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1 Introduction

Automata Networks were originally introduced in [1, 2, 3, 4] as models for physical
and biological phenomena. Automata networks are discrete dynamical systems [5].
The state space of an automata network is defined by a graph, where each vertex
takes state in a finite set and arcs represent vertex dependencies. The state of a
vertex is changed according to a transition rule which takes into account only the
state of its neighbors. The global dynamics is determined by a strategy of the local
transition rules application.

Two important classes of Automata Networks are Cellular Automata and Neural
Networks.

Hyperbolic Cellular Automata (HCA) [12, 13] are Automata Networks based on It-
erated Function Systems [6] and originally were designed for constructing fractal
objects [7, 8]. However, they are in their own right and can be studied, for example,
in the context of the computer simulation theory [9]. Hyperbolic Cellular Automata
can be considered as a generalization of Cellular Automata: the main difference lies
in the fact that a hyperbolic cellular automaton has non-regular structure of the cell
neighborhood system. The distinguishing feature of a Hyperbolic Cellular Automata
is that its neighborhood system is determined by a Hyperbolic Iterated Function Sys-
tem.

A Hyperbolic Iterated Function System (IFS) specifies a discrete dissipative dynam-
ical system. An IFS consists of a set of contractive functions on a complete metric
space which induces a more complex contractive function F' acting on the set of
compact subsets of the metric space. Due to the contractivity of F' there is a unique
attractor Ap that satisfies Ar = F(Ar). Furthermore, any set A will be eventually
mapped onto the attractor Ar under repeated application of the function F. Usu-
ally contractive affine transformations are used for the specification of an IFS.

Evolving Algebras (known also as Abstract State Machines) have been proposed by
Yuri Gurevich [10, 11] as the models for arbitrary computational processes. They
are finite many-sorted dynamic algebras representing state transitions and describ-
ing operational semantics of discrete dynamical systems. They may be tailored to
any desired level of abstraction. System states are represented here as static al-
gebras, the dynamics is described by a set of transition rules. Evolving Algebras
provide a formal method for ezecutable specifications.



Several approaches are possible to using Evolving Algebras for specification of Hy-
perbolic Cellular Automata. One of them is outlined in this talk as the first step on
the way of applying Evolving Algebra formalism to Hyperbolic Cellular Automata.

2 TIterated Function Systems

Aa Iterated Function System is a structure

F=((X,d),f1,f2,...,f]v), (1)

where (X, d) is a complete metric space, with metric d, f; : X — X, a contiguous
function Vi. An IFS F induces an operator F : H(X) — H(X), where H(X), the
space of all compact subsets of X

F=U+ )

i=1

The metric space (H(X), h), with Hausdorff metric h, is also complete. When the
functions f; are contractions, the IFS is hyperbolic. In this case, there is a compact
subset Ar of X which is the fixed point of the operator F’

JAr € H(X): Ar = F(Ap). (3)

Such a set is called the attractor of the IFS F'. The pair (H(X), F) is a set dynamical
system whose attractive point is a set (rather than a point) - the attractor Ap.
Realizing the dynamics of such a dynamical system, we can build a fractal set.
The Hausdorff metric is defined as follows:

h(A, B) = max(ds(A, B),ds(B, 4)), A, B € H(X), (4)

where
d5(4, B) = max min(d(z,y)).

We are dealing here with hyperbolic IFSs with all f; affine transformations.

2.1 IFS Approximation of Sets

We can conveniently work in the unit square S = [0,1] x [0,1] ¢ R* § = [0,1] x
[0,1] C IR? for the space X. The IFS under consideration is appropriately scaled to
fit into S.

In practice, we are dealing with an approzimation of the attractor of an IFS rather
than with the attractor itself. We work not in the space X but in its pixel repre-
sentation X and, therefore, we deal not with (H(X ), h) but with (H(X),h) and,
correspondingly, with ' = (f,..., fq) and S. In what follows under S, F and f we

mean S , Fand f, respectively.



One way to build a set, specified by IFS, looks as follows. We take an initial
Ap € H(X) and define

A1 =F(A,) = Of,-(An), n=0,...,00. (5)

The sequence {A,}32, converges to Ar in the Hausdorff metric. We do N itera-
tions of F. When the number N of iterations becomes great enough, we have an
approximation

FN(Ay) ~ Ap. (6)

3 Hyperbolic Cellular Automata

We define a Hyperbolic Cellular Automaton (HCA) o as a structure

(C,A, Sy, N,A), (7)
where
e C is a set of cells;
e A is an alphabet of states (attributes);
e S: C — Ais a state, So an initial state;

e N: C — P(C) is a neighborhood system, P(C) is the power-set of C,
Vee C: N(c) is the neighborhood of c;

e A: ¥ — X is a global dynamic rule (GDR), ¥ ={S|S is a state}.

At Sy — S, n=12,...,.M (8)

The global dynamic rule A comes about from the local dynamic rules (LDRs)

0t Ly — 4, 9)

where Sy () is the restriction of S to N(c). Every LDR &, gives a new state value to
the cell ¢ as a function of cell states from the neighborhood N(c) of c¢. The action
of A

A(S) = U S[S(e) < 8.(Sn)), (10)

ceC

is the union of the states obtained by replacing the state of each cell ¢ accordingly
to d.



Hyperbolic Cellular Automata can be considered as a generalization of ’Cellular Au-
tomata’, the main difference is our Hyperbolic Cellular Automata have a non-regular
structure of the system of the cell neighborhoods. There is no common template
of vicinity for cells, the neighborhoods of cells have variable cardinality and, hence,
the LDRs have a variable arity. There are possible cases when ¢ ¢ N(c) and even

N(c) = {0}.

A hyperbolic cellular automaton o works as follows. If an initial state Sy is given,
it iteratively applies the GDR A until it reaches a steady attractive state Sa:

So 258 28,4 . A8,

The cells work synchronously in parallel governed by some global synchronization
signals.

4 From Iterated Function Systems to Hyperbolic Cellular
Automata

When we want to realize the dynamics of a digitized hyperbolic IFS

F = ((X: d)7f1af27 "')fk)

with the helf) of a Hyperbolic Cellular Automaton o, we have the following picture.
As C, we take a regular lattice of some dimensionality m. In a practically interesting
case, m = 2 and C = {(4,5)|¢ = 1,...,p,j = 1,...,q}. The alphabet of states
A = {0,1}. The cell neighborhoods are defined by the inverses of the IFS’s functions

VeeC: N(c)= Lkai‘l(c). (11)

i=1

The LDRs 6. are the same for all cells ¢

1 if3¢ € N(c) S(¢) =1

0 otherwise. (12)

Vee C: 6C(SN(c)) = {

We take as C' the unit square S* of pixels and obtain the neighborhoods N(c) with
the help of our Algorithm described in [7].
The whole process of going from an nitial IFS

F=((X,d), f1, f2- f&) & F=U#

to the corresponding Hyperbolic Cellular Automaton o looks like the following. Fist
of all, we go to the dynamical system

((H(X), h), F),



then, after digitization and scaling, to the dynamical system
((H(5*),h), F),

where S* is the unit square.
Eventually we construct the Hyperbolic Cellular Automaton

(Su’{o’l})NaAO,A) & N= U U f_l(S).

SESY feF

We start the dynamical process, beginning from a compact set Ay C S¥, and after a
big enough number M of iterations get an approximation Ay, of the IFS’s attractor
AF:

A*1A0—>AM%AF.

5 Evolving Algebras

Evolving Algebras (known also as Abstract State Machines) have been proposed by
Yuri Gurevich in 1988 as the models for arbitrary computational processes. They
are finite dynamic algebras representing state transitions and describing operational
semantics of discrete dynamical systems. They may be tailored to any desired level
of abstraction. System states are represented here as static algebras. Evolving Al-
gebras provide a formal method for erecutable specifications.

An evolving algebra is a structure
Y= (27 Sa IO) T))

where ¥ is a signature (a set of operational (or functional) symbols with their ari-
ties); S is a superuniverse (a union of all sorts), Boolean universe 2 = {0,1} C S
(a universe (a sort) is represented by its indicator function U : § — 2); I an initial
interpretation (a finite static many-sorted algebra); T a set of transition rules.

Iy gives an initial interpretation of the signature’s operational symbols:

I:S— JE"—8), I(f):8™N 538, Vfex.

n>0
NB: The interpretation Io(f) is a partial function on S™ but it is total on the cor-
responding universes.
There are four kinds of transition rules (or updates):
1. Function updates
f(t1,-. tn) =1t fex, n>0,
where t; are terms, the new function

f/Ef[f(tl,...,tn)*—to]
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2. Conditional
if bthen C

3. Extension of universes

extend U C S by 1,...,ZTm

4. Contraction of universes

discard t from U

Iterative application of evolving algebra ¢ to sequentially arising states (static alge-
bras) I;, starting from the initial state o, may give a terminated computation

L5nLYLnLY. . L.

6 Hyperbolic Cellular Automata as Evolving Algebras

It is pertinent to note that there may be several approaches to using Evolving Alge-
bras for specification of Hyperbolic Cellular Automata. In the simplest case of one
Hyperbolic Cellular Automaton one can directly go from its mathematical definition
and a given IFS to an Evolving Algebra. "When it is required to construct an IFS
and the corresponding Hyperbolic Cellular Automaton, some complications arise
associated with the need to appeal to some second order constructions.

As the first step on the way of applying Evolving Algebra formalism to Hyperbolic
Cellular Automata we give here a sketch of an Evolving Algebra for a Hyperbolic
Cellular Automaton. Instead of speaking in terms of superuniverse it is convenient
to use specific sorts (i.e. their indicator functions), and to extend the LDRs &, onto

the whole set of cells 3
dc(c) = undef, Ve ¢ N(c).

The information of the IFS under consideration is reflected in the set of neighbor-
hoods. The initial interpretation is given for the 2D-case.

e Sorts

— Cells

— Attributes

— {N.c|ceCCells} (set of neighborhoods)
— undef

e Static Functions

— {delta_c : Cells — Attributes | ¢ € Cells & delta_c(c) = undef, Vc ¢ N_c}
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e Dynamic Functions

— State : Cells — Attributes
o Transition Rules

— {State(c) = delta_c(c) | c € Cells}
e Initial Interpretation

= Cells = {(¢,5) |i=1,...,p; j=1,...,q}
— Attributes — {0,1}
- {N_c — {0, 1} i=Lp; 5=1,...} lce Cells}

= {deltac: {(i,5) |i=1,...,p; j=1,...,9} — {0,1}}
~ {State: {(i,5) |i=1,...,p; j=1,...,q} — {0,1}}

7 Conclusion

Hyperbolic Cellular Automata were designed for constructing fractal objects but
they are in their own right. Evolving Algebra specifications are mathematically
well founded and directly executable. In the talk, an Evolving Algebra approach to
formal description of Hyperbolic Cellular Automata has been outlined. At least two
steps of further study should be mentioned. The first one is to develop a way for
specification of variable Hyperbolic Cellular Automata. The second one is to give
an Evolving Algebra specification of our Algorithm of constructing a Hyperbolic
Cellular Automaton for a given Iterated Function System [7].
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CeseppsiHoB B. M. E11-2002-268
Tonxoxn x ¢opManbHOMY OMMCAHHIO OQHOTO KJIacCa aBTOMATHBIX CeTel

Iunep6Gonuyeckue KIETOYHBIE aBTOMAThl (CTIEHMANBHBIA KJIacC aBTOMATHBIX ceTei)
OCHOBaHbl Ha CHCTeMax WTepHpyeMbix ¢yHKUMIT W nepBoHayaibHO GbUlH paspaboTaHbl
1% NOCTPoeHUd (ppakTabHbIX 00BeKTOB. ONHAKO OHM MMEIOT CaMOCTOATEIbHOE 3HAYCHHE
H MOTYT U3Yy4aThCs, HaNpUMeEp, B KOHTEKCTE TEOPHH KOMHBIOTEPHOrO MojenupoBanus. ['n-
nep6osinyecKHe KJIETOUHbIE aBTOMAThl MOTYT PacCMaTpuBaThCi Kak 06GOOLIEHHE KJIETOYHBIX
aBToMaroB. OCHOBHOE OTJIMYME 3aK/II0YAeTCs B TOM, YTO MHIIepOONHYECKHH KIETOUHbIH aBTO-
MaT HMeeT HEPETYNAPHYIO CTPYKTYPY CHCTEMBI OKPECTHOCTEH KIIETOK. DBOJIIOLHOHUPYIOLIHE
anreOpbl (M3BECTHBIE TakKXe KaK aOCTpaKTHble MAlMHBI COCTOAHHI) GbUIM NpenIOXeHbI
10. I'ypeBuueM B KauecTBe MoAeieil W% MPOH3BOAbHBIX BbIMHCIIMTENBHBIX IPOLECCOB. DTO
KOHEYHBIE MHOTOCOPTHbIE JHHAMHYECKHE aNreOphl, NpeCTaRIAIOUMe NepeXoabl COCTOSHUM
H ONHCHIBAIOLIHE ONEPALHOHHYI0 CEMAHTHKY MMCKDETHBIX IMHAMHYeCKHX cHucteM. Cucrem-
HBIE COCTOSHMA NMpPEICTaRIeHbl CTaTHYECKUMH anrebpaMu, AHHaMHKa OnHcaHa HaGopoM mpa-
BHJI Nlepexona. DBOMOLHOHUpYIOLHE areGphl NPenocTaBIstioT GOpManbHEIH METOI IS MC-
nonHuMeIx cneundukauui. IpencrasneH nMoaxox K opMansHOMY ONMCaHHIO rHnep6onu-
YeCKHMX KJIETOUHBbIX aBTOMAaTOB IIOCPENCTBOM 3BOJIOLHOHHDYIOIHMX anre6p.

PaGora Bbinonnena B JlabopaTopun HHMOPMaUHOHHBIX TexHonormid OWSIH.

Coobuenne OObeaMHEHHONO HHCTUTYTA sSOEPHBIX HccaeqoBaHuit. lyGua, 2002

Severyanov V. M. E11-2002-268
An Approach to Formal Description of One Class of Automata Networks

Hyperbolic Cellular Automata, a special class of Automata Networks, are based
on Iterated Function Systems and originally were designed for constructing fractal objects.
However, they are in their own right and can be studied, for example, in the context
of the computer simulation theory. Hyperbolic Cellular Automata can be considered as
a generalization of Cellular Automata. The main difference lies in the fact that a hyperbolic
cellular automaton has a nonregular structure of the cell neighborhood system. Evolving
Algebras (known also as Abstract State Machines) have been proposed by Yuri Gurevich as
the models for arbitrary computational processes. They are finite many-sorted dynamic alge-
bras representing state transitions and describing operational semantics of discrete dynamical
systems. System states are represented here as static algebras, the dynamics is described
by a set of transition rules. Evolving Algebras provide a formal method for executable
specifications. An evolving algebra approach to formal description of Hyperbolic Cellular
Automata is presented.
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