is approximately 2 times lower. So
to use this condition is not profitable.

Now, the interval A’ = 26k = (\/g/Tl')k,_,wa around k, is closed, and we can make the
step to a new k), = k, + A’ and find a new periodic chain around the point k/,. In practice
we made steps A’ = 26k /1.1 to ensure the overlapping of the intervals, because every next
width dk is a little bit lower than the preceding one.

In fig. 7 the reflection coefficient |R|? is shown for MS consisting of 1947 bilayers
with positions of the Bragg peaks chosen as prescribed above. The starting point was
k, = 1.12. It was found empirically. We see that reflection coefficient is perfectly equal
to one.

Above we did not take into account imaginary part of the potential, however formulas
(2 —5) and (10 — 12)— are valid for arbitrary potentials, so to take into account losses or
gains (in the case of active media) we need only substitute in k,, and k, complex potentials
Uyp = Uy, — i1, y, where minus sign means losses for u” > 0. Of course, the number and
widths of layers in periodic chains and the widths of the Bragg peaks are real numbers so
for them we must use absolute magnitudes.

The result of calculations for the real systems FeCo-TiZr, which is similar for FeCo-Si,
is shown in fig. 8. Here the number of bilayers is the same as in fig. 7, and we see that



reflection coeflicient deviates from unity. It means that our requirement (17) with small
¢ is not necessary, because the makes us be tolerable to stronger deviation of the Bragg
reflection from unity. So we can strongly decrease the number of periods in every chain.

In fig. 9 we show how reflection coeflicient presented in fig. 7 changes, when number
of bilayers is decreased to 271. We see that now it becomes alike to the one shown in
fig. 8. If we account for imaginary parts of potentials then for the real system FeCo-TiZr
with 271 bilayers we obtain the reflection coefficient shown in fig. 10

In the case we are satisfied with smaller increase of the critical angle, we need even
smaller number of layers. In fig. 11 we show reflection coefficient for FeCo-TiZr with only
46 bilayers. The parameters of these bilayers are shown in tabl. 1.

4 Reflection from the set of chains

If we have two chains with reflection and transmission amplitudes Ru;, Tn; (i = 1,2),
then reflection Ry from two chains from the left (the chain 1 is to the right of the chain
2) is

T%, Ryt
Ry = Ryy + — 82— 21
21 N2 + 1= RuoBon (21)
Addition of the third chain to the left side gives the set with reflection amplitude
TrsFn
= A 22
R3o1 = Rys + 1~ Rualon (22)

Four chains will have reflection amplitude R4z and so on. It is a simple algorithm to
calculate reflection from all the chains, and at the end we must add a single wide barrier
as shown in fig. 6, which provides total reflection for all £ almost up to k = 1. Because of
finite width /o of the first barrier, its reflectivity drops near k¥ = 1. Indeed, the reflection
from the barrier is

1- ky — 1k}
r= mb;@o where 7. = —Z,b—7 ky = k2 —uy, ki =+1—k2,
ky + ik} b

and Qo = exp(—20k}).

para- 1 2 3 4 5 6 7 8 9 10 11 12

meters
k, 112 | 132144 ] 1.55 [ 1.65 | 1.73 | 1.81 | 1.90 | 1.96 | 2.03 | 2.09 | 2.15
ly 3111184 ] 1.5 | 1.331 | 1.20 | 1.11 | 1.04 | 0.98 | 0.93 | 0.89 | 0.86 | 0.82
Ly 1.40 1 1.20 | 1.09 | 1.01 | 0.95|0.91 {0.87|0.83|0.80|0.78 [ 0.75 | 0.73
N 3 3 | 3 3 3 4 4 4 4 5 5 5

Table 1: Parameters of 12 periodic chains with reflection coefficient shown in fig. 11. k,
is position of the Bragg peak, l,,, [, and N are the widths of TiZr (or Si) and FeCo layers,
and the number of bilayers respectively for the chain with the Bragg reflection centered
at k,. Total number of bilayers is 46.
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Figure 9: Dependence of reflection coefficient |R[? of the same system as in fig. 7 with
number of periods in every periodic chain strongly decreased. Total number of bilayers is

271.

Suppose, we tolerate, when |r| = 1 — (. Near the critical point & = 1 reflection
coeflicient can be approximated as
; 1=0Qo)? k*
P = e B 1 -
(1 —Q0)? + 16k2k2Q0 2

so, if we want to have |r|? to be everywhere in 0 < k < 1 larger than 1 — ¢, we must
choose lp = 2/+/C. In particular, for ( = 0.01 we must choose Iy = 20. In all the fig-s.
7 — 11 we used this width of the first barrier. However, if we take into account losses,
this parameter is not too much critical. To show that we demonstrate fig. 12, which is
calculated 12 chains of FeCo-TiZr MS with parameters, shown in table 1, and for {; = 8.
Though reflection of smaller first barrier can be a little bit less the losses in it are also
less, so the result is nearly the same. So practically we have no gain, if increase the totally
reflecting layer too much.

5 Asymmetry of the period

Above we considered the case when periods of periodical chains are symmetrical, i.e.
barrier of width [, is surrounded on both sides with wells of width {,,/2, i.e. it is represented
as a threelayer. In practice it is more simple to consider the period as a bilayer consisting
of the well of width /,, and the barrier of the width I,. Such a period is not symmetrical. Its
reflection from the left r; is not equal to reflection from the right, r,, though transmissions
from both sides is equal and is given by formula (5). The amplitudes r; and r, for the
bilayer are

1-— eXp(Qikblb) o eikwlw 1-— exp(2ikblb)

o ) B PR el G ) N
1 —r2, exp(2ikpls) 1 —r2, exp(2iksly)

r = €2zkwlw7,, r,

(23)
where r is reflection of the symmetrical period shown in (5). With nonsymmietrical period
expression (2) should be modified. For instance, reflection from the semiinfinite periodic
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Figure 10: Dependence of reflection coefficient |R|? of FeCo-TiZr MS on k. Parameters
of MS are the same as for fig. 8, but the number of bilayers is only 271.

potential beginning with the well we have R; =

ﬁ\/ww — 12— \/(1~\/_1)2~t2 _eikwlwwur)utz—\/(1—r)2—t2

e JUU+ ) = 24, (1= ) — 2 Ja+rz—e 4 1 —rp -
(24)
or it is exp(ikylw)R, where R is symmetrical amplitude given by (2). The reflection
from semiinfinite periodic potential beginning with the barrler will be exp(—ikyly,)R, i.e.
asymmetry of r is inherited by R.

Equation (3) for the Bloch phase factor does not change, because instead of r? it
contains r;r,, which is identical to 2. Now it is easy to understand that reflection of
a finite number periods Ry for asymmetrical period will change in the same way as R,
i.e. for reflection from the left and right we have Ry, = exp(Likyl, )Ry, where Ry
is for the symmetrical period. Now we need to see what happens when we stack two
nonsymmetrical chains. For that we need to generalize expression (1) for nonsymmetrical
potentials 1 and 2 shown in fig. 1. This generalized expression is

R
Rpyo=Ry + TP —"——, 2
12 i ol Y 1~ R.Ep’ ( 5)
where indices [, r denote reflection from the left and right respectively.
Taking into account this generalization we represent (21) in the form
T3y exp(ikullur — lus]) By
Rigy = eFolwr | Ry N2 €XP(ikw[lur 2]) B (26)

1 — Ryo eXp(ikw[lwl - lwz])RNl

where asymmetry is explicitly represented by the factor exp(iky [l — ly2]). It is easy
to prove that, if the chain 1 at some k gives total reflection, i.e. Ryi = exp(ix), then
inclusion of chain 2 will not destroy this total reflection, i.e. Ry for these k is also a unit
complex number: Ry = exp(ix’). Indeed, taking into ‘account relations (9), which are
valid for Ry and T, we can transform (26) as follows

Riyp = - oulturtuilixtaies 1~ [Rnal exp(—tku [l — lua] —ig2 —f'x), (2n)
1 — |Rna| exp(iky[lun — lw?]»‘l‘ iy +1X)

10
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Figure 11: Reflection of 46 bilayers of FeCo-TiZr system with account of losses. Parame-
ters of layers are shown in table 1.

where ¢, is the phase of the amplitude Ry,. Since the last factor is of the form exp(i¢))
the whole Ryg; is also of the form exp(ix’) which corresponds to the total reflection.

Of course, all these relations are precise only for real potentials. Imaginary part of the
potentials gives a correction to them, and the smaller is imaginary part the smaller is the
correction.

6 Similarity of all the MS systems

All the MS can be represented as a system with barriers of height 1, and wells of height
0. Indeed, if in a real system barriers have the potential up, and wells — the potential
Uy, then the potential step between well and barrier is uj — u,,, and we can normalize this
difference to unity, and take as a unit length the critical wave length X = A/1/2m(up — uy.
So, calculations for all the real systems is the same. The only difference is that at the
end we need to include reflection amplitude from the potential step from vacuum to the
well. This potential step is now has normalized potential @, = w.,/(up — uy). If reflection
amplitude from MS without this correction is R, then after correction it will be

1-r2)R k—ky, fe—
m, where Tow = P T kw7 kw = k2 — Uy -

We applied our method to real physical system, and considered only 34 chains, though
it is not principal. With these chains we are able to triple the critical angle. To double it
it is sufficient to have only 12 chains. Their parameters are presented in Table 1. The first
row shows the points &, which are centers of the Bragg peaks. The first number &k, = 1.12
was chosen empirically. Next two rows show the width of the wells [, and barriers [,
for those k,, And the last line shows the number of periods in every chain. We do not
present here the numbers of periods that give the perfect reflection for real potentials and
requires 324 bilayers. We show here the numbers of periods that give reflection fig. 11
and 12 with 46 bilayers, and which is nearly the same as reflection for real system with
324 bilayers as can be seen from comparison with fig. 8.

Tow +
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Figure 12: Reflection of 46 bilayers of FeCo-TiZr system with account of losses. Parame-
ters of layers are shown in table 1. The width of the first barrier is 8.

Imaginary parts for potentials of real systems were normalized to difference of real
parts of up—u,,. Thus for FeCo-Si system in which Si are wells with u,, = 54.4—16.25%x107*
neV and FeCo are barriers with us = 330.7 — 16.40 * 1072 neV, the normalised potentials
are up = 1 —12-107* and u, = 0—1:2.3-107.

In FeCo-TiZr system the normalized imaginary part of FeCo is & 3 - 107*, and that
of TiZr ~ 1107 The main effect of losses comes from imaginary part of FeCo, so the
results of calculations for real systems with Si and TiZr give nearly the same result.

The width of the first wide barrier for real systems can be taken equal to 8 instead of 20,
required for perfect system with no losses. Accounting for losses shows that the increase
of the first barrier only increases losses in the whole range of energies and decreases the
total reflection.

7 Conclusion

We presented the method of calculation of a supermirror, having high critical angle of
total reflection. We suppose that our method has some advantage, because it is analytical,
and therefore more controllable. Change of parameters 1, and &/, from chain to chain
is sufficiently large and therefore is less prone to errors related to technology of layers
preparation. There is only few change of parameters comparing to common way, when
the parameters change almost continuously, and 6l;, 8{,, become lower than a monolayer.
Such a small change of width is almost impossible to control.

We want also to add that though our analytical method is very good for analysis,
it is too slow for calculations. So, the calculation of reflection coefficient, after all the
parameters were defined, was performed numerically with the matrix method.

We have shown here how to prepare MS by increasing the range of total reflection
step by step. However it is possible to proceed differently. We can put one bilayer on a
substrate and calculate its reflection. Then put another bilayer with parameters scanned
in some intervals, choose parameters, which give the larger increase of the reflectivity.
Then look for parameters of third bilayer and so on. If we do not restrict thickness of
layers, we can get with 200 bilayers a good reflectivity as shown in fig. 13 for some
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Figure 13: Reflection of 399 layers for a model system with u, = —1

model system with u, = —1 even for interval k = 4k.'. However in these bilayers some
thicknesses are of the order 0.1 of interatomic distance. It is clear that it is impossible
to achieve a good homogeneity for such thicknesses. We can restrict thicknesses to some
values when scanning in the parameter space. It may give a multilayer system with smaller
number of layers and with not perfect, but well tolerable reflectivity in a wide enough
interval of k. ’

Though this try and error method may give a tolerable reflection with smaller num-
ber of periods, the step by step method is promising for improving the technology for
preparation of MSs. When we know exact thickness of a single monolayer we can prepare
layers with better surfaces, and we can control the perfectness of the layers by comparing
calculated and really obtained reflectivities in a wide range of energies.

. We considered here only reflection of neutrons from MSs. There is no problem to
apply our method also to x-rays. However to do that we should find a better way to
optimize number of layers when we account for imaginary parts of the potentials. In the
case of neutrons the number of layers can be easily found somewhat empirically. In the
case of x-rays we can do the same, however because the imaginary parts for x-rays are
considerably higher the analytical analysis must be more reliable.
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AJITOPMTM NPUTOTOBICHUSA MHOIOCTIOMHBIX CHCTEM
C BBICOKMM KPUTHYECKUM YITIOM IIOJIHOIO OTPAXEHH:

H3anaraeTcs HOBBIH aHATHTHYECKMI MOAXOM K AHATH3Y MHOTOC/IOHHBIX CHCTEM.
OH MO3BOJIAET CTPOTO PACCYMTATH TOILIMHEI M YHCIIO CIIOEB, HEOOXOMHMBIE 114 TO-
JydeHus ONM3KOro K IOJIHOMY OTPaXeHH4 1JI1 3aRaHHOTO (B MIPHHIIMIIE IIPOH3BOJIb-
HO BBICOKOT0) KPHTHYECKOIO YIJa.

JleMOHCTpHpYeTcs MPHIOXEHHE HOBOIO NMONXO0Aa K PealbHbIM CHCTEMAM.

PaGota BbimonHena B Jlaboparopuu HeiTpoHHOH ¢usuku um. M. M. ®dpanka
OUIU.

Coobmenne OGbeqMHEHHOTO HHCTHTYTa SAEPHBIX MccnenoBanuil. Jy6Ha, 2002

Carron 1., Ignatovich V. ' E4-2002-264
Algorithm for Preparation of Multilayer Systems
with. High Critical Angle of Total Reflection

The new development of theory of multilayer systems is presented. It shows
precisely how to calculate thicknesses and number of layers to get reflectivity
close to unity for a given, in principle, arbitrary critical angle.

Application of the new approach to real systems is demonstrated.

The investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR.
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