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1 Introduction. Notation. Results

Vlasov equations appear in the mean-field approximations of a dynamics
of a large number of interacting classical particles (molecules). Currently,
there is a numerous literature devoted to its mathematical treatments.
In particular, in [1-4] a well-posedness for this equation supplied with
initial data and its derivation from a molecular dynamics is considered
in the case when the potential of interaction between particles is smooth
and bounded. In [5-10], this equation is studied for the singular Coulomb
potential U(r) = r~! (in [8], the Vlasov-Maxwell system is considered).
In [11], an extension of these results for the cases of higher singularities
is presented. We also mention paper [12] where a well-posedness of this
equation supplied with a joint distribution of particles at two moments
of time is proved.
In the present article, we consider the problem

%f—l—vvvxf-f-vuf-w(x,t) =0, f=f(t,z,v),teR, (z,v) € R3xR3,
(1)

w(z,t) = — / V.U(z - y)f(t,y,v)dydv, (2)
R3xR3
f(0,z,v) = fo(z,v), (3)

where all quantities are real, z,v € R? U(r) = r=2, V, and V,, are the
gradients in 2 and v, respectively, v- V,f and V, f-w(z,t) are the scalar
products in R?, and f is an unknown function. For any fixed ¢, f(¢,z,v)
regarded as a function of z and v has the sense of the distribution function
of particles in (z,v) € R x R3. Therefore, the following requirements are
natural: '

f(t,-+) >0, / ft,z,v)dedv =1, VteR. (4)

R3xR3

Generally speaking, it is known that proving the existence of a solution
for problem (1)-(4) is more difficult for the singular potential U than for
a more regular one. Also, though the Vlasov equation appeared for the
first time with the Coulomb potential U(r) = r~! for a description of
plasma, it is well known that in statistical physics potentials with higher
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singularities occur: for example, the following one, the so-called Lennard-
Jones potential, is known: U(r) = Ar~!'?2 — Br=8. So, the author of
the present article believes that considerations of Vlasov equations for
potentials with singularities of the degree higher than r~! make a sense.
Here we consider the case U(r) = r~% proving the existence of a weak
solution of the problem (1)-(4). This case is critical in a sense because
for singularities of the kind r~=2=* with a > 0 it is not clear so far how to
determine the expression in the right-hand side of (2). So, a treatment of
the problem in the latter case is still left open. As for the case U(r) = r=°
with @ € (1,2), here the problem becomes simpler, and we do not study
this case.

Now, we introduce some notation and definitions. Let d be a positive
integer. By M* we denote the space of nonnegative Borel measures in R?
satisfying u(R?) = 1. This space M* is equipped with the topology of the
weak convergence of measures: a sequence {fin}n=123,.. C M7 is called
weakly converging to a p € M if for any continuous bounded real-valued
function ¢ : R? — R one has

lim [ o(z)dua(z) = / o(2)du(2).

n—oo
R4 R4

Let C}(R?) be the space of all real-valued continuously differentiable func-
tions in R¢ each of which is bounded with its gradient in R% we set

llelloy ey = sup {le(2)| +1Ve(2)l} -
z€R?

By C}(R%) we denote the subspace of C}(R?) consisting of finite functions.
Also, for a B C R? and a real-valued function ¢ in R? denote

o(z1) — (2
lpllzip = supl()| + sup 1PELL—Pan)
z€B z1,20€B IZl hd Z2|
21#22
and by L(B) the space of all functions ¢ : B — R satisfying |[¢||Lip < 0o.
Now, it is well known (see, for example, [3] and also, Theorem 2.3 below)
that the topological space M* is metrizable by the distance

Pl ) = sup / ()i (2) = dpia(2))
pEL(RY)

llellLip<1 R4



(one can easily verify that p satisfies all the axioms of a distance in a
metric space), so that a sequence {y,} C M* converges weakly to a
g € M* if and only if p(un,p) = 0 as n = oo. In fact, (M*,p) is a
complete metric space.

Now, let M be an arbitrary compact metric space with a distance
d(-,-) and I C R be an interval. By C(I; M) we denote the metric
space consisting of all continuous bounded functions from I into M; the
distance v in C(I; M) is defined by v(g(-); h(-)) = sup d(g(¢); h(t)). The

tel
space (C(I; M);v) is also compact. )

For a set & C R? measurable in the Lebesgue sense by

L,(2) (1 £ p < o0)and Loo(§2) we denote the standard Lebesgue spaces
with the norms

1/p
lgllz, @ = (/dzlg(Z)l”) and ||g|L.(@) =Vrai81€lg lg(2)|-
Q

Finally for a Banach space B and an interval I C R by C,(I; B) we
denote the space of bounded functions from I into B continuous in the
weak topology of B.

Now, we define L; N L-(weak) solutions of (1)-(4).

Definition 1.1 Let T > 0 be arbitrary and f(-) €
Cuw([=T,T]; Ly(R® x R3)) for all p € [1,00). Then, we call this function

f a weak solution of problem (1)-(4) if f satisfies (2)-(4) and if for any
0 € CH{R3>x R3) and t € [-T,T) one has

/ (f(t,z,v)p(z,v) — fo(z,v)e(z,v))dzdv—
R3xR3

i
~[as [ dedofs,,0) {0 pula0) + oula0) wl@e)} =0, (3
0 R3xR3
Remark 1.2 As it is shown below (see Lemma 2.1), the operator
in the right-hand side of (2) is continuous from L,(R3 x R®) into L,(R3),
where 1 < p < oo is arbitrary, so that the expression in the left-hand side
of (5) is well-defined.




Remark 1.3 Formally, (5) occurs from (1)-(3) by the multiplication
of (1) by ¢ with further integration over (z,v) and ¢ with an application
of the integration by parts.

Our main result is the following.

Theorem 1.4 Let U(r) = r~2 and fo € L;(R3 x R?®) N Lo(R3 x
R3) and satisfy (4). Then, there exists a function f(-) that belongs to
Cu(R; Ly(R? x R?)) for all p € [1,00) and is such that for any T > 0 it
is a weak solution of (1)-(4) in the interval of time [-T,T]. In addition,

f(t,z,v)dzdv = 1 and ||f(t, -, )llL,@exry) < || follz, xR
R3xR3

VieR V1<p<oo.

Remark 1.5 As the reader sees, the important question about the
uniqueness of the weak solution given by Theorem 1.4 above is left open
in the article as in [5] and [7] where this question for such solutions is left
open, too, for the Caulomb potential.

We prove Theorem 1.4 in the next section. In addition, in this
section we construct invariant measures for problem (1)-(4) in the case
when U(-) is a smooth bounded function; we believe that this result may
be of a separate interest.

2 Proof of Theorem 1.4

We begin with studying the properties of the integral operator T in the
right-hand side of (2). It is well known that the integral operator

(Pg = PV. /V |2g y)dy

maps any g € C}(R?) into Pg € L,(R3 with arbitrary 1 < p < o0
and ||Pg||L,®s) < ¢llgllr,®e) with a constant ¢, > 0 independent of g.



Therefore, for any 1 < p < oo the operator P can be uniquely extended
onto the whole space g € L,(R®) by continuity.

Lemma 2.1 The operator T can be uniquely extended from the space
of all functions g € CH(R® x R®) onto L,(R?® x R3) becoming a bounded
linear operator acting from L,(R3 x R3) into L,(R3).

Remark 2.2 The best constants c, in the inequalities ||Tg||L,&s) <
¢pl|9]|z,(r3xr3) become unbounded as p — 1+ 0 and as p — +oo0.

Proof of Lemma 2.1 is very simple. Indeed, in view of the above
facts, we have for any g € C}(R® x R3) and for 1 < p < oo:

p

ITa?, gy < & / lg@,0)Pdo|| = collglls mormoy
3 Lp(R?)

Thus, T' can be uniquely extended onto the whole space L,(R? x R3) by
continuity.[]

Theorem 2.3 Let d be a positive integer, B € R? be a bounded
set measurable in the Lebesgue sense, By = {z € R?: dist(z,B) < 1},
1 < p< oo and, for g,h € L,(R?), denote

p(g,h) = sup / o(2)(9(2) — h(2))dz

PEL(B), liellzipst | )

and

p1,8(9, k) = sup / v(2)(9(z) — h(z))dz| .

wect @), liellgy <t |J
©=0 in RI\B;
Let {fu}n=1,23,. C Lp(R?) be bounded and f € L,(R%). Then, for f, — f
weakly in L,(B) each of the following two conditions is sufficient and
necessary: 1). pp(fa,f) = 0 asn = oo and 2). p1,8(fa, f) = 0 as
n — oo. In addition, for any bounded set A C L,(R?) closed in the weak
topology (A, pg) and (A, p1,B) are compact metric spaces.



Proof. Let us prove the first claim. We deal only with the function
pB because for p; p the proof can be made by the complete analogy.
First, let f, — f weakly in L,(R?) and suppose pp(fn, f) 7 0 as n = oo.
Then, there exist a subsequence of {f,,}, still denoted { f,, }, and a sequence
{pn} C L(B) satisfying ||¢xs||Lip < 1 such that

/ (D) falz) — F(2))dz > > 0.

B

Then, the sequence {¢,} contains a subsequence, still denoted {¢,}, that
converges uniformly in z € B to some ¢. But then

[ @)~ )iz =

B

- / (n(2) — 0(2))(ful2) = F(2))dz + / o()(fal2) — f(2))dz — 0,
B B

and we get a contradiction.

Now, let pg(fa,f) — 0 and let us prove that f, — f weakly in
L,(R?). Suppose this is not so and there exist two subsequences {f.} and
{f!} of {f»} converging weakly respectively to f’ and f” where f’ # f".
Observe that the function pp satisfies all the axioms of a distance in a
metric space. Hence, we have

pB(fu, f)) +p(fo, ') = 0 and p(fa,f) =0

i. e. we get a contradiction. Thus, the first claim of Theorem 2.3 is
proved. The second one is also obvious.(

Assume now the following.

(U) Let U(+) be a twice continuously differentiable function in R all
whose first and second partial derivatives are bounded in R3.

Consider problem (1)-(4) with a function U(-) satisfying this as-
sumption (U). In accordance with [4], we accept the following definition.



Definition 2.4 Let T > 0 be arbitrary and U satisfy (U). We call a
function u(t) € C([-T,T); M) a generalized solution of problem (1)-(2)
with initial data p(0) = po € M, if for any real-valued ¢ € Cyp(R3® x R3)
and t € [-T,T) one has

/ (2, v) (u(t) (dz dv) — po(da dv))—
R3xR3

- /ds / p(s)(dz dv){v- p(z,v) + pu(z,v)w(z,s)} =0
Y R3xR3
where _
w(z,t) = — / V.U(z — y)dp(t)(dy dv). (6)
R3xR3

The main well-known result under hypothesis (U) is the following.

Theorem 2.5 Under assumption (U) for any puo € M* and T > 0
system (1),(6) has a unique solution u(-) € C([-T,T]; M*) that satisfies
p(0) = po and the map p(-) : M* — C([-T,T]; M%) is continuous.

For the Proof, see [1-4].0

Proposition 2.6 Under assumption (U) for any po(dz dv) =
= fo(z,v)dz dv € M* (so that fo(z,v) >0 and [ fo(z,v)dz dv=1)
R3xR3
satisfying fo € CH(R® x R®) and ( li)m (1 4 |v|) fo(z,v) = O the solution
z,v)—>

00

of problem (1),(6) with the initial data u(0) = po given by Theorem 2.5

for any t has the form p(t)(dz dv) = f(t,z,v)dz dv where for any fized

t f(t,-,-) € CH(R® x R3) (this means that for any Borel set B € R® x R3

one has p(t)(B) = [ f(t,z,v)dz dv) and ( Ii)rn 1+ )fi,z,v) =0
—+00

B YU
uniformly in t € [-T,T].
Proof. Let u(t) be the measure-valued solution of (1),(6) given by
Theorem 2.5 and p(0)(dz dv) = fo(z,v)dz dv where fy satisfies the con-
ditions of Proposition. Consider the following linear problem:

0
Eg+v-gx+g,,-E(w,t) =0, g=g(tz,v), t €R, (z,v) € R*xR? (7)



E(,t) = — / V.U (z — y)pu(t)(dy dv), (8)
R3xR3
glt:O = fO' (9)

Clearly, in view of our assumptions the function E(z,t) is continuous and
Lipschitz continuous in . Consider also the following system:

i:(tawOaUO) = U(ty-TO,vO), t €R, (anUO) e R®x Rsa (10)
’U(t, anUO) = E(.’L‘(t,.’[o,vo),t), (1]‘)
z(0, zo,vo) = Zo, v(0,To,vo) = vo. (12)

For any (zo,vo) this system obviously has a unique solution _
(z(t, zo,v0), v(t, Zo, Vo)) defined for all t € R, and clearly, by the unique-
ness theorem the trajectories do not intersect. Also, by the standard
result, its solution (z(t),v(t)) = (z(¢, o, v0), v(t, Zo, v)) is continuously
differentiable in (zo,vo). Hence, denoting by S; the operator in R® x R3
that maps any (zo,vo) into (z(¢, o, vo),v(t, zo,v0)), We obtain that for
any fixed t S; is a diffeomorphism (i. e. it is a one-to-one operator con-
tinuously differentiable with the inverse).

The direct verification shows that the function defined by the rule:
9(t, z(t, zo, vo), v(t, To, Vo)) = go(zo, vo), where the point (zq, vo) runs over
the whole space R® x R3, is a solution of the linear problem (10)-(12).
Indeed,

0= % (t,z(t), v(t)) = % +v-Veg+ Vg E(z(t),t)  (13)

and this identity holds for all (z,v) = (z(¢),v(¢)) € R®x R®and t € R
because (z(t),v(t)) runs over the whole R® x R® when (z¢,vo) runs over

the whole R3 x R3.
Let us show that

Hg(ta *y ')HLl(R3xR3) =1 V¢t (14)

It is easy to see that in (8) the function E(z,t) is bounded uniformly in
z and t. Therefore, given T' > 0, there exists a D > 0 such that

|z(t, zo,v0) — vot| < D and [|v(t,z0,v0) —vo| < D Vite[-T,T].




This easily implies that (1 + |[v])g(¢,z,v) — 0 as (z,v) — oo uniformly
in t from any finite interval. Now, integrating (13) over (z,v), we obtain
relation (14).

The definition of M*-solutions of linear problem (7)-(9) can be given
completely as the nonlinear case, and the proof of its uniqueness repeats
the proof in the nonlinear case presented in [1-4]. So, ¢(t,z,v)dz dv is
a Mt-solution of linear problem (7)-(9) and by the uniqueness of this
solution and since u(t) is obviously a M*-solution of (7)-(9), we have
p(t) = g(t, z,v)dz dv.O

Proposition 2.7 (conservation laws) Under assumption (U) for
any C}-solution f(t,z,v) of (1)-(2) such that (1 + |v|)fo(z,v) — 0 as
(z,v) = oo given by Proposition 2.6 one has

d
Ellf(t7'a')”Lp(R3xR3) =0 VitvVi<p< o

Proof. For 1 < p < oo, the proof repeats those presented when
proving Proposition 2.6. To do this for p = oo, it suffices to observe that
for h € () L,(R?® x R®) one has

p21
1]l sxrs) = lim [|o]lz, @exrs)O
Theorem 2.8 (invariant measures) Under assumption (U) for an

arbitrary C}-solution f(t,z,v) of (1)-(2) satisfying (1+ |v|)f(0,z,v) = 0
as (z,v) — oo and for any Borel set Q5 C R3 x R3 and t € R one has:

/f(oa z,v)de dv = /f(t,x,v)dx dv
1) Q¢

where Q; = {(z(t, xo,vo), v(¢, To,v0)) : (Z0,v0) € o}
Proof. Approximate the measure po = f(0, z,v)dz dv by expressions

N

py =N~y 8(z — zf,) x 8(v —v]',), where z{, and v}, are constants
n=1

and N runs over positive integers. It is known that there exist zé\{n and

vg, such that " — po in M*. Set

wy(z,t) = — / V.U(z — y)pn(t)(dy dv)
R3xR3



where pn(t) are the corresponding M*-solutions of (1)-(2) with the initial
condltxons pn(0) = pg . It is known (see [1-4] and also [12]) that un(t) =

= N-! E S(z—zN(t ))xé(v vN(t)) where the functions z(¢) and v} (¢)

n=1
obey the following system of equations:

(1) = o (1) (15)
oN () = wn(zN(t),t), n=1,2,..,N (16)
2 (0) = 25, v7 (0) = v,
(we denote zV = (zV,...,z}¥) and vV = (vV,...,vN)). This is a system

of ODEs and it is easy to see that, under condition (U), the right-hand
sides in (15) and (16) are continuous in z%,vY and ¢ and are Lipschitz -
continuous in (zV,v"). So, this system has a unique solution and hence,

it is (xN(t),vN(t)).
Let us show that wy(z,t) — w(z,t) uniformly with respect to (z, )
from an arbitrary compact set B x I C R¥x R3x R. Take a T' > 0

and set oscplU = sup U(z) — ig{) U(z) and take an arbitrary ¢ > 0. Let
z€D z
Br = {(z,v) € R®* x R®: |(z,v)| < R}. As it is proved in the proof of
Proposition 2.6, there exists R > 0 such that
ft,z,v)der dv<¢e/8 Vite[-T,T]

(RExRI\BR_1

Take a Lipschitz continuous function 0 < ¢(z,v) < 1, equal to 1 in
(R®>x R3)\ Bgr and to 0 in Bg_;. Then, we have

/ e(z,v)un(t)(de dv)| < e/8 VYte[-T,T)

3xR3
for all sufficiently large N. Hence
flt,z,v)dz dv + un(t)((R® x R*) \ Br) < ¢/3 Vte[-T,T]
(R*xR3)\Bg

for all sufficiently large N.



Take now a partition of R® x R? into cubes a; < z; < b;,

c; <wv; <dj, 1,7 =1,2,3, such that sup osc,V,U(z —y) < ¢/3 in each
z€R3
cube and let K7, ..., Kp be a reindexing of all cubes the intersection of each

P
of which with Bp is nonempty, and K = |J K;. Obviously, u(¢)(9K;) =

=0,:=1,..., P,and hence by the well—knéwln property of weakly converg-
ing sequences of measures for any ¢ pn(¢)(K;) — p(t)(K;) as N = oo,
¢ =1,2,...,P. Also, as it can be easily verified, this convergence is uni-
form in ¢t € [T, T] because of the uniform convergence of un(t) to u(t)
int € [~T,T]. Thus, we have for any z € R*:

() = wla, )] < Cef3-+ | [ V2Ule = ) (t) = w(®)(dy dv)| <
J

P
< Ce/3+2) [sup oscyer, Vol (z —y)+€ x [un(t)(K:) - u(t)(Ki)] < Cre

=1 ¢€R3

for all ¢ € [T, T] and all sufficiently large N.

Now, take an arbitrary ¢, a bounded set 2y C R3xR3 with a smooth,
of the class C! boundary, and the corresponding set ;. Since as noted
earlier, S; is a diffeomorphism, the boundary 9% is also compact and of
the class C'. In particular, po(90) = p(t)(0%) = 0. Take an arbitrary
a > 0 and set

Qo = {(z,v) € R2x R?: dist((z,v); Q) < a}

and
2, ={(z,v) e R®*x R?: dist((z,v); 0%) < a}.

Then, p()(Q\Q%) = 0as @ — +0. Denote by SV the operator defining
as S; and corresponding to the solution uy(t) and let QY = SNQ,. Then,
by the arguments above,

2\ D, C QY C Qi
for all sufficiently large N and clearly, by construction,

pn()(QF) = un(0)(0)-
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Hence,
uv(8)(Q) = 7(a) = & < p(0)(R) < uv(E)QY) + (@) + 8%

where y(a) = 40 as @ = +0 and 8 — 0 as N — oo. Thus, taking the
limit N — oo, we get u(t)() — () < #(0)(R) < w(T)) + (),
where 7,(a) = 40 as @ — 40, and due to the arbitrariness of a, we
obtain u(t)() = (0)(Q).

If Qo is an unbounded open set with a boundary of the class C?,
then for each K =1,2,3,... we set Qo x = QN Bk and O k = S:(Qo,x)-
We have p(0)(Q0,x) = p(t)(Q,x) for each K and therefore, since Qp =

U Qo and @ = |J Quk, we deduce that p(0)(2) = p(¢)(£). The
K=1 K=1

latter equality yields that x(0)(€0) = p(t)(€Q:) for any closed set o with
a piecewise smooth boundary. Now, for an arbitrary set g this equality
can be obtained by approximations of £y by closed sets with piecewise
smooth boundaries from inside.[]

Corollary 2.9 Let assumption (U) be valid and let f(t,z,v) be a
Ct-solution of (1)-(2) satisfying (1 + |v])f(0,2,v) = 0 as |(z,v)| = co.
Then, for solutions (z(t,zo,vo),v(t, 20, v0)) of system (8),(10)-(12) the

determinant of the Jacobi matriz

a(dt(t, Zo, UO), ’U(t, Lo, UO))
0(-%, Uo)

is identically equal to 1 for all (zo,vo) and t.

Proof. First, we consider the case fo(z,v) > 0 for all (z,v). Then,
ft, 2", v") = fo(z(—t,2',v"),v(—t,2',v")) > 0 for all (¢,2',v’). Take an
arbitrary point (zo,vg), a t € R and a ball B,(zg,vo) = {(z,v) € R3xR3:
|(z,v) — (2o, v0)| < r}. Then, we have by Theorem 2.8:

J(t, Zo, ’Uo) =

fo(zo, vo)dzodve = / f(t,z,v)de dv =

Br{zo,v0) St (Br(z0,v0))

= / f(.fCo, vo) |det J(t, Zo, 'Uo)l dwo dvo.

By (zo,v0)
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Letting here r — +0, we deduce: |det J(¢,zo,v0)| = 1. Hence, by conti-
nuity and since det J(0,zo,v0) = 1, we obtain det J(¢,zo,vo) = 1 for all
(20, v0) and ¢.

Now, consider the general case when fo(zo,v0) may be equal to 0
at some (zo,vp). Consider an arbitrary sequence {fg (o, v0)}n=123,. C
CL(R® x R3) converging to fo(zo,vo) in C}(R3 x R?), satisfying
(1 + ) f&(z,v) = 0 as (zo,v0) = oo uniformly in n and such that the
. corresponding measures uj converge to po = fo(zo,v0)dzo dvo in MT.
Let u™(t) = fu(t,z,v)dz dv be the corresponding sequence of solutions
of (1)-(2). Then,as when proving Theorem 2.8, it is easy to show that

the corresponding sequence w,(z,t) = — [ V,U(z—y)/fa(t,y,v)dy dv
R3xR3 °

converges to w(z,t) as n — oo uniformly with respect to (z,?) from any

compact set. By analogy, for 1 =1,2,3

0
/ a .’L' y)fn( ' Yo U )dydv—) / Oz z (w_y)f(t’y?v)dy dv
R3xR3 _ RSXR®
uniformly with respect to (z,t) from any compact set. Hence, by the

standard theorem on the differentiability of solutions of systems of ODEs
over a parameter, we have 1 = det J,(t, zo,v0) — det J(¢, 2o, v0).00

Now, we return to our original problem (1)-(4) with the poten-
tial U(r) = r~2 and consider its approximations. Let w be an infinitely
differentiable nonnegative even function in R® with a compact support

satisfying
/w(:c)dm =1.

R3
We set U,(-) = U(-) *xn3w(n-), where the star means the convolution, and
consider the following sequence of problems:

aaft‘n + vl‘f’n + v fn wﬂ’ f'"v = fn(t,.’l),’l)), (17)
un(at) == [ Valnle = )ty 0)dy do, (18)
R3xR3
fn(07 xﬂ’) = fg(xav)7 (19)
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where f3 is a sequence of Cj-functions for an arbitrary 1 < p < oo
converging to fo in L,(R® x R3), satisfying (1 + |v|)f2(z,v) — 0 as
|(z,v)| = oo and such that

J8 20, (|75 ]lLemoxre) < const and ||fg]|L,®exre) = 1.

Denote, for each n, by fu(t,z,v) the corresponding C}-solution of
(17)-(19); we also have u,(t) = fo(t,z,v)dz dv € C([-T,T]; M*) for any
T>0.

Proposition 2.10 (compactness) For any ¢ > 0 and T > 0 there
exists compact Q. C R3 x R3 such that
fult,z,v)dzdv<e Vie[-T,T],YVn=123,..
(R3XR3NQe

Proof. First of all, we shall show that for any 1 < p < oo there
exists D, > 0 such that

Hwn(',t)“LP(Rsst) < Dp Vt € [—T, T] Vn = 1,2,3,... (20)

For this aim, we approximate f,(t,z,v) in L,(R® x R?) by infinitely dif-
ferentiable functions f, with compact supports. Consider the expression

/dw{“/ V(U —y — ) * n*w(n) fu(t, y, )dydv} . (21)

3xR3

Since U(-) * nPw(n(-)) is infinitely differentiable and bounded with all
its derivations and since f, are infinitely differentiable, the expression

[ V(U *nPw(n))(z — y)falt,y,v)dy dv is determined. So, we have
R3xR3
that expression (21) is equal to

/ de { / 42V, (z — 2) L / n(n(z — y) falt, v, v)dy dv] }p.
R? RS

3xR3

Letting here f, — f, in L,(R®x R3), we easily get, because as well known

[ retnt = )y, o)dy do - [ ettty o)dy do

R3xR? R3xR3
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in L,(R3) as fo — f, in L,(R® x R®), that

(DI ge) = / de{ / 42V, U(z — 2)x

R3 R3

IA

X L / nw(n(z — y)) fa(t,y,v)dy dv} }p
3yR3

< Cpl |fn(t’ ) ’)HZP(R3><R3)

(here we applied the known estimate

< lgCs ML, rexrs))-

L / n’w(n(z — y))g(y,v)dy
3% R3

Lp(R3xR3)

Now, (20) follows by Proposition 2.7.
Take now arbitrary € > 0 and T > 0. There exists a closed ball
B. = Bg(0) such that

fB(z,v)de dv<e/2 Vn=1,23,.. (22)
(R®xR?)\B,
For each n, denote by S},
(zn(t, o, v0), vn(t, Zo, v0)) and J, (¢, To, vo) the operator, functions and Ja-
cobi matrix analogous to S, (z(t, ze, o), v(t, o, v0)) and J(t, zo,vo) and
corresponding to f = f,. Then, in view of (20) and Corollary 2.9, we

obtain:
T

/dt/li)n(t,.l‘o,vo)ld]?gdvo S
0 B,

T

1/2
S CE,T/dt {/iwn(.’L’(t,Il)o,’Uo),t)lzd.’todvo} S
B.

0

T
< CE,T/dt 14+ / [wn(z,1)|% - |det Jo(—t,z,v)|dz dv } <
0 SP(Be)

SThs



S CC,T(Dg + 1)T

where C v > 0 depends only on T and on the Lebesgue measure meas(B;)
of B,. For the interval of time [T, 0) all the estimates can be made by
analogy. So, finally we obtain:

T
/dt/ I'I.)n(t,(lfo,'vo)ldl'gd’vo S CS,C,T- (23)
-T Be

T
Set gn(2o,v0) = [ dt|0n(t,zo,v0)|. Then, it follows from (23) that
T
there exists A > 0 for which
(14 1 /31| ®exr3)) - meas (R}) < /2 V n where

% = {(20,v0) € Be: gn(zo,v0) > A}. (24)
Let

T=sup{|z|: Fv: (z,v) € B} and v=sup{jv|: Jz: (z,v) € B.},

2=+ + 0+ A)T? vy =75+ (v+ A)T. (25)

Take now Q. = {(z,v) : |z| < z1, |[v < v1}. Clearly, B. C Q.. Let
us show that

fa(ty s Mgy >1—€ Ve [-T,T),Vn=1,23,.. (26)

Indeed, if ¢t = 0, then (26) holds. Let ¢ > 0 (the case t < 0 can be treated
by analogy). We have by (24) and (22):

1/ lzyry) < €/2 and ||fg]lL,BoRn) > 1 —€.

Let R%(t) = {(z(t),v(t)) : (zo,v0) € R%}. Then, by Theorem 2.8 on

Invariant measures

I1fa(ts s Mzarn ey = 1Fa(0, 5 )Ly any < €/2,

and for any (o, v0) € B\ R} we have by (23)-(25) that (z,(t),va(t)) € Q..
Hence, by Theorem 2.8 on invariant measures

1fats s M@ = falts s )ly@araey) =

16



= [ fa(0, -, MLy (5-e@\R3(1))) = | follLy(BAR > 1 — €O
Proposition 2.11 (compactness) Under the assumptions of the pre-

vious Proposition 2.10 for any € > 0 there exists § > 0 such that for any
n,1 <p<ooandt,s € [-T,T) satisfying [t — s| < § one has

pl,Qf(fn(ta y ')7 fn(37 ) )) <e

where Q. is the compact set from Proposition 2.10 corresponding to a given
€ > 0 and p1,o.(+, ) is the metric function from Theorem 2.3 corresponding
to the compact set Q..

Proof. Take an arbitrary € > 0, the corresponding set Q). and let
M = {z = (z,v) € R¥*x R®: dist(2;Q.) < 1}. Take an arbitrary
¢ € Cy(R*x R?) satisfying ||¢||cymsxrs) < 1 and ¢ = 0in (R*xR3)\ M,
a number n and t,s € [T, T] such that ¢ > s. We obtain from Eq. (1)
using the fact that sup{|v|: Jz : (z,v) € M} < oo and applying the
Holder’s inequality, Lemma 2.1 and Proposition 2.7:

[ #leollaatts,0) = fu(s,2,0)de do =

M

t
= /dr/dac dvfu(r,z,v){v- @z + @y - wa(z,r)} <
s M

t

< /dr/dx dv fu(r,z,v)(|Jv| + |wu(z,7)|) < C(t = 3),
s M
where C' > 0 does not depend on ¢ and s.00

Now, we turn to proving Theorem 1.4. According to Propositions
2.10 and 2.11 and Theorem 2.3 the sequence {f.(t,-,")}n=123,.. contains
a subsequence still denoted {f,(¢,-,)}n=1,2,3,.. and there exists a function
ft,-,-) € Cu(R; L(R3 x R3)), where p € [1,00) is arbitrary, so that for
any positive integer £ and 1 < p < oo this subsequence converges to
f(t,+,) in Cy([—k, k]; L,(R® x R?)) and that in addition

F(E, - N rpmsxrs) < 1 fo(e )lLmexrs) V¥t #0.

Let Ks(a,p) = {(z,v) e R®*xR?®: -6 <zi—a; <6, -6 <v;—p; <
4, 1=1,2,3} and Us(z) = U(z) if |z| < &, Us(x) = 0 for all other values
of .

17



Lemma 2.12 Let {gn}n=123,.. C L1(R3 x R®) N L (R® x R?),
l19n]lz, R2xR2) + [19n Lo ®oxRy) < C (27)
and for any € > 0 there exist compact B, C R® x R3 such that
||QN||L1((R3XR3)\BC) <e¢, n=1,23,..

Let also g, — 0 weakly in L,(R> x R3) for any 1 < p < co. Then, for
any € >0 and 1 < p < oo there exists 8 > 0 such that

/ (Us(-) * nPw(n-))(- — y)gn(y, v)dy dv <e VnV0<é<d.
3xR3 Lp(R3)
Proof. Take an arbitrary € > 0 and let B, = Kr(0,0) be such that
||9n”L,,((R3xR3)\B€) <eVn = 1,2,3,..., V1< p< oo

Take an arbitrary 6 > 0 and consider the partition of R3 x R? into cubes
K5(261,207) where i = (11,12,13), 7 = (j1,J2,73) and ix, j,, are integer.
Let Ksk, k= 1,2,..., N, be a reindexing of those cubes Kj3(281,267) the

N
intersection of each of which with B. is nonempty and let K5 = J K.

k=1
Then also
HgnllL,(moxroNK;) <€ Vn=1,2,3,..., V1< p< oo. (28)
Obviously, there exists C; > 0 such that
N < (678 (29)

for all sufficiently small § > 0. Also, by (27), there exist § > 0 and
C:1 > 0 such that

HgnHLP(K‘,’,‘) < 0156/;; VnV0<d<dVk= 1,2,...,N.

Introduce the functions hs k., k =1,2,..., N, where for each k hs s n(z,v) =
gn(z,v) in Ksi and hspa(z,v) = 0 from the outside of Ks;. Let also
hsa(z,v) = gn(z,v) in K, hsn(z,v) = 0 otherwise.

18



By Theorem 2 from Section 2.2.3 of [13] and from the proof of this
result (see estimate (13)), we have

L / Us(- — y)g(y,v)dy dv < cllgllr,@sxr3)
*xR? Lo(R?)

for any 1 < ¢ < oo and for any g € L(R®x R®), forall0 < 6 < 1. In
addition, we obviously have:

(Us(-) * n’w(n))(x — y)g(y, v)dy dv =
R3xR3

= / Us(w - y)(an(n.) ¥y g(., '))(y,v)dy do
R3xR3 .

and as well known

H"gw("') *2 9(- ')|qu(R3xR3) < ”g”Lq(R3xR3) VgV1<g<oo.

Take an arbitrary 6, € (0,6) and set Us, s(z) = Us(z) — Us,(x). Let
us show that

/(Usl,g(-) * n2w(n))(z — y)gn(y,v)dy dv = 0 as n — oo (30)
Ks

uniformly in z € R3. First, we observe that the expression in the left-hand
side of (30) is equal to zero if dist (z; K5) > &. Suppose that (30) does not
hold. Then, there exist ¢ > 0 and a bounded sequence {z,} such that the
absolute value of the left-hand side of (30) with z = z, is not less than ¢
for all n. Without the loss of generality we can accept that z, — z asn —
co. But then, since obviously the sequence (n®w(n-)*, hsna(:,-))(y,v) = 0
weakly in L,(R® x R®) with an arbitrary 1 < p < oo, we obtain that the

absolute value of the left-hand side in (30) with = z, is not larger than

/ |Us, (2 — 4) = Us, (& — 1) - [(0%(n°) %2 hsn( ) (y,0)ldy do-t
K
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+ L Us, s(z — y)(n3w(n-) *z hsn(cy))(y,v)dy dv| - 0 as n — oo,
¢

i. e. we get a contradiction. So, relations (30) are proved. In particular,

—0asn— oo,

-

8

I./(Ua,,s(') xn’w(n))(- = y)ga(y, v)dy dv

Lp(R3xR3)

for all 1 < p < oo.
Now, applying the Holder’s inequality, we obtain the following:

{/dx L/ Us, (-) * n°w(-))(z — y)hspn(y, v)dy dv}?}l/p _
=8 {/dw L/

R3 3xR3

py 1/p
(Us, () % n’w(:))(z — y)hs,k,nl(y,&v)dy dv} } <

< C,536%7 %

1/3p
X {/dm L/ (Us,(-) *n w( Nz — y)hska(y, 61v)dy dv:| } <
RS SXRS
< Cacy, 838%/P8HP(5/8,)1/7 = Cacl 847837117

Hence, by (29)

< Cycy, 6764775, (31)

-

é

L/(U&l ¥ n’w(n))(- — y)gn(y,v)dy dv

Lp(R?)

Note also that in (31) the constants Cy and cj, are independent of n, §
and &;. Take §; = 6*. Then, the right-hand side of (31) becomes equal to

Cich,6° =0 as & — +0. (32)
In view of (28) and (30)-(32), Lemma 2.12 is proved.O

20



Proposition 2.13 Let {gn}n=123,.. C Li1(R® x R®) N L, (R® x R?)
be bounded in Li(R®*xR3) and in Lo(R3x R3) and let for any1 < p < oo
this sequence converge weakly in L,(R® x R®) to zero. Let for any ¢ > 0
there exist compact B, C R3 x R? such that for any 1 < p < oo

”gn||Lp((R3xR3)\Be) <€ n= 1a 273a (33)
Then, for any1 < p < oo
(U(-) * n®w(n-))(- — y)gn(y, v)dy dv — 0
R3xR3

in L,(R3) strongly. .
Proof. Take arbitrary ¢ > 0 and 1 < p < co. Due to (33) there
exists compact B, C R3 x R3 such that

(U(+) * n3w(n))( —Y)9n(y,v)dy dv < § Yn=123,..
R3xR3)\ B, L&)
By Lemma 2.12 there exists § > 0 such that
/(U,;(-) ¥ 12w(n))(- — 1)gn(y, v)dy dv <f Vn=123,.

B Lp(R3)

Let h, = ¢, in B, h,, = 0 from outside of B.. Obviously,
on = nw(n-) *; h, — 0 weakly in L,(R3 x R3) and {p,} is finite and
bounded in L,(R3 x R?). Clearly,

Us,oo(T — y)on(y,v)dy dv| < Clz|™3, |z|>1, n=1,2,3,...

3xR3

so that there exists R > 0 for which

[ Vsl = v)gnlys vy do <

xR? Ly({z€R?: |z|>R})

[«>% e
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for all n = 1,2,3,.... So, to prove Proposition, it suffices to show that

Us,co(Z ~ y)pu(y,v)dy dv| =0

3xR3

uniformly in z € {z € R®: |z| < R}. But this can be made as when
proving Lemma 2.12.0

Since due to Proposition 2.7 L,-norms of f, are bounded uniformly
in ¢ and n and in view of Proposition 2.13, we can pass to the limit
n — oo in identity (5) obtaining it for the function f and for arbitrary
large T > 0. Now, taking an arbitrary € > 0, we have by Proposition
2.10 ||f(t,+, )|z, ®exre) > 1 — €. Hence, due to the arbitrariness of ¢ > 0,
we have ||f(t,,)||r,(r?xr?) = 1, which completes our proof of Theorem
1.4.00 :
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PaccmarpuBaertcs 3agaua Ko 1is ypaBHeHust BnacoBsa ¢ noTeHIHaIOM B3aH-
moneiicTsus 7~ 2. J[0Ka3aHO CYIIECTBOBAHHE B 1IEJIOM CIa6Or0 pelleHUs STOM 3aja-
4d. Kpome Toro, mocTpoeHsl HHBApHAHTHBIE MepHI U1 ypaBHeHHH Bracosa ¢ pery-
JIAPHBIMU TOTEHLHATAMH.

Pa6ora Bbimonnena B JlaGopatopuu teopernyecko ¢msuku um. H. H. boro-
mob6osa OHSIN.

Tpenpunt O6GbeAMHEHHOTO HHCTHTYTA SAEPHBIX HccneRoBanuid. JybHa, 2002

Zhidkov P. E. E5-2002-269
On Global L; n L, Solutions of the Vlasov Equation
with the Potential r~2

We consider the initial value problem for the Vlasov equation with the poten-
tial of interaction r~2 and prove the existence of a global weak solution for this
problem. In addition, we construct invariant measures for Vlasov equations
with regular potentials.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.
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